
© 2003-2006 WL Systems, Inc.

WealthScript Function Reference
Wealth-Lab Developer 4.0

Wealth-Lab Developer 4.0 WealthScript Function Reference

by WL Systems, Inc.

Revised: Monday, December 11, 2006

No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the
publisher.

Third party trademarks and service marks are the property of their respective owners.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use or misuse of information contained in this
document or from the use or misuse of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Printed: Monday, December 11, 2006

Wealth-Lab Developer 4.0 WealthScript Function Reference

© 2003-2006 WL Systems, Inc.

Special thanks to:

Wealth-Lab's great on-line community whose comments have
helped make this manual more useful for veteran and new users
alike.

EC Software, whose product HELP & MANUAL printed this
document.

Table of Contents

Part I Introduction 13

Part II Alert Functions 15

... 151 Overview

... 162 AlertCount

... 163 AlertOrderType

... 174 AlertPositionType

... 175 AlertPrice

... 186 AlertShares

... 187 AlertSymbol

Part III Cosmetic Chart Functions 19

... 191 Overview

... 192 AnnotateBar

... 203 AnnotateChart

... 204 CreatePane

... 205 DrawCircle

... 216 DrawCircle2

... 217 DrawDiamond

... 228 DrawEllipse

... 229 DrawHorzLine

... 2310 DrawImage

... 2311 DrawLabel

... 2412 DrawLine

... 2413 DrawRectangle

... 2514 DrawRoundRect

... 2515 DrawText

... 2616 DrawTriangle

... 2617 EnableNotes

... 2718 EnableTradeNotes

... 2719 HidePaneLines

... 2720 HideVolume

... 2821 PlotSeries

... 2822 PlotSeriesLabel

... 2923 PlotStops

... 3024 PlotSymbol

... 3025 PlotSyntheticSymbol

... 3126 SetBackgroundColor

... 3227 SetBarColor

... 3228 SetBarColors

WealthScript Function Reference, Wealth-Lab Developer 4.0I

© 2003-2006 WL Systems, Inc.

... 3329 SetColorScheme

... 3330 SetLogScale

... 3331 SetPaneBackgroundColor

... 3432 SetPaneMinMax

... 3433 SetSeriesBarColor

Part IV CommissionScript Functions 36

... 361 Overview

... 362 CMShares

... 363 CMPrice

... 374 CMEntry

... 375 CMOrderType

... 386 CMSymbol

... 387 CMDataSource

... 388 CMResult

Part V Data Access Functions 39

... 391 Overview

... 392 BarCount

... 393 GetDate

... 404 GetMargin

... 405 GetPointValue

... 406 GetSecurityName

... 417 GetSymbol

... 418 GetTick

... 429 GetTime

... 4210 OpenInterest

... 4311 PriceAverage

... 4312 PriceAverageC

... 4413 PriceClose

... 4414 PriceHigh

... 4415 PriceLow

... 4516 PriceOpen

... 4517 Volume

Part VI Date/Time Functions 46

... 461 Overview

... 462 BarInterval

... 463 BarNum

... 474 CurrentDate

... 475 CurrentTime

... 476 DateTimeToBar

... 487 DateToBar

IIContents

© 2003-2006 WL Systems, Inc.

... 488 DateToStr

... 499 DayOfWeek

... 4910 DaysBetween

... 5011 DaysBetweenDates

... 5012 GetDay

... 5113 GetHour

... 5114 GetMinute

... 5215 GetMonth

... 5216 GetYear

... 5217 IsLeapYear

... 5318 LastBar

... 5419 OptionExpiryDate

... 5420 StrToDate

... 5521 StrToTime

... 5522 TimeToStr

Part VII File Access Functions 56

... 561 Overview

... 562 FileClear

... 563 FileClose

... 564 FileCreate

... 575 FileEOF

... 576 FileFlush

... 577 FileOpen

... 588 FileRead

... 589 FileWrite

Part VIII Fundamental Data Access Functions 59

... 591 FundamentalPriceSeriesAverage

... 592 GetFundamentalDetail

Part IX Math Functions 61

... 611 Overview

... 612 Abs

... 613 ArcCos

... 624 ArcSin

... 625 ArcSinh

... 626 ArcTan

... 627 ArcTanh

... 628 Correlation

... 639 Cos

... 6310 Cosh

... 6311 Cotan

WealthScript Function Reference, Wealth-Lab Developer 4.0III

© 2003-2006 WL Systems, Inc.

... 6312 Dec

... 6413 DegToRad

... 6414 Exp

... 6415 Frac

... 6416 Hypot

... 6417 Inc

... 6518 Int

... 6519 LinearRegLine

... 6620 LineExtendX

... 6621 LineExtendY

... 6722 LN

... 6723 Log10

... 6724 Log2

... 6825 Max

... 6826 Min

... 6927 Pi

... 6928 Power

... 7029 RadToDeg

... 7030 RandG

... 7131 Random

... 7132 RandomInt

... 7133 Randomize

... 7234 RandSeed

... 7235 Round

... 7236 SetRandSeed

... 7237 Sin

... 7338 Sinh

... 7339 Sqr

... 7340 Sqrt

... 7341 Tan

... 7342 Tanh

... 7343 TrendLineValue

... 7444 Trunc

Part X PerfScript Functions 75

... 751 Overview

... 752 AccountExposure

... 763 CashInterest

... 764 DividendsPaid

... 765 MarginLoan

... 776 PerfAddCurrency

... 777 PerfAddNumber

... 788 PerfAddPct

IVContents

© 2003-2006 WL Systems, Inc.

... 789 PerfAddString

... 7910 PerfAddBreak

... 7911 StartingCapital

... 7912 TotalCommission

Part XI Position Management Functions 80

... 801 Overview

... 802 ActivePositionCount

... 813 ClearPositions

... 824 GetPositionData

... 835 GetPositionPriority

... 836 GetPositionRiskStop

... 847 LastActivePosition

... 858 LastLongPositionActive

... 859 LastPosition

... 8610 LastPositionActive

... 8711 LastShortPositionActive

... 8712 MarketPosition

... 8813 PositionActive

... 8914 PositionBasisPrice

... 9015 PositionBarsHeld

... 9016 PositionCount

... 9117 PositionEntryBar

... 9218 PositionEntryPrice

... 9319 PositionExitBar

... 9420 PositionExitPrice

... 9421 PositionExitSignalName

... 9522 PositionLong

... 9623 PositionMAE

... 9624 PositionMAEPct

... 9725 PositionMFE

... 9826 PositionMFEPct

... 9927 PositionOpenMAE

... 9928 PositionOpenMAEPct

... 10029 PositionOpenMFE

... 10030 PositionOpenMFEPct

... 10131 PositionOpenProfit

... 10232 PositionOpenProfitPct

... 10233 PositionOrderType

... 10334 PositionProfit

... 10435 PositionProfitPct

... 10536 PositionShares

... 10537 PositionShort

WealthScript Function Reference, Wealth-Lab Developer 4.0V

© 2003-2006 WL Systems, Inc.

... 10638 PositionSignalName

... 10739 PositionSymbol

... 10740 SetPositionData

... 10841 SetPositionPriority

... 11042 SetPositionRiskStop

... 11043 SetRiskStopLevel

Part XII Price Series Functions 112

... 1121 Overview

... 1122 AbsSeries

... 1123 AddCalendarDays

... 1134 AddFutureBars

... 1145 AddSeries

... 1146 AddSeriesValue

... 1147 AnalyzeSeries

... 1158 ChangeBar

... 1169 ClearExternalSeries

... 11610 ClearIndicators

... 11711 CreateNamedSeries

... 11712 CreateSeries

... 11813 CreateSeriesLength

... 11814 CrossOver

... 11915 CrossOverValue

... 11916 CrossUnder

... 12017 CrossUnderValue

... 12018 DivideSeries

... 12019 DivideSeriesValue

... 12120 DivideValueSeries

... 12121 EnableSynch

... 12222 FindNamedSeries

... 12223 FirstActualBar

... 12324 GetDescription

... 12325 GetExternalSeries

... 12426 GetSeriesValue

... 12527 MultiplySeries

... 12528 MultiplySeriesValue

... 12529 OffsetSeries

... 12630 RestorePrimarySeries

... 12631 SetDescription

... 12732 SetPrimarySeries

... 12833 SetSeriesValue

... 12834 SingleCalcMode

... 12935 SubtractSeries

VIContents

© 2003-2006 WL Systems, Inc.

... 13036 SubtractSeriesValue

... 13037 SubtractValueSeries

... 13038 SynchAll

... 13139 SynchSeries

... 13240 SyntheticBar

... 13241 TurnDown

... 13342 TurnUp

Part XIII SimuScript Functions 134

... 1341 Overview

... 1342 BarCount

... 1343 BuyAndHold

... 1354 CandidateCount

... 1365 Cash

... 1366 DrawDown

... 1377 DrawDownPct

... 1378 Equity

... 1389 SetPositionSizeFixed

... 13810 SetPositionSizePct

... 13811 SetPositionSizeShares

... 13912 SortByEntryDate

... 14013 SortByExitDate

Part XIV String Functions 141

... 1411 Overview

... 1412 CharAt

... 1423 Chr

... 1424 CompareStr

... 1425 CompareText

... 1436 Copy

... 1437 Delete

... 1438 FloatToStr

... 1449 FormatFloat

... 14410 GetToken

... 14511 Insert

... 14512 IntToStr

... 14513 Length

... 14614 LowerCase

... 14615 Ord

... 14616 Pos

... 14717 StrToFloat

... 14718 StrToFloatDef

... 14719 StrToInt

WealthScript Function Reference, Wealth-Lab Developer 4.0VII

© 2003-2006 WL Systems, Inc.

... 14820 StrToIntDef

... 14821 Trim

... 14822 TrimLeft

... 14923 TrimRight

... 14924 UpperCase

Part XV System Functions 150

... 1501 Overview

... 1502 Abort

... 1503 AddCommentary

... 1514 AddScanColumn

... 1515 AddScanColumnStr

... 1526 AllowSymbolSearch

... 1527 CreateOleObject

... 1538 GetGlobal

... 1539 GetScriptName

... 15410 GetTickCount

... 15411 Input

... 15512 IWealthLabAddOn3

... 15513 IWealthLabAuto

... 15614 IsRealTime

... 15615 Null

... 15616 PlaySound

... 15717 Print

... 15718 PrintFlush

... 15819 PrintStatus

... 15820 RunProgram

... 15921 SaveChartImage

... 15922 SetGlobal

... 16023 SetOptimizeValue

... 16124 SetPeakTroughMode

... 16225 ShowMessage

... 16226 Sleep

... 16327 UseUpdatedEMA

... 16328 WatchListAddSymbol

... 16429 WatchListClear

... 16530 WatchListCount

... 16531 WatchListDelete

... 16632 WatchListName

... 16633 WatchListRemoveSymbol

... 16634 WatchListSelect

... 16735 WatchListSymbol

VIIIContents

© 2003-2006 WL Systems, Inc.

Part XVI Technical Indicator Functions 168

... 1681 Overview

... 1682 AccumDist

... 1693 ADX

... 1704 ADXR

... 1715 AroonDown

... 1726 AroonUp

... 1737 ATR

... 1748 ATRP

... 1749 BBandLower

... 17510 BBandUpper

... 17611 BOP

... 17612 CADO

... 17813 CCI

... 17914 CMF

... 18015 CMO

... 18116 CumDown

... 18217 CumUp

... 18318 DIMinus

... 18419 DIPlus

... 18520 DSS

... 18621 DX

... 18722 EMA

... 18923 EMMinus

... 19024 EMPlus

... 19025 FAMA

... 19126 FIR

... 19227 Highest

... 19328 HighestBar

... 19429 HTDCPhase

... 19530 HTInPhase

... 19531 HTLeadSin

... 19732 HTPeriod

... 19833 HTQuadrature

... 19934 HTSin

... 20035 HTTrendLine

... 20236 HV

... 20337 Kalman

... 20438 KAMA

... 20539 KeltnerLower

... 20640 KeltnerUpper

... 20641 LinearReg

WealthScript Function Reference, Wealth-Lab Developer 4.0IX

© 2003-2006 WL Systems, Inc.

... 20742 LinearRegPredict

... 20743 LinearRegSlope

... 20844 Lowest

... 20945 LowestBar

... 20946 MACD

... 21147 MAMA

... 21248 Median

... 21249 MFI

... 21450 Momentum

... 21551 MomentumPct

... 21552 MoneyFlow

... 21653 NVI

... 21754 OBV

... 21855 Parabolic

... 22056 Peak

... 22157 PeakBar

... 22258 PeakNum

... 22359 PVI

... 22460 QStick

... 22561 RelSlope

... 22562 ROC

... 22763 RSI

... 22864 RSquared

... 22965 RVI

... 23066 SMA

... 23167 StdDev

... 23268 StdError

... 23369 StochD

... 23470 StochK

... 23571 StochRSI

... 23672 Sum

... 23773 TII

... 23874 TRIX

... 23975 Trough

... 24076 TroughBar

... 24077 TroughNum

... 24278 TrueRange

... 24379 UltimateOsc

... 24380 VHF

... 24481 Vidya

... 24582 VMA

... 24683 Volatility

XContents

© 2003-2006 WL Systems, Inc.

... 24784 WilderMA

... 24885 WilliamsR

... 24986 WMA

Part XVII Time Frame Functions 251

... 2511 Overview

... 2512 ChangeScale

... 2523 DailyFromMonthly

... 2524 DailyFromWeekly

... 2535 GetDailyBar

... 2536 GetIntraDayBar

... 2547 GetMonthlyBar

... 2548 GetWeeklyBar

... 2559 IntraDayFromCompressed

... 25610 IntraDayFromDaily

... 25611 IsDaily

... 25612 IsIntraday

... 25713 IsMonthly

... 25714 IsWeekly

... 25715 SetScaleCompressed

... 25816 SetScaleDaily

... 25917 SetScaleMonthly

... 25918 SetScaleWeekly

Part XVIII Trading System Control Functions 261

... 2611 Overview

... 2612 ApplyAutoStops

... 2633 BuyAtClose

... 2634 BuyAtLimit

... 2645 BuyAtMarket

... 2656 BuyAtStop

... 2657 CoverAtClose

... 2668 CoverAtLimit

... 2679 CoverAtMarket

... 26710 CoverAtStop

... 26811 CoverAtTrailingStop

... 26912 InstallBreakEvenStop

... 26913 InstallProfitTarget

... 27014 InstallReverseBreakEvenStop

... 27015 InstallStopLoss

... 27116 InstallTimeBasedExit

... 27217 InstallTrailingStop

... 27318 PortfolioSynch

WealthScript Function Reference, Wealth-Lab Developer 4.0XI

© 2003-2006 WL Systems, Inc.

... 27419 SellAtClose

... 27520 SellAtLimit

... 27521 SellAtMarket

... 27622 SellAtStop

... 27723 SellAtTrailingStop

... 27824 SetAutoStopMode

... 27825 SetCommission

... 27926 SetPositionSize

... 27927 SetShareCap

... 28028 SetShareFloor

... 28029 SetShareSize

... 28130 SetSlippage

... 28131 ShortAtClose

... 28232 ShortAtLimit

... 28333 ShortAtMarket

... 28334 ShortAtStop

... 28435 SplitPosition

Index 0

XIIContents

© 2003-2006 WL Systems, Inc.

© 2003-2006 WL Systems, Inc.

13 WealthScript Function Reference, Wealth-Lab Developer 4.0

1 Introduction

The Function Reference defines, describes, and demonstrates the WealthScript
functions by example. However, if you need more examples of a particular function,

you can use the function search feature of the ChartScript Explorer to find scripts
that contain a specific WealthScript function.

Each function contains a header in its description that indicates if its use is valid for a
particular type of script. For example, the following header indicates that the function
is valid for use in ChartScripts and SimuScripts, but not in PerfScripts or CMScripts.

RChartScripts RSimuScripts XPerfScripts XCMScripts

The legend below provides definitions for additional indicative symbology:

R Valid for use
X Invalid usage
ù Usage difference between ChartScripts and SimuScripts
x Valid in specific cases

Useful tips:

1. Use the QuickRef, which is found in the main icon bar on the left. Place the
cursor on a WealthScript function, which is syntax highlighted in blue by default,
in the Editor view and press F1 to call up the QuickRef for the function.

2. When coding manually, use the Smart Code Editor features. Before typing a
WealthScript function name, strike Ctrl+Space bar to bring up a list of
WealthScript functions. As you continue to type characters, you can filter the list
to quickly locate the function you're looking for. Also, for functions with
parameter lists, after typing the opening parenthesis "(" a list of parameters will
be displayed with a cue for the current parameter in bold type.

WealthScript functions are found in at least one of 14 categories. Click below to be
taken to an overview.

Alert Functions

Cosmetic Chart Functions

CommissionScript Functions

Data Access Functions

Date/Time Functions

File Access Functions

Math Functions

PerfScript Functions

Position Management Functions

Price Series Functions

SimuScript Functions

String Functions

System Functions

Technical Indicator Functions

Time Frame Functions

15

19

36

39

46

56

61

75

80

112

134

141

150

168

251

Introduction

© 2003-2006 WL Systems, Inc.

14

Trading System Control Functions 261

© 2003-2006 WL Systems, Inc.

15 WealthScript Function Reference, Wealth-Lab Developer 4.0

2 Alert Functions

2.1 Overview

An Alert is an order that needs to be placed for the next bar. Using the Alert
Functions, you can access the number of alerts that a script has generated, as well as
the symbol, order type, position type, price, and number of shares (contracts) of a
specific Alert.

Note: The Alert category of WealthScript functions are not available for
SimuScripts.

The following example shows how you can create a text file of Alert information
automatically from within any script.

Example

{ These declarations may appear at the beginning of the script }
const delim = '|';
const fle = 'C:\Alerts.txt';
var MyAlert: string;
var a, FleHdl: integer;

{ A function to round Price to precisely 2 digits after the decimal }
function StockFix(Price: float): float;
begin
 const factor = 100; // 1000 for 3 digits, etc.
 Result := Round(Price * factor) / factor
end;

{ (* Your script's main body goes here *) }

if AlertCount > 0 then
begin
 FleHdl := FileOpen(fle);
 for a := 0 to AlertCount - 1 do
 begin
 MyAlert := GetSymbol + delim
 + IntToStr(AlertPositionType(a)) + delim
 + IntToStr(AlertShares(a)) + delim
 + IntToStr(AlertOrderType(a)) + delim
 + FloatToStr(StockFix(AlertPrice(a)));

 FileWrite(FleHdl, MyAlert);
 end;
end;

Alert Functions

© 2003-2006 WL Systems, Inc.

16

2.2 AlertCount

AlertCount: integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the number of Alerts that have been generated. An Alert is an order that
needs to be placed for the next bar. Use AlertShares, AlertPositionType,
AlertOrderType, AlertSymbol and AlertPrice to gain more information on a specific
Alert.

Example

{ Place at the end of your script }
if AlertCount > 0 then
 ShowMessage(IntToStr(AlertCount) + ' Alert(s) for the next Bar!'
);

2.3 AlertOrderType

AlertOrderType(Alert: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the order type of the specified Alert. The Alert parameter is an integer value
that contain an Alert Index number. The index number should be between zero (first
Alert) and AlertCount - 1.

The return value will be one of the following:

0 = Market Order
1 = Stop Order
2 = Limit Order
3 = AtClose Order

Example

{ Place at the end of your script }
var a: integer;
var s: string;
for a := 0 to AlertCount - 1 do
begin
 s := 'Alert ' + IntToStr(a + 1) + ' is a';
 case AlertOrderType(a) of
 0:
 s := s + ' Market';
 1:
 s := s + ' Stop';
 2:
 s := s + ' Limit';
 3:
 s := s + 'n At Close';
 end;
 s := s + ' Order';
 DrawLabel(s, 0);
end;

© 2003-2006 WL Systems, Inc.

17 WealthScript Function Reference, Wealth-Lab Developer 4.0

2.4 AlertPositionType

AlertPositionType(Alert: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the Position type of the specified Alert. The Alert parameter is an integer
value that contain an Alert Index number. The index number should be between zero
(first Alert) and AlertCount - 1.

The return value will be one of the following:

0 = Buy
1 = Sell
2 = Sell Short
3 = Cover Short

Example

{ Place at the end of your script }
var a: integer;
var s: string;
for a := 0 to AlertCount - 1 do
begin
 s := 'Alert ' + IntToStr(a + 1) + ' is a ';
 case AlertPositionType(a) of
 0:
 s := s + 'Buy';
 1:
 s := s + 'Sell';
 2:
 s := s + 'Short';
 3:
 s := s + 'Cover';
 end;
 s := s + ' Order';
 DrawLabel(s, 0);
end;

2.5 AlertPrice

AlertPrice(Alert: integer): float;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the price of the specified Alert. Limit and Stop Order Alerts will have a Price
only. The Alert parameter is an integer value that contain an Alert Index number.
The index number should be between zero (first Alert) and AlertCount - 1.

Example

{ Place at the end of your script }
var a: integer;
for a := 0 to AlertCount - 1 do
 if (AlertOrderType(a) = 1) or (AlertOrderType(a) = 2) then
 DrawLabel('Alert ' + IntToStr(a + 1) + ' has a price of '
 + FormatFloat('$#,##0.00', AlertPrice(a)), 0);

Alert Functions

© 2003-2006 WL Systems, Inc.

18

2.6 AlertShares

AlertShares(Alert: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the number of shares, or contracts, in the specified Alert. The Alert
parameter is an integer value that contain an Alert Index number. The index number
should be between zero (first Alert) and AlertCount - 1.

Example

{ Place at the end of your script }
var a: integer;
for a := 0 to AlertCount - 1 do
 DrawLabel('Alert ' + IntToStr(a + 1) + ' is for '
 + IntToStr(AlertShares(a)) + ' shares', 0);

2.7 AlertSymbol

AlertSymbol(Alert: integer): string;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the symbol of the specified Alert. The Alert parameter is an integer value that
contain an Alert Index number. The index number should be between zero (first
Alert) and AlertCount - 1.

Remarks

• Since you can make trades on symbols other than the 'clicked' symbol through the
use of the SetPrimarySeries function, the AlertSymbol may not be the same as
the 'clicked' symbol.

Example

{ Place at the end of your script }
var a: integer;
for a := 0 to AlertCount - 1 do
 DrawLabel('Alert ' + IntToStr(a + 1) + ' is for symbol: '
 + AlertSymbol(a), 0);

© 2003-2006 WL Systems, Inc.

19 WealthScript Function Reference, Wealth-Lab Developer 4.0

3 Cosmetic Chart Functions

3.1 Overview

In Wealth-Lab Developer 4.0, you have control over almost everything that is
displayed on the chart. Whether it be a text annotation, a graphics object, or even a
bitmap image, look towards the Cosmetic Chart Functions to do the job. Many of the
functions use the color and style constants found here.

Note: The Cosmetic Chart category of WealthScript functions are not available for
SimuScripts.

Color value constants (Color parameter)

#Black, #Maroon, #Green, #Olive, #Navy, #Purple, #Teal, #Gray, #Silver,

#Red, #Lime, #Yellow, #Blue, #Fuchsia, #Aqua, #White, and finally

#WinLoss, which is used primarily for PerfScripts .

Light colors, normally used for shading the chart background:

#RedBkg, #BlueBkg, #GreenBkg

Additionally, colors can be specified as 3-digit integers representing a RGB color,
where the first digit is the red color contribution, the second digit from green, and the
third digit from blue. For example, 900 would be red only, whereas 009 is blue only.

Plot formatting (line Style parameter) constants

#Thin, #Dotted, #Thick, #Histogram, #ThickHist, #Dots

Finally, note that many default Chart settings are found in the Options dialog,
Tools|Options (F12)|Colors/Style tab.

3.2 AnnotateBar

AnnotateBar(Text: string; Bar: integer; AbovePrices: boolean; Color: integer; FontSize: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Annotates the specified Bar with the text provided in the Text parameter. If
AbovePrices is true, AnnotateBar draws the text above the bar, otherwise below it.
Call AnnotateBar multiple times for the same Bar to stack Text strings above or
below the bar.

Example

{ Annotate a bar if it's a 200 day closing low }
var BAR: integer;
for Bar := 20 to BarCount - 1 do
begin
 if PriceClose(Bar) = Lowest(Bar, #Close, 200) then
 AnnotateBar('Low', Bar, false, #Black, 7);
end;

75

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

20

3.3 AnnotateChart

AnnotateChart(Text: string; Pane, Bar: integer; Price: float; Color: integer; FontSize: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Annotates the chart with the specified Text at the position determined by the Bar and
Price parameters. Use this function to draw ad-hoc annotations anywhere on the
chart.

Example

{ Annotate the last bar if we have a support level below it }
var LP, P: float;
lp := Peak(BarCount - 1, #High, 6);
p := PriceClose(BarCount - 1);
if p > lp then
 AnnotateChart('Support', 0, PeakBar(BarCount - 1, #High, 6), lp,
#Green, 8);

3.4 CreatePane

CreatePane(Height: integer; AbovePrices: boolean; ShowGrid: boolean): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Creates a new blank chart pane. You can plot indicators in the pane using the
PlotSeries function. The Height parameter specifies the height of the new pane in
pixels. An average height of 75 pixels is common for new panes. The AbovePrices
parameter specifies whether to draw the new pane above or below the main
price/volume panes. The Grid parameter controls whether default horizontal grid lines
are drawn on the pane.

Example

{ Create a new Pane and plot an RSI in it }
var MyPane: integer;
MyPane := CreatePane(100, true, true);
PlotSeries(RSISeries(#Close, 30), MyPane, #Navy, #Thin);

3.5 DrawCircle

DrawCircle(Radius: integer; Pane: integer; Bar: integer; Price: float; Color: integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a circle with the specified Radius at a location determined by the values of the
Bar and Price parameters.

Example

{ Circle any 200 day High }
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 if PriceHigh(Bar) = Highest(Bar, #High, 200) then

© 2003-2006 WL Systems, Inc.

21 WealthScript Function Reference, Wealth-Lab Developer 4.0

 DrawCircle(4, 0, Bar, PriceHigh(Bar), #Red, #Thick);
end;

3.6 DrawCircle2

DrawCircle2(BarCenter: integer; PriceCenter: float; BarRadius: integer; PriceRadius: float; Pane: integer;
Color:integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a circle centered on BarCenter/PriceCenter, and intersecting at point
BarRadius/PriceRadius. The radius of the circle becomes the distance between these
two points.

Example

var Bar1, Bar2, Radius: integer;
var x1, x2, y1, y2: float;

Bar1 := BarCount - 150;
Bar2 := BarCount - 100;
SetBarColor(Bar1, #Blue);
SetBarColor(Bar2, #Blue);

y1 := PriceClose(Bar1);
y2 := PriceClose(Bar2);

DrawCircle2(Bar1, y1, Bar2, y2, 0, #Red, #Thin);

3.7 DrawDiamond

DrawDiamond(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Bar3: integer; Price3: float; Bar4:
integer; Price4: float; Pane: integer; Color: integer; Style: integer; FillColor: integer;
BehindPrices: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a diamond (or any 4 sided polygon), the four corners of which are specified by
the parameters Bar1/Price1, Bar2/Price2, Bar3/Price3 and Bar4/Price4.

Pane Specifies which on which pane to draw the diamond. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the diamond.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the diamond. Pass -1 to draw an
unfilled diamond.

BehindPrices Controls whether the diamond is drawn behind or in front of the price
bars.

Example

var P1, P2, P3, P4: float;
var B, B3, B2, B1, B4: integer;
b := BarCount - 1;

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

22

b3 := TroughBar(b, #Close, 13);
b2 := PeakBar(b3, #Close, 13);
b1 := TroughBar(b2, #Close, 13);
b4 := b2;
p1 := PriceClose(b1);
p2 := PriceClose(b2);
p3 := PriceClose(b3);
p4 := p1 - (p2 - p1);
DrawDiamond(b1, p1, b2, p2, b3, p3, b4, p4, 0, #Gray, #Thick, #Silver,
true);

3.8 DrawEllipse

DrawEllipse(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Pane: integer; Color: integer; Style:
integer; FillColor: integer; BehindPrices: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws an ellipse, the corners of which are specified by the parameters Bar1/Price1
and Bar2/Price2.

Pane Specifies which on which pane to draw the ellipse. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color Controls the color used to draw the ellipse.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the ellipse. Pass -1 to draw an
unfilled ellipse.

BehindPrices Controls whether the ellipse is drawn behind or in front of the price
bars.

Example

var BAR, PRICE: integer;
Bar := TroughBar(BarCount - 1, #Low, 13);
Price := PriceLow(Bar);
DrawEllipse(Bar - 4, Price * 1.02, Bar + 4, Price * 0.98, 0, #RedBkg,
#Thin, #RedBkg, true);
Bar := PeakBar(BarCount - 1, #High, 13);
Price := PriceHigh(Bar);
DrawEllipse(Bar - 4, Price * 1.02, Bar + 4, Price * 0.98, 0,
#GreenBkg, #Thin, #GreenBkg, true);

3.9 DrawHorzLine

DrawHorzLine(Value: float; Pane: integer; Color: integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a horizontal line on a Pane, at the value specified in the Value parameter.

Example

{ Draw a line at the psychologically important 1000 level }
DrawHorzLine(1000, 0, #Green, #Dotted);

© 2003-2006 WL Systems, Inc.

23 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.10 DrawImage

DrawImage(Bitmap: string; Pane: integer; Bar: integer; Price: float; TopDown: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a bitmap image on the chart in the specified Pane. The image is drawn with a
transparent area. The transparent color is determined by the color of the bitmap's
lower left pixel.

Bitmap The Bitmap parameter must contain the name of a bitmap file (bmp)
that resides in the "Bitmaps" folder directly under the main Wealth-
Lab Developer 4.0 folder. Provide the file name only, no path or file
extension.

Pane Specifies which on which pane to draw the ellipse. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Bar Specifies the bar at which the image should be drawn. The image will
be centered around the middle of the specified Bar.

Price Indicates which price level (or indicator value, for non-price panes) at
which to draw the image. (See TopDown next.)

TopDown If the TopDown parameter is true, the top of the image will be placed
at the specified Price level, otherwise the bottom of the image is
placed at this level.

Example

var BAR: integer;
Bar := BarCount - 40;
DrawImage('UpArrow', 0, Bar, PriceLow(Bar) * 0.995, true);
Bar := BarCount - 30;
DrawImage('DownArrow', 0, Bar, PriceHigh(Bar) * 1.005, false);

3.11 DrawLabel

DrawLabel(Text: string; Pane: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a Text label in the upper left corner of the specified Pane. You can call this
function multiple times and the labels will be drawn one below the other. For more
control over drawing text, use the DrawText function.

Example

{ Plot a 200 day moving average, and add a label to the chart }
PlotSeries(SMASeries(#Close, 200), 0, #Green, #Thin);
DrawLabel('200 day SMA', 0);

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

24

3.12 DrawLine

DrawLine(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Pane: integer; Color: integer; Style:
integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a line between the two specified points. You specify a point as a bar/price pair.
The Bar1/Bar2 parameters correspond to the x-axis values, and Price1/Price2
parameters to the y-axis values. The function automatically converts the bar/price
pairs into drawing coordinates on the chart so you can more easily establish points for
your lines.

Example

{ Draw a line between the last 2 peaks }
var P1, P2: float;
var BAR, PB1, PB2: integer;
Bar := BarCount - 1;
p1 := Peak(Bar, #High, 4);
pb1 := PeakBar(Bar, #High, 4);
p2 := Peak(pb1, #High, 4);
pb2 := PeakBar(pb1, #High, 4);
DrawLine(pb1, p1, pb2, p2, 0, #Red, #Dotted);

3.13 DrawRectangle

DrawRectangle(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Pane: integer; Color: integer;
Style: integer; FillColor: integer; BehindPrices: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a rectangle, the corners of which are specified by the parameters Bar1/Price1
and Bar2/Price2.

Pane Specifies which on which pane to draw the rectangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the rectangle.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color to fill the rectangle with. Pass -1 to draw an
unfilled rectangle.

BehindPrices Controls whether the rectangle is drawn behind the price bars or in
front of them.

Example

var P1, P2: float;
var BAR, B1, B2, P2: integer;
Bar := BarCount - 1;
b1 := PeakBar(Bar, #Close, 10);
b2 := TroughBar(Bar, #Close, 10);
p1 := PriceClose(b1);
p2 := PriceClose(b2);
DrawRectangle(b1, p1, b2, p2, 0, #Blue, #Thick, #BlueBkg, true);

© 2003-2006 WL Systems, Inc.

25 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.14 DrawRoundRect

DrawRoundRect(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Pane:integer; Color: integer;
Style: integer; FillColor: integer; BehindPrices: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a rectangle with rounded corners, which are specified by the parameters
Bar1/Price1 and Bar2/Price2.

Pane Specifies which on which pane to draw the rectangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the rectangle.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color to fill the rectangle with. Pass -1 to draw an
unfilled rectangle.

BehindPrices Controls whether the rectangle is drawn behind the price bars or in
front of them.

Example

var P1, P2: float;
var B1, B2: integer;
b1 := BarCount - 50;
b2 := BarCount - 10;
p1 := Highest(b2, #High, 40);
p2 := Lowest(b2, #Low, 40);
DrawRoundRect(b1, p1, b2, p2, 0, #Navy, #Thick, -1, false);

3.15 DrawText

DrawText(Text: string; Pane: integer; x: integer; y: integer; Color: integer; Size: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Writes the specified Text to a Pane. The X and Y parameters control the placement of
the text, expressed as pixels from the upper left corner of the pane. Color refers to
font color, and Size to font size. Standard font size is 8.

Example

{ Draw the result of our commentary to the volume pane }
var COMMENTARYSTRING: string;
CommentaryString := 'This is my advice, now listen closely ...';
DrawText(CommentaryString, 1, 4, 4, #Black, 8);

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

26

3.16 DrawTriangle

DrawTriangle(Bar1: integer; Price1: float; Bar2: integer; Price2: float; Bar3: integer; Price3: float; Pane:
integer; Color: integer; Style: integer; FillColor: integer; BehindPrices: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Draws a triangle, the three corners of which are specified by the parameters
Bar1/Price1, Bar2/Price2, and Bar3/Price3.

Pane Specifies which on which pane to draw the triangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the triangle.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the triangle. Pass -1 to draw an
unfilled diamond.

BehindPrices Controls whether the triangle is drawn behind or in front of the price
bars.

Example

var PRICE1, PRICE2, PRICE3: float;
var BAR2, BAR, BAR1, BAR3: integer;
Bar := BarCount - 1;
Bar2 := PeakBar(Bar, #High, 15);
Bar1 := TroughBar(Bar2, #Low, 15);
Bar3 := Bar2 + (Bar2 - Bar1);
Price1 := PriceLow(Bar1);
Price2 := PriceHigh(Bar2);
Price3 := Price1;
DrawTriangle(Bar1, Price1, Bar2, Price2, Bar3, Price3, 0, #Olive,
#Thick, -1, false);

3.17 EnableNotes

EnableNotes(Enable: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Turns on (Enable = true) or off the display of notes above and below trades in the
chart, such as "Buy 500 @10.00". If a trading system generates a multitude of
trades, turning this option off will result in a much less cluttered chart.

Remarks

• See also: EnableTradeNotes

Example

{ Turn off those pesky notes if there are too many trades }
if PositionCount > 20 then
 EnableNotes(false);

© 2003-2006 WL Systems, Inc.

27 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.18 EnableTradeNotes

EnableTradeNotes(Text: boolean; Arrow: boolean; Circle: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Turns on or off the display of textual and graphical notes above and below trades in
the chart. If a Trading System generates a multitude of trades, passing false for the
Text, Arrow, and/or Circle parameters will result in a much less cluttered chart.

Text Controls whether or not textual notes are drawn on the chart, such as
"Buy 200 @5.00".

Arrow Controls whether or not buy and sell arrows appear above/below the
bar where trades are opened and closed.

Circle Controls whether the circles are drawn at the exact spot where trades
occur on the bar. Additionally, if Circle is false, the horizontal dotted
line that is normally drawn for open trades is not drawn.

Remarks

• This function supersedes the original EnableNotes function, which allowed the text
notes only to be turned off.

Example

{ Turn off those pesky notes if there are many trades, show arrows only
}
if PositionCount > 20 then
 EnableTradeNotes(false, true, false);

3.19 HidePaneLines

HidePaneLines;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Hides the black lines that are drawn between chart panes.

Example

HidePaneLines;

3.20 HideVolume

HideVolume;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Renders the volume pane invisible, providing more room to the Prices Pane in the
chart.

Example

HideVolume;

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

28

3.21 PlotSeries

PlotSeries(Series: integer; Pane: integer; Color: integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Plots the specified price Series on one of the panes of the chart.

Series An integer Price Series handle or a WealthScript function that returns an
[integer] Price Series handle.

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style One of the following plot formatting constants: #Thin, #Dotted, #Thick,

#Histogram, #ThickHist, or #Dots

Remarks

• Although the OHLC/V values are automatically rendered according to the selected
chart style, you may also wish to plot the average or average-close Standard Price
Series using the constants #Average or #AverageC, respectively.

• If your futures data contains Open Interest, create a new pane and pass the
#OpenInterest constant for Series. See the OpenInterest example in the Data
Access category of functions.

Example

{ Plot the CMO in a new Pane }
var NEWPANE, CMOSER: integer;
NewPane := CreatePane(80, true, true);
CmoSer := CMOSeries(#Close, 20);
PlotSeries(CmoSer, NewPane, #Blue, #Thick);

3.22 PlotSeriesLabel

PlotSeriesLabel(Series: integer; Pane: integer; Color: integer; Style: integer; Label: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Plots the specified Price Series on one of the Panes of the chart, and adds a descriptive
Label to the chart in the same color as that used to plot the series.

Series An integer Price Series handle or a function that returns an [integer]
Price Series handle.

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style One of the following plot formatting constants: #Thin, #Dotted, #Thick,

#Histogram, #ThickHist, or #Dots

© 2003-2006 WL Systems, Inc.

29 WealthScript Function Reference, Wealth-Lab Developer 4.0

Label A string literal or variable used to describe the plotted Series.

Remarks

• The label is drawn only if Plot Labels on Chart is checked in
Tools|Options|Colors/Style.

• See PlotSeries for additional remarks.

Example

{ Plot the CMO in a new Pane }
var NEWPANE, CMOSER: integer;
NewPane := CreatePane(80, true, true);
CmoSer := CMOSeries(#Close, 20);
PlotSeriesLabel(CmoSer, NewPane, #Blue, #Thick, 'CMO(Close,20)');

3.23 PlotStops

PlotStops;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Causes the various stop levels and profit targets to be visually depicted as small dots
on the chart. The various levels are drawn using the following colors:

Profit Target Green
Stop Loss Red
Breakeven Blue
Trailing Pink
Manual Stop Brown

Remarks

• Stops are plotted for exit signals only on the bar for which they are active.

• Manual stops are plotted at the stop or limit price passed to the exit signal. For
example, a stop is plotted at Bar by the SellAtStop StopPrice parameter, whereas
a profit target is plotted by the LimitPrice parameter in SellAtLimit.

• Other signals that fall into the manual-stop/limit category include
SellAtTrailingStop, CoverAtLimit, CoverAtStop, and CoverAtTrailingStop

• PlotStops enables the display of stops and should be called prior to the main
trading loop. "Installed" AutoStops are actually processed by the ApplyAutoStops
function.

See Also: The QuickRef entry for the Min function provides a more dynamic
example with manual stops.

Example

var Bar: integer;
InstallProfitTarget(10);
InstallStopLoss(5);
InstallTrailingStop(1, 50);
PlotStops;
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

30

{ Arbitrarily short every 100 bars }
 if Bar Mod 100 = 0 then
 ShortAtMarket(Bar + 1, '');
end;

3.24 PlotSymbol

PlotSymbol(Symbol: string; Pane: integer; Color: integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Plots the symbol specified in the Symbol parameter to the chart pane specified in the
Pane parameter. If Symbol does not exist in one of your DataSources, or it does not
contain data within the range of the Primary Series specified in the Data Loading
control, a run-time error will be generated.

Symbol A string literal or variable containing the desired symbol. You should
use a symbol other than the one for the Primary Series (the current
chart symbol).

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style Controls how the symbol appears, and can be one of the following
constants: #OHLC, #Candle, or #Line

Example

var nP: integer;
PlotSymbol('MSFT', 0, #Silver, #Candle);
nP := CreatePane(100, true, true);
PlotSymbol('BORL', nP, #Blue, #OHLC);

3.25 PlotSyntheticSymbol

PlotSyntheticSymbol(Symbol: string; Open: integer; High: integer; Low: integer; Close: integer; Pane:
integer; Color: integer; Style: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Creates a synthetic "symbol" that contains open, high, low and closing prices. The
Symbol parameter specifies the identity of the synthetic symbol. The next four
parameters should contain Price Series handles that contain the Open, High, Low, and
Close Price Series, respectively.

Symbol A string literal or variable expression containing the synthetic symbol's
name.

Open An integer Price Series handle or a WealthScript function that returns an
[integer] Price Series handle to be used for the opening Price Series of
the synthetic symbol.

High, Low, and Close - same as Open for the respective Price Series.

© 2003-2006 WL Systems, Inc.

31 WealthScript Function Reference, Wealth-Lab Developer 4.0

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc. Synthetic symbols are
plotted as a single color and do not follow up/down bar coloring.

Style Controls how the symbol appears, and can be one of the following
constants: #OHLC, #Candle, or #Line, the latter of which plots only the
Close series.

Note: It's possible (and quite likely) for candles/bars to sometimes appear
"incorrect" for a synthetic symbol. This is due, for example, to the low prices
not always being less than the open, high and close for certain bars.
Consequently, these candle values do not always form into traditionally
correct candles.

Example

var SMAPANE, O, H, L, C: integer;
SMAPane := CreatePane(100, true, true);
O := SMASeries(#Open, 20);
H := SMASeries(#High, 20);
L := SMASeries(#Low, 20);
C := SMASeries(#Close, 20);
PlotSyntheticSymbol('SMACandle', O, H, L, C, SMAPane, #Blue, #Candle
);
DrawLabel('SMA Candle', SMAPane);

3.26 SetBackgroundColor

SetBackgroundColor(Bar: integer; Color: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you color the background area of all chart panes with a specified Color, on a bar-
by-bar basis. You can use this feature to highlight bull and bear trends in the chart.
When coloring the chart background, be sure to use light, pastel colors for the Color
parameter. Good colors to use for backgrounds include 988 (#RedBkg), 898
(#GreenBkg), and 889 (#BlueBkg).

Remarks

• To individually set the background color of any pane, use
SetPaneBackgroundColor.

Example

{ Identify bull and bear trends using the 52 week moving average }
var SMAWEEKLY, SMAWEEKLYDAILY, BAR: integer;
SetScaleWeekly;
SmaWeekly := SMASeries(#Close, 52);
RestorePrimarySeries;
SmaWeeklyDaily := DailyFromWeekly(SmaWeekly);
for Bar := 52 to BarCount - 1 do
begin
 if PriceClose(Bar) > GetSeriesValue(Bar, SmaWeeklyDaily) then
 SetBackgroundColor(Bar, #GreenBkg)
 else

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

32

 SetBackgroundColor(Bar, #RedBkg);
end;

3.27 SetBarColor

SetBarColor(Bar: integer; Color: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you color a specific Bar of the chart's primary Price Series. Generally, you'll use
Tools|Options|Colors/Style to set your default choices for Up/Down bar coloring,
however, you may want to color bars based on an indicator value, for example.

Remarks

• SetBarColor has priority over the SetBarColors function.

• See SetSeriesBarColor to set the color of individual bars in a Price Series other
than the primary Price Series.

Example

{ Color bars green when RSI < 20, otherwise
 color up days blue and down days red }
var Bar, hRSI, RSIPane: integer;

hRSI := RSISeries(#Close, 14);
for Bar := 20 to BarCount - 1 do
begin
 if @hRSI[Bar] < 60 then
 SetBarColor(Bar, #Green)
 else
 if PriceClose(Bar) > PriceClose(Bar - 1) then
 SetBarColor(Bar, #Blue)
 else
 SetBarColor(Bar, #Red);

end;
RSIPane := CreatePane(75, true, true);
PlotSeries(hRSI, RSIPane, #Blue, #Thick);

3.28 SetBarColors

SetBarColors(UpBars: integer; DownBars: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Specifies the bar colors for all bars on the chart. Specify the color for up bars (close >
open) using the UpBars parameter, and down bars (close < open) with the DownBars
parameter. This function is useful when sharing ChartScripts and you need to show a
specific color scheme for your methodology.

Note: Use Tools|Options|Colors/Style to set your default choices for Up/Down
bar coloring. See Also: SetColorScheme.

Example

SetBarColors(#Navy, #Maroon);

© 2003-2006 WL Systems, Inc.

33 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.29 SetColorScheme

SetColorScheme(UpBars: integer; DownBars: integer; Volume: integer; Background: integer; GridLines:
integer; MarginArea: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you control the color complete scheme of the chart in a single statement. Specify
the color of up bars, down bars, volume bars, background, gridlines and bottom
margin area. This function is especially useful when sharing ChartScripts and you
need to show a specific color scheme for your methodology.

Example

{ A slick black chart style }
SetColorScheme(#Lime, 922, #Olive, 001, 021, #Silver);

3.30 SetLogScale

SetLogScale(Pane: integer; UseLogScale: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Controls whether or not the specified Pane will use a semi-log scale as controlled by
the UseLogScale parameter. A semi-log scale gives equal weight to percentage
changes, rather then absolute value changes. For example, the distance from 1 to 10
will be the same size on the chart as the distance from 10 to 100. It's called "semi-
log" because only the y-axis uses the log scale, whereas the x-axis [typically] remains
evenly-spaced.

Example

SetLogScale(0, true);

3.31 SetPaneBackgroundColor

SetPaneBackgroundColor(Bar: integer; Pane: integer; Color: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the background color of the specified Pane to the color provided in the Color
parameter, at the specified Bar. Specify a Pane parameter of zero for the price pane,
one for the volume pane, or use custom pane created by the CreatePane function.

Remarks

• SetPaneBackgroundColor overrides SetBackgroundColor for the specified Pane.

Example

{ Plot RSI and CMO, color backgrounds to show overbought/oversold
levels }
var Bar: integer;
var RSIPane: integer;
RSIPane := CreatePane(75, true, true);
PlotSeries(RSISeries(#Close, 14), RSIPane, 005, #Thick);
DrawLabel('RSI(Close,14)', RSIPane);

Cosmetic Chart Functions

© 2003-2006 WL Systems, Inc.

34

var CMOPane: integer;
CMOPane := CreatePane(80, true, true);
PlotSeries(CMOSeries(#Close, 14), CMOPane, 009, #Thick);
DrawLabel('CMO(Close,14)', CMOPane);
for Bar := 20 to BarCount - 1 do
begin
 if RSI(Bar, #Close, 14) < 30 then
 SetPaneBackgroundColor(Bar, RSIPane, #GreenBkg)
 else if RSI(Bar, #Close, 14) > 70 then
 SetPaneBackgroundColor(Bar, RSIPane, #RedBkg);
 if CMO(Bar, #Close, 14) < -50 then
 SetPaneBackgroundColor(Bar, CMOPane, #GreenBkg)
 else if CMO(Bar, #Close, 14) > 50 then
 SetPaneBackgroundColor(Bar, CMOPane, #RedBkg);
end;

3.32 SetPaneMinMax

SetPaneMinMax(Pane: integer; Min: float; Max: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Applies minimum values to the low and high end of the selected Pane. Normally a
pane's min and max values are dependent on the Price Series that are plotted within
the pane. The following example uses SetPaneMinMax to make sure that the RSI
overbought and oversold levels appear clearly in the pane.

Note: Wealth-Lab's charting engine will still automatically scale panes to plot values
outside of the Min and Max values specified in SetPaneMinMax.

Example

{ Make sure full price range is always visible in the pane }
var RSIPANE: integer;
RSIPane := CreatePane(100, true, true);
PlotSeries(RSISeries(#Close, 30), RSIPane, #Navy, #Thin);
SetPaneMinMax(RSIPane, 20, 80);

3.33 SetSeriesBarColor

SetSeriesBarColor(Bar: integer; Series: integer; Color: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you color individual bars of any Series that is plotted. For example, you can color
bars of an oversold oscillator green and overbought red.

Remarks

• To prevent drawing specific Bars of an indicator, pass -1 as the Color parameter.

Example

{ Color Bars of the indicator based on oversold/overbought levels }
var RSISER, BAR, RSIPANE: integer;
RSISer := RSISeries(#Close, 30);
for Bar := 0 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

35 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if RSI(Bar, #Close, 30) > 60 then
 SetSeriesBarColor(Bar, RSISer, #Red)
 else if RSI(Bar, #Close, 30) < 40 then
 SetSeriesBarColor(Bar, RSISer, #Blue);
RSIPane := CreatePane(100, true, true);
PlotSeries(RSISer, RSIPane, #Navy, #Thick);

CommissionScript Functions

© 2003-2006 WL Systems, Inc.

36

4 CommissionScript Functions

4.1 Overview

You should always include real-world trading costs to add fidelity to your backtesting.
The Option Dialog (F12) includes a "Trading Costs/Control" tab that provides
selections for commissions and slippage that you will experience in real-world trading.

If your broker uses a flat-fee commission for each trade, then you may select the "per
Trade" One Way Commission option, which simply deducts a fixed amount from each
trade in a simulation. Likewise, the "per Share" option reduces a trade's gross profit
or loss by the number of shares multiplied by the value entered. Still, these simple
commission options do not include other small adjustments that your broker can make
on a per trade basis, such as the SEC fee for sale transactions in the U.S., which at
the time of this writing is $0.0468 per $1,000.

Some brokers use graduated commission schedules or base their fees on a percentage
of trade volume. CommissionScripts give you complete control over calculating simple
to the most complex commission schedules used by brokers worldwide. Using the
special "CM" variables provided, you can emulate the your broker's calculation and

assign the result to the CMResult variable. Once complete, save the script to the
CommissionScripts ChartScript folder. At this point, the script will be available as a
selection in the CommissionScript drop down control in the Options Dialog.

For each trade processed during a simulation - both entries and exits - Wealth-Lab will
execute the selected CommissionScript. The value calculated and applied to the
CMResult variable will then be used as the trade's commission cost.

Note: If you find that no commissions are ever deducted when using your
commission script, check the script for errors.

4.2 CMShares

CMShares(): integer;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns the number of shares (or contracts) for the commission calculation.

4.3 CMPrice

CMPrice(): float;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns either the entry or exit price, as required, of the position for the commission
calculation.

© 2003-2006 WL Systems, Inc.

37 WealthScript Function Reference, Wealth-Lab Developer 4.0

4.4 CMEntry

CMEntry(): boolean;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns boolean true if the trade being processed is an entry signal. Consequently,
CMEntry will be false when exiting a position. You can use this function to add the
SEC fee for sales transactions in the U.S., for example.

Example:

{ My broker charges 10.99 per trade, but also adds the SEC sales fee }
var SECFee: float;
const SECRate = 0.0234; // per $1,000

CMResult := 10.99;
if not CMEntry then
begin
 SECFee := SECRate * CMShares * CMPrice / 1000;
 SECFee := Round(SECFee * 100) / 100;
 CMResult := CMResult + SECFee;
end;

4.5 CMOrderType

CMOrderType(): integer;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns an integer indicating the type of order used.

0 = Market
1 = Stop
2 = Limit
3 = Close

Example:

{ My broker charges $9.99 for market orders, $11.00 for limit or stop
orders, and $12.50 to work an order at the close }
var Comish: float;

case CMOrderType of
 0:
 Comish := 9.99;
 1, 2:
 Comish := 11.00;
 3:
 Comish := 12.50;
 else
 { This one's on the house! }
 Comish := 0.0;
end;
CMResult := Comish;

CommissionScript Functions

© 2003-2006 WL Systems, Inc.

38

4.6 CMSymbol

CMSymbol(): string;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns the security symbol of the trade to which commissions will be applied.

4.7 CMDataSource

CMDataSource(): string;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

Returns the name of the DataSource to which CMSymbol belongs. You can test the
DataSource name to use a different commission structure based on a DataSource.

Remarks

• In real time CMDataSource returns a blank string.

4.8 CMResult

CMResult(): float;

XChartScripts XSimuScripts XPerfScripts RCMScripts

Description

You must assign the final result of the CommissionScript calculation to the special
CMResult variable. CMResult is akin to the Result variable used to return the final
result of a user-defined function in WealthScript. CMResult need not be declared and
can be used as a normal float-type variable throughout the CommissionScript's
process.

Example

{ Emulate commissions for a broker with the following fee structure:
 1¢ for first 500 shares, ½¢ per share thereafter, and $1 minimum }
if CMShares <= 500 then
 CMResult := CMShares * 0.01
else
 CMResult := (500 * 0.01) + ((CMShares - 500) * 0.005);

if CMResult < 1 then
 CMResult := 1;

© 2003-2006 WL Systems, Inc.

39 WealthScript Function Reference, Wealth-Lab Developer 4.0

5 Data Access Functions

5.1 Overview

The Data Access functions provide the methods to access the data from all the raw
Price Series in the Primary Data Series (the symbol selected for the script) as well as
other Standard Price Series information. Additionally, futures symbols' point, margin,
and tick entries in the Future Symbol Manager can be easily accessed from within your
script.

5.2 BarCount

BarCount: integer;

RChartScripts RùSimuScripts RPerfScripts XCMScripts

Description

Returns the total number of bars available in the current chart.

Remarks

The first bar of any chart is Bar Number 0, and the last bar can be found by the
expression BarCount - 1.

Example

{ A typical trading system main loop }
var Bar: integer;
for Bar := 30 to BarCount - 1 do
begin
 { ... Trading Rules ... }
end;

5.3 GetDate

GetDate(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the date of the specified Bar number. WealthScript represents date values as
large integers - the year followed by month followed by day. For example, 1/23/2001
would be represented as 20010123. You can thus compare dates by simply using the
standard arithmetic operators.

Example

{ Print the most recent date on the chart to the debug window }
var S: string;
s := IntToStr(GetDate(BarCount - 1));
Print(s);

Data Access Functions

© 2003-2006 WL Systems, Inc.

40

5.4 GetMargin

GetMargin: float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the Margin for the current symbol being charted. Margin is the amount of
funds required to maintain a single futures contract position. If the current symbol is
not a futures symbol, the function returns zero. You define Margin in the Futures
Symbols Manager, Tools|Futures Symbols Manager (Ctrl+Alt+F).

Example

var Bar: integer;

{ Take on $20,000 margin per position }
if GetMargin > 0 then
 SetShareSize(Round(20000 / GetMargin));

for Bar := 4 to BarCount() - 1 do
begin
 if LastPositionActive then
 SellAtStop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
 else
 BuyAtStop(Bar + 1, Highest(Bar, #High, 3), '');
end;

5.5 GetPointValue

GetPointValue: float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the Point Value for the current futures symbol being charted. The Point Value
is the amount of profit made when prices increase a single point. If the current
symbol is not a futures symbol, the function returns 1. You define Point Value in the
Futures Symbols Manager, Tools|Futures Symbols Manager (Ctrl+Alt+F).

Example

var PtValue: float;
var s: string;
PtValue := GetPointValue;
s := FormatFloat('0.00', PtValue);
ShowMessage('The Point Value is ' + s);

5.6 GetSecurityName

GetSecurityName: string;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the security name (company name) of the symbol currently being operated
on. Not all DataSources provide the security name in which case a blank string is
returned.

© 2003-2006 WL Systems, Inc.

41 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

ShowMessage('We''re now running ' + GetSecurityName);

5.7 GetSymbol

GetSymbol: string;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the symbol of the current chart.

Example

{ Show the closing price with the symbol in a chart label }
var X: float;
x := PriceClose(BarCount - 1);
DrawLabel('Closing price for ' + GetSymbol + ' was '
 + FormatFloat('##,##0.00', x), 0);

5.8 GetTick

GetTick: float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the Tick value for the current primary symbol. The Tick value is the smallest
incremental price move that a futures contract can make. You define Tick values in
the Futures Symbols Manager, Tools|Futures Symbols Manager (Ctrl+Alt+F).

Remarks

• In a SimuScript, GetTick returns the Tick value for the current futures symbol
being position-sized.

• GetTick returns 0 for any symbol that does not have an entry in the Futures
Symbols Manager, i.e., a stock. With Stock Mode selected in the DataSources main
menu, GetTick always returns 0.

Example

{ The 89/13 Futures Breakout System }
var Tick, XLOW, XHIGH: float;
var BAR: integer;

Tick := GetTick;

for Bar := 90 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if PositionLong(LastPosition) then
 begin
 xLow := Lowest(Bar, #Low, 13) - TICK;
 SellAtStop(Bar + 1, xLow, LastPosition, '');
 end
 else
 begin

Data Access Functions

© 2003-2006 WL Systems, Inc.

42

 xHigh := Highest(Bar, #High, 13) + TICK;
 CoverAtStop(Bar + 1, xHigh, LastPosition, '');
 end;
 end
 else
 begin
 xHigh := Highest(Bar, #High, 89) + TICK;
 xLow := Lowest(Bar, #Low, 89) - TICK;
 if BuyAtStop(Bar + 1, xHigh, '') then
 SetPositionRiskStop(LastPosition, Lowest(Bar, #Low, 13))
 else if ShortAtStop(Bar + 1, xLow, '') then
 SetPositionRiskStop(LastPosition, Highest(Bar, #High, 13));
 end;
end;
PlotSeries(HighestSeries(#High, 89), 0, 777, #Thin);
PlotSeries(LowestSeries(#Low, 89), 0, 777, #Thin);
PlotSeries(HighestSeries(#High, 13), 0, 888, #Thin);
PlotSeries(LowestSeries(#Low, 13), 0, 888, #Thin);

5.9 GetTime

GetTime(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the time of the specified Bar. WealthScript represents time values as integers
- hour (24 hour clock format) followed by minute. For example, 1:00 PM is
represented as 1300. You can thus easily test for specific time values or test times
against each other using the standard arithmetic operators.

Non-intraday DataSources will always return a value of zero for GetTime.

Example

{ Buy only after 12 noon }
var NOON: integer;
var BAR: integer;
Noon := 1200;
for Bar := 0 to BarCount - 1 do
begin
 if GetTime(Bar) > Noon then
 SetBarColor(Bar, #Red);
end;

5.10 OpenInterest

OpenInterest(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the open interest for the specified Bar. Open Interest is the number of
contracts currently open for a given futures contract. OpenInterest is available only
for Futures DataSources. Non-Futures DataSources will always contain zero values for
OpenInterest.

Use the OpenInterest function to return the open interest value as of a specified Bar.

© 2003-2006 WL Systems, Inc.

43 WealthScript Function Reference, Wealth-Lab Developer 4.0

If you need to access the complete Open Interest Price Series handle, use the
#OpenInterest built-in constant.

Interpretation

Open Interest can be used to gauge market liquidity, similar to Volume.

Example

var OEPANE: integer;
OEPane := CreatePane(50, false, true);
SetPaneMinMax(OEPane, 0, 100);
PlotSeries(#OpenInterest, OEPane, #Green, #Histogram);
DrawLabel('Open Interest', OEPane);

5.11 PriceAverage

PriceAverage(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the average price for the specified Bar. Use PriceAverage to return the value
of individual average prices at specific bars. The Average Price is defined as (High +
Low) / 2. If you need to access the complete average price Price Series, use the
#Average constant instead.

Example

{ Plot a moving average of daily average prices }
var X: float;
var BAR: integer;
x := PriceAverage(Bar);
PlotSeries(SMASeries(#Average, 30), 0, #Blue, #Thick);

5.12 PriceAverageC

PriceAverageC(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the average price for the specified Bar. Use PriceAverage to return the value
of individual average prices at specific bars. The Average Price is defined as (High +
Low + Close) / 3. If you need to access the complete average price Price Series, use
the #AverageC constant instead.

Example

{ Plot a moving average of close-weighted daily average prices }
var X: float;
var BAR: integer;
x := PriceAverageC(Bar);
PlotSeries(SMASeries(#AverageC, 30), 0, #Blue, #Thick);

Data Access Functions

© 2003-2006 WL Systems, Inc.

44

5.13 PriceClose

PriceClose(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the closing price for the specified Bar. Use PriceClose to return the value of
individual closing prices at specific bars. If you need to access the complete closing
price Price Series, use the #Close constant instead.

Example

{ Have we had an up day? }
var BAR: integer;
for Bar := 1 to BarCount - 1 do
 if PriceClose(Bar) > PriceClose(Bar - 1) then
 SetBarColor(Bar, 853);

5.14 PriceHigh

PriceHigh(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the high price for the specified Bar. Use PriceHigh to return the value of
intraday highs at specific bars. If you need to access the complete high price Price
Series, use the #High constant instead.

Example

{ Have we achieved a new 200 bar high in the last 20 bars? }
var X, X2: float;
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 x := Highest(Bar, #High, 20);
 x2 := Highest(Bar, #High, 200);
 if x = x2 then
 SetBarColor(Bar, 083);
end;

5.15 PriceLow

PriceLow(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the low price for the specified Bar. Use PriceLow to return the value of
intraday lows at specific bars. If you need to access the complete low price Price
Series, use the #Low constant instead.

Example

{ Set a stop at the low of the entry bar }
var BAR: integer;

© 2003-2006 WL Systems, Inc.

45 WealthScript Function Reference, Wealth-Lab Developer 4.0

for Bar := 80 to BarCount - 1 do
begin
 if LastPositionActive then
 SellAtStop(Bar + 1, Lowest(Bar, #Low, 20), LastPosition, 'Stop'
)
 else
 begin
 if BuyAtStop(Bar + 1, Highest(Bar, #High, 80), 'Stop') then
 SetPositionRiskStop(LastPosition, Lowest(Bar, #Low, 20));
 end;
end;

5.16 PriceOpen

PriceOpen(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the opening price for the specified Bar. Use PriceOpen to return the value of
opening prices at specific bars. If you need to access the complete open price
PriceSeries, use the #Open constant instead.

Example

{ If we have a gap up open, buy it }
var BAR: integer;
for Bar := 1 to BarCount - 1 do
begin
 if LastPositionActive then
 SellAtMarket(Bar + 1, LastPosition, '1 Day')
 else
 begin
 if PriceOpen(Bar) > PriceHigh(Bar - 1) * 1.05 then
 BuyAtMarket(Bar, 'Gap');
 end;
end;

5.17 Volume

Volume(Bar: integer): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the volume for the specified Bar. Use Volume to return the volume at specific
bars. If you need to access the complete volume Price Series, use the #Volume
constant instead.

Example

{ Plot a 30 day moving average of Volume }
var VOLSMA: integer;
VolSMA := SMASeries(#Volume, 30);
PlotSeries(VolSMA, 1, #Red, #Thin);

Date/Time Functions

© 2003-2006 WL Systems, Inc.

46

6 Date/Time Functions

6.1 Overview

Generally speaking, the Date and Time category of WealthScript functions give you
access to date/time-related information of an underlying Price Series at specific Bar
Numbers. More general date/time information is available, such as the current
date/time of your computer and important market events, like option expiry dates.

6.2 BarInterval

BarInterval: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar interval in minutes, seconds, or ticks (as required) for intraday charts.
Returns zero in non-intraday charts.

Example

var bi: integer;
bi := BarInterval;
if bi < 1 then
 ShowMessage('Not an intraday chart')
else
 ShowMessage('The intraday bar interval is '
 + IntToStr(bi));

6.3 BarNum

BarNum(Bar: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the Bar Number of the specified Bar within the trading day for intraday charts.
Intraday charts can be minute, second, or tick-based. The first bar of the day has a
BarNum of zero. Non-intraday charts always return zero for BarNum.

Example

{ Color the middle of the trading day }
var MAXBARS, BAR, PCT: integer;
{ First determine how many bars there are in one day }
MaxBars := 0;
for Bar := BarCount - 1 downto 1 do
 if BarNum(Bar) = 0 then
 begin
 MaxBars := BarNum(Bar - 1);
 Break;
 end;
if MaxBars = 0 then
 Exit;
{ Now color the bars 40 - 60% within the day's range }
for Bar := 0 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

47 WealthScript Function Reference, Wealth-Lab Developer 4.0

begin
 pct := BarNum(Bar) / MaxBars;
 if (pct >= 0.4) and (pct <= 0.6) then
 SetBarColor(Bar, #Olive);
end;

6.4 CurrentDate

CurrentDate: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the current system date in yyyyMMdd format.

Example

{ Draw the current date in yyyyMMdd integer format }
DrawLabel(IntToStr(CurrentDate), 0);

{ Use DateToStr to draw the current date using your Window's settings
in the volume pane }
DrawLabel(DateToStr(CurrentDate), 1);

6.5 CurrentTime

CurrentTime: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the current system time in hhmm format.

Example

{ Draw the current time in hhmm integer format }
DrawLabel(IntToStr(CurrentTime), 0);

{ Use TimeToStr to draw the current time using your Window's settings
in the volume pane }
DrawLabel(TimeToStr(CurrentTime), 1);

6.6 DateTimeToBar

DateTimeToBar(Date: integer; Time: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Bar Number on an intraday chart that corresponds to the specified Date
and Time values. If there is no bar that corresponds to the specified date, the
function returns -1.

Remarks

• Date is an integer value with the format yyyyMMdd, where yyyy is the year, MM is
the two-digit month (01 through 12), and dd is the two-digit day (01 through 31,
depending on the month).

Date/Time Functions

© 2003-2006 WL Systems, Inc.

48

• Time is an integer value with the format hhnn, where hh is the hour (0 through
23), and nn is the two-digit minute (00 through 59).

• If either Date or Time is not a valid, "in range" value, a run-time error will result.

• DateTimeToBar can be used to return a Bar Number on a non-intraday chart by
passing zero as Time, though DateToBar is preferred.

Example

{$I 'EnterAtPrice'}
{ "Load" a specific trade at 1050 on 20040123, try with AAPL }
var Bar: integer;

Bar := DateTimeToBar(20040123, 1050);
if Bar = -1 then
 Print('This bar does not exist in the chart')
else
 if not EnterAtPrice(Bar, 22.65, 'Long', 'Buy') then
 Print('Buy failed on bar ' + IntToStr(Bar));

6.7 DateToBar

DateToBar(Date: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Bar Number on the chart that corresponds to the specified Date value. If
there is no bar that corresponds to the specified date, the function returns -1.

Remarks

• Date is an integer value with the format yyyyMMdd, where yyyy is the year, MM is
the two-digit month (01 through 12), and dd is the two-digit day (01 through 31,
depending on the month).

• If Date is not a valid, "in range" value, a run-time error will result.

• DateToBar returns the Bar Number of the first bar of the specified Date in the
intraday data.

Example

{ Highlight my birthday bars }
var Y, DT, B: integer;
for y := 1980 to 2020 do
begin
 dt := y * 10000 + 825;
 b := DateToBar(dt);
 if b >= 0 then
 SetBarColor(b, #Blue);
end;

6.8 DateToStr

DateToStr(Date: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

49 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns a string representation of the specified integer Date value. The date
representation of the resulting string is determined by your computer's Regional
Options for "Short date format" on the Date tab.

Example

{ Record the dates where RSI was at an extremely high level }
var BAR: integer;
for Bar := 20 to BarCount - 1 do
 if RSI(Bar, #Close, 30) > 75 then
 Print(DateToStr(GetDate(Bar)) + ' '
 + FormatFloat('##0.00', RSI(Bar, #Close, 30)));

6.9 DayOfWeek

DayOfWeek(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the day of the week of the specified Bar number. Sunday is the first day of
the week and Saturday is the seventh. You can use the provided constants #Monday
through #Friday to reference day of weeks in your WealthScript code.

Example

{ Color Mondays red and Fridays Green }
var BAR: integer;
for Bar := BarCount - 1 downto 1 do
begin
 if DayOfWeek(Bar) = #MONDAY then
 SetBarColor(#Red)
 else if DayOfWeek(Bar) = #FRIDAY then
 SetBarColor(#Green);
end;

6.10 DaysBetween

DaysBetween(Bar1: integer; Bar2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Determines the number of Calendar Days (including weekends) between the two
specified bars numbers, Bar1 and Bar2.

Remarks

• DaysBetween returns a negative number of days if the date specified by Bar2
occurs prior to the date of Bar1.

• See also: DaysBetweenDates

Example

var BAR, P, INBAR, OUTBAR, BARSINTRADE, DAYSINTRADE: integer;
InstallProfitTarget(6);
InstallStopLoss(6);
for Bar := 20 to BarCount - 1 do

Date/Time Functions

© 2003-2006 WL Systems, Inc.

50

begin
 ApplyAutoStops(Bar);
 if TurnUp(Bar, WMASeries(#Close, 20)) then
 BuyAtMarket(Bar + 1, '');
end;
if PositionCount > 0 then
begin
 p := LastPosition;
 InBar := PositionEntryBar(p);
 if PositionActive(p) then
 OutBar := BarCount - 1
 else
 OutBar := PositionExitBar(p);

 BarsInTrade := OutBar - InBar + 1;
 DaysInTrade := DaysBetween(InBar, OutBar) + 1;
 DrawLabel('The last trade was for ' + IntToStr(BarsInTrade) + '
Bars', 0);
 DrawLabel('and ' + IntToStr(DaysInTrade) + ' days', 0);
end;

6.11 DaysBetweenDates

DaysBetweenDates(Date1: integer; Date2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Determines the number of calendar days including weekends between the two
specified dates, Date1 and Date2, in yyyyMMdd (standard) format.

Remarks

• DaysBetweenDates returns a negative number of days if Date2 is chronologically
prior to Date1.

• See also: DaysBetween

Example

{ Calculate the number of days between the last bar and the date
entered }
var days, date1, date2: integer;
date1 := GetDate(BarCount - 1);
date2 := StrToInt(Input('Enter a yyyyMMdd date'));
days := DaysBetweenDates(date1, date2);
ShowMessage(IntToStr(days) + ' days between ' + DateToStr(date1)
 + ' and ' + DateToStr(date2));

6.12 GetDay

GetDay(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

GetDay returns the day of the month of the specified Bar.

Example

{ Highlight all Friday the 13ths }

© 2003-2006 WL Systems, Inc.

51 WealthScript Function Reference, Wealth-Lab Developer 4.0

var BAR: integer;
for Bar := 0 to BarCount - 1 do
begin
 if DayOfWeek(Bar) = #Friday then
 if GetDay(Bar) = 13 then
 begin
 SetBarColor(Bar, #Red);
 AnnotateBar('Look out!', Bar, true, #Red, 10);
 end;
end;

6.13 GetHour

GetHour(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the hour of the specified Bar. Hours are expressed using a 24 hour clock,
e.g., 13 indicates the bar falls between 1:00PM and 1:59PM, inclusive. Non-intraday
charts will always return zero for GetHour.

Example

{ Buy on Breakout and close at 3:00 PM }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if GetHour(Bar) = 15 then
 SellAtMarket(Bar, LastPosition, '3:00');
 end
 else if GetHour(Bar) < 12 then
 BuyAtStop(Bar + 1, Highest(Bar, #High, 20), 'Buy Stop');
end;

6.14 GetMinute

GetMinute(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the minute of the specified Bar (0 to 59). Non-intraday bars will always
return zero for GetMinute.

Example

{ Color Intraday bars by minute }
var Bar, n: integer;
for Bar := 0 to BarCount - 1 do
begin
 n := (GetMinute(Bar) * 100) div 60;
 SetBarColor(Bar, n);
end;

Date/Time Functions

© 2003-2006 WL Systems, Inc.

52

6.15 GetMonth

GetMonth(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

GetMonth returns the month at the specified Bar. Month values range from 1 to 12
(January to December).

Example

{ We think February is an awful month for stocks }
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
 if not LastPositionActive then
 if GetMonth(Bar) = 2 then
 ShortAtMarket(Bar, 'Feb Blues');
 if LastPositionActive then
 if GetMonth(Bar) = 3 then
 CoverAtMarket(Bar, LastPosition, 'Exit Short');
end;

6.16 GetYear

GetYear(Bar: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

GetYear returns the year at the specified Bar.

Example

{ Change our tactics for the new millenium }
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
 if GetYear(Bar) < 2000 then
 begin
 { .. old tactics .. }
 end
 else
 begin
 { .. new millenium tactics .. }
 end;
end;

6.17 IsLeapYear

IsLeapYear(Year: integer): boolean;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns boolean true if the specified calendar Year is a leap year. Returns false in all
other cases.

Remarks

© 2003-2006 WL Systems, Inc.

53 WealthScript Function Reference, Wealth-Lab Developer 4.0

• IsLeapYear(Year) simply returns the same result as (Year Mod 4 = 0).

Example

var Bar: integer;

for Bar := 100 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if CrossUnder(Bar, #Close, SMASeries(#Close, 100)) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 if not IsLeapYear(GetYear(Bar)) then // Take leap years off
 if CrossOver(Bar, #Close, SMASeries(#Close, 100)) then
 BuyAtMarket(Bar + 1, '');
 end;
end;

6.18 LastBar

LastBar(Bar: integer): boolean;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns boolean true if the specified Bar is the last bar of the day for intraday charts.
Returns false in all other cases.

Remarks

• LastBar is most useful in backtesting to detect the last intraday bar, especially for
incomplete market days or those sessions that close earlier than normal.

• For real-time charts, LastBar returns true for the final bar of the sessions that
matches the "Market Closing Time" in the real-time data loading filter control, when
activated. If the filter is not activated, LastBar is undefined and can return either
true or false for the final bar in the chart.

• For real-time trading, consider using the PortfolioSynch function in combination
with a specific test for the market closing time (adjust each day if required for short
market sessions) using GetTime.

Example

{ Daytrading SMA crossover script (backtesting only) that closes all
positions at the end of the day. }
var Bar, p, hMASlow, hMAFast: integer;

hMAFast := SMASeries(#Close, 10);
hMASlow := SMASeries(#Close, 30);

for Bar := 30 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin { Entry Rules - don't enter on LastBar! }
 if not LastBar(Bar) then
 if CrossOver(Bar, hMAFast, hMASlow) then
 BuyAtMarket(Bar + 1, 'XOver');
 end

Date/Time Functions

© 2003-2006 WL Systems, Inc.

54

 else { Exit Rules }
 begin
 p := LastPosition;
 if LastBar(Bar) then
 SellAtClose(Bar, p, 'EOD')
 else
 begin { normal intraday exit logic }
 if CrossUnder(Bar, hMAFast, hMASlow) then
 SellAtMarket(Bar + 1, p, 'XUnder');
 end;
 end;
end;

PlotSeries(hMAFast, 0, #Green, #Thin);
PlotSeries(hMASlow, 0, #Red, #Thin);

6.19 OptionExpiryDate

OptionExpiryDate(Bar: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns boolean true if the specified Bar falls on an option expiration date. The
expiration date for all listed stock options in the U.S. is the third Friday of the
expiration month.

Note: If the normal Friday expiration date falls on a holiday, the
OptionExpiryDate is the preceding Thursday.

Example

{ Annotate Option Expiry Dates on the Chart }
var Bar: integer;
for Bar := 0 to BarCount - 1 do
 if OptionExpiryDate(Bar) then
 begin
 DrawCircle(4, 0, Bar, PriceOpen(Bar), #Navy, #Thick);
 DrawCircle(4, 0, Bar, PriceClose(Bar), #Blue, #Thick);
 end;

6.20 StrToDate

StrToDate(Value: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Converts the string parameter Value into an integer representing a WealthScript date
value, which has a format of YYYYMMDD. The Value string must be in your computer's
short date format, otherwise a run-time error will result.

Example

{ This was a bad day }
var dt, Bar: integer;
dt := StrToDate('10/19/1987');
Bar := DateToBar(dt);
if Bar > -1 then

© 2003-2006 WL Systems, Inc.

55 WealthScript Function Reference, Wealth-Lab Developer 4.0

 SetBarColor(Bar, #Red);

6.21 StrToTime

StrToTime(Value: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Converts the string parameter Value into an integer representing a WealthScript time
value, which is an integer having the format hhmm. The Value string must be a valid
time format, e.g., '14:30', '2:30 PM', etc., otherwise a run-time error will result.

Example

{ Only take action after 2:00 PM }
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
 { ... }
 if GetTime(Bar) > StrToTime('2:00 PM') then
 begin
 end;
end;

6.22 TimeToStr

TimeToStr(Time: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Converts the specified integer Time value into a string for display purposes. The time
representation of the resulting string is determined by your computer's Regional
Options for "Time format" on the Time tab.

Example

{ Draw the time of the last bar on the chart }
DrawLabel(TimeToStr(GetTime(BarCount - 1)), 0);

File Access Functions

© 2003-2006 WL Systems, Inc.

56

7 File Access Functions

7.1 Overview

The File Access category of functions give you the ability to easily work with data from
external ASCII text files or generate data from within your ChartScripts to export data
for later review.

7.2 FileClear

FileClear(File: integer);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Clears the contents of the file handle specified in the File parameter. Use this function
if you've written lines to file and want to clear the existing contents and start fresh.

Note: File handles are returned by either the FileOpen or FileCreate functions.

7.3 FileClose

FileClose(File: integer);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Explicitly closes the selected File and removes the resources allocated by the file. The
File Handle represented by the File parameter is no longer valid following this call, and
should not be used in subsequent File Access functions.

Note: File handles are returned by either the FileOpen or FileCreate functions.

Files are automatically closed after the script completes processing. During WatchList
Scans or $imulations, files are automatically closed after the complete Scan or
$imulation. Consequently, when opening a file using FileCreate, each symbol run
during a Scan or $imulation can append lines of data to a single output file without
deleting the file that was created at the beginning of the Scan or $imulation.

7.4 FileCreate

FileCreate(FileName: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Creates a new operating system file with the specified FileName. A file handle is
returned by the function call. Use this file handle in subsequent calls to FileWrite. If
a file with the specified file name already exists, the file is deleted and a new one
created in its place.

© 2003-2006 WL Systems, Inc.

57 WealthScript Function Reference, Wealth-Lab Developer 4.0

FileName A string representing the full path location and name for the new file. If
a path is not specified, as in the example below, the file will be created
in the main Wealth-Lab Developer 4.0 directory.

Example

{ Create a file to store analysis results }
var f: integer;
f := FileCreate(GetSymbol + '.txt');

7.5 FileEOF

FileEOF(File: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the specified File is currently at "end of file".

Example

{ Dump contents of Win.ini }
var F: integer;
f := FileOpen('c:\Windows\win.ini');
while not FileEOF(f) do
 Print(FileRead(f));

7.6 FileFlush

FileFlush(File: integer);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Normally, data written to a file using FileWrite isn't physically written to the
underlying operating system file until after the script completes. You can use
FileFlush to cause the contents of File, the file handle, to be written to the operating
system file immediately.

7.7 FileOpen

FileOpen(FileName: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Opens an existing operating system file with the specified FileName. The function
returns a file handle that should be used in subsequent calls to FileRead or
FileWrite. If the file does not exist, FileOpen will create it.

FileName A string representing the full path location and name of the file. If a
path is not specified, as in the example below, the file will be assumed
to exist in the main Wealth-Lab Developer 4.0 directory.

Example

{ Open a file to read external data for the symbol }
var f: integer;

File Access Functions

© 2003-2006 WL Systems, Inc.

58

f := FileOpen(GetSymbol + '.txt');

7.8 FileRead

FileRead(File: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Reads a line of data from the specified File handle. The File parameter should be a file
handle that was returned by the FileOpen function. The function returns the next
line of the file as a string. If there are no more lines in the file the function returns a
blank string. Use the FileEOF function to test whether a file is truly at end of file.

Example

{ Read a line from the file into a string variable }
var s: string;
var fh: integer;
fh := FileOpen('c:\myfile.txt');
s := FileRead(fh);

7.9 FileWrite

FileWrite(File: integer; Line: string);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Writes a single Line of text to the specified File handle. You can write to new files that
were created with FileCreate or to existing files that were opened with FileOpen.
Read and write file operations maintain separate file pointers, so you can read from a
file created with FileOpen and use FileWrite to write to the same File Handle without
disrupting the read.

Example

{ Write an analysis file that consists of RSI level and price change 20
bars out }
var f, Bar: integer;
var s: string;
var x: float;
f := FileCreate('RSI Analysis.csv');
for Bar := 20 to BarCount - 21 do
begin
 x := PriceClose(Bar + 20) - PriceClose(Bar);
 x := (x / PriceClose(Bar)) * 100;
 s := FloatToStr(RSI(Bar, #Close, 20)) + ',' + FloatToStr(x);
 FileWrite(f, s);
end;

© 2003-2006 WL Systems, Inc.

59 WealthScript Function Reference, Wealth-Lab Developer 4.0

8 Fundamental Data Access Functions

8.1 FundamentalPriceSeriesAverage

FundamentalPriceSeriesAverage(Item: string; Period: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns a Price Series containing the rolling average of the fundamental data Item for
the specified Period. This function is useful for creating a rolling average of any
fundamental data item, particularly economic indicators.

Remarks

• Wealth-Lab Pro only. See the Fundamental Data and Economic Indicator Definitions
Guide for valid Item parameters.

• If Item is not found, the function raises an error, which can be detected using a
try/except/end block (see "Error Handling" in the WealthScript Language Guide).

• FundamentalPriceSeriesAverage returns 0 value for all bars if the full number of
specified Period are not available, which is typical behavior at the beginning of the
fundamental series.

• To access fundamental data of secondary symbols, call SetPrimarySeries first.

Example

var P, A, AV: integer;
P := CreatePane(100, true, true);
A := FundamentalPriceSeries('assets');
AV := FundamentalPriceSeriesAverage('assets', 4);
PlotSeries(A, p, #Red, #ThickHist);
PlotSeries(AV, p, #Black, #Thick);

8.2 GetFundamentalDetail

GetFundamentalDetail(Bar: integer; Item: string; Detail: string): string;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Provides access to item-specific Details associated with the fundamental data Item
that is synchronized to the specified Bar number. Detail is Item-dependent and can
be any one of the strings on the left side of the "=" sign in the Data string. Use
FundamentalItemData to access the entire Data string of an Item.

For example, consider the following data string:

FY=2006;CurQTR=3;CurQTRMonth=9;CalendarYear=2006;EPSCurFY=2.57;EPSNextF
Y=2.874;

For the Data string above, Detail can be any of the following strings: 'FY' or 'CurQTR'
or 'CurQTRMonth' or 'CalendarYear' or 'EPSCurFY' or 'EPSNextFY'. See the Remarks
for other typical Items and their Data strings.

Important!

GetFundamentalDetail has the ability to synchronize to only one same-type Item on

Fundamental Data Access Functions

© 2003-2006 WL Systems, Inc.

60

a given bar. For example, if two insiders traded on the same day (or within the same
week/month for weekly/monthly bars), it is possible to access only the first of those
transactions using GetFundamentalDetail. Of the fundamental items that contain
detail strings, only 'estimated_earnings' is guaranteed to be unique by bar. If it is
important in your analysis to access every item on each bar, then use the
FundamentalItemData method and manually parse the Data string instead.
Furthermore, only FundamentalItemData has the ability to access future (or past)
earnings that do not fall within a chart's range.

Remarks

• Wealth-Lab Pro only. See the Fundamental Data and Economic Indicator Definitions
Guide for valid Item parameters.

• GetFundamentalDetail always returns a string value. If necessary, convert the
string to a number using StrToInt or StrToFloat.

• Only the following list of Items contain Data strings:

'estimated_earnings' Data string (typical):
FY=2006;CurQTR=3;CurQTRMonth=9;CalendarYear=2006;EPSCurFY=2.57;EPS

NextFY=2.874;

'insider_transactions' Data string(typical):
FirmName=Market

Edge;NormalizedRating=SELL;ActionCode=DOWNGRADE;PrevNormalizedRating=NEU
TRAL;AnalystName=Market Edge;

'analyst_rating' Data string (typical):
transtype=B;insider=DION KURCZEK;title=Vice President;

• GetFundamentalDetail returns an empty string for valid Items that do not include
details, e.g., 'assets', 'cash', 'dividend', etc.

• If Item is not found, the function raises an error, which can be detected using a
try/except/end block (see "Error Handling" in the WealthScript Language Guide).

• To access fundamental data of secondary symbols, call SetPrimarySeries first.

Example

const EE = 'estimated_earnings';
var b: integer;
var eps, calyr: string;

// Get the most recent occurrence on the chart
b := BarCount - 1;
eps := GetFundamentalDetail(b, EE, 'EPSCurFY');
calyr := GetFundamentalDetail(b, EE, 'CalendarYear');
ShowMessage('The EPS of the current fiscal year is $' + eps + #13#10 +
'from calendar year ' + calyr);

© 2003-2006 WL Systems, Inc.

61 WealthScript Function Reference, Wealth-Lab Developer 4.0

9 Math Functions

9.1 Overview

Most scientific Math function that you would expect from a scripting language are
available in WealthScript. If you cannot find the function that you're looking for, try
browsing the Studies folder or Wealth-Lab Code Library found on the Wealth-Lab site.

Three of the math functions are specific to WealthScript and allow you to determine
values or the location of a line drawn on the chart: LineExtendX , LineExtendY ,
and TrendLineValue . Note that these functions are applicable in a linear sense, and
therefore should not be used for semi-logarithmic charting. See, for example,
LineExtendYLog in the Code Library.

9.2 Abs

Abs(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the absolute value of the specified Value.

Example

{ Report on the change in price after 200 days }
var S: string;
var DIFF: float;
var BAR: integer;
Bar := BarCount - 1;
Diff := PriceClose(Bar) - PriceClose(Bar - 200);
Diff := Diff / PriceClose(Bar - 200) * 100;
s := 'After 200 days, prices ';
if Diff > 0 then
 s := s + 'advanced'
else
 s := s + 'declined';
Diff := Abs(Diff);
s := s + ' by ' + FormatFloat('#0.0%', Diff);
DrawLabel(s, 0);

9.3 ArcCos

ArcCos(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

ArcCos returns the inverse cosine of the specified number, Value. The number must
be between -1 and 1. The return value is the angle, in degrees.

66 66

73

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/libraryview?item=173

Math Functions

© 2003-2006 WL Systems, Inc.

62

9.4 ArcSin

ArcSin(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

ArcSin returns the inverse sine of the specified number. The number must be
between -1 and 1. The return value is the angle in degrees.

9.5 ArcSinh

ArcSinh(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

ArcSinh returns the inverse hyperbolic sine of the specified number, Value.

9.6 ArcTan

ArcTan(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Calculates the arctangent of a specified number, Value, in degrees.

9.7 ArcTanh

ArcTanh(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the inverse hyperbolic tangent of the specified number, Value. The number
must be between -1 and 1.

9.8 Correlation

Correlation(Series1: integer; Series2: integer; StartBar: integer; EndBar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns Pearson's Correlation Coefficient between the two specified Price Series,
Series1 and Series2. Specify the quantity of data to analyze in the StartBar and
EndBar parameters.

Example

{ How well correlated were CMO and RSI? }
var corr: float;
var RSISer, CMOSer: integer;
RSISer := RSISeries(#Close, 20);
CMOSer := CMOSeries(#Close, 20);

© 2003-2006 WL Systems, Inc.

63 WealthScript Function Reference, Wealth-Lab Developer 4.0

corr := Correlation(RSISer, CMOSer, 0, BarCount - 1);
DrawLabel('Correlation: ' + FloatToStr(corr), 0);

9.9 Cos

Cos(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the cosine of the specified angle, Value. The angle should be specified in
degrees.

9.10 Cosh

Cosh(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the hyperbolic cosine of the specified angle, Value.

9.11 Cotan

Cotan(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the cotangent of the specified angle. Specify the angle in degrees. Only use
with angles that are non-zero.

9.12 Dec

Dec(Value: integer);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Decrements the variable passed in the Value parameter by 1.

Note: Dec operates on regular integer variables only, not object field variables.

In the example below, the statement

Dec(cnt);

is equivalent to

cnt := cnt - 1;

Example

{ Each time the price crosses above 25, decrement a counter variable }
var Bar, cnt: integer;

cnt := 1000; // Initialize the variable
for Bar := 1 to BarCount - 1 do

Math Functions

© 2003-2006 WL Systems, Inc.

64

 if CrossOverValue(Bar, #Close, 25) then
 Dec(cnt);

ShowMessage('The counter is ' + IntToStr(cnt));

9.13 DegToRad

DegToRad(Degrees: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the value of the specified degree measurement, Degrees, in radians. The
conversion from degrees to radians is given by the formula:

radians = degrees(pi / 180)

9.14 Exp

Exp(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the value of e raised to the specified Value, where e is the base of the natural

logarithms and is approximately equal to 2.71828.

9.15 Frac

Frac(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the fractional part of the floating point number specified by Value.

9.16 Hypot

Hypot(x: float; y: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the length of the hypotenuse of a triangle. Specify the lengths of the sides
adjacent to the right angle in X and Y parameters.

9.17 Inc

Inc(Value: integer);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Increments the variable passed in the Value parameter by 1.

© 2003-2006 WL Systems, Inc.

65 WealthScript Function Reference, Wealth-Lab Developer 4.0

Note: Inc operates on regular integer variables only, not object field variables.

In the example below, the statement

Inc(cnt);

is equivalent to

cnt := cnt + 1;

Example

{ Each time the price crosses below 25, increment a counter variable }
var Bar, cnt: integer;

cnt := 0; // Initialize the variable
for Bar := 1 to BarCount - 1 do
 if CrossUnderValue(Bar, #Close, 25) then
 Inc(cnt);

ShowMessage('The counter is ' + IntToStr(cnt));

9.18 Int

Int(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the integer part of a floating point number as a floating point number after
rounding towards zero. Assign the result of Int to a variable of type float.

Compare to: Trunc, Round

Example

{ f equals -5.0 following the conversion }
var x, f: float;
x := -5.678;
f := Int(x);
ShowMessage(FormatFloat('0.0', f));

9.19 LinearRegLine

LinearRegLine(Series: integer; Start: integer; End: integer; Predict: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Allows you to perform ad-hoc linear regression analysis on the specified Price Series.
Specify the Start and End bars for which to calculate the regression line. Then,
specify the bar, Predict, for which you want to predict a value. This could be a bar
that extends into the future.

Example

{ Draw a bullseye around the predicted closing price of the last bar of
the
 chart based on a linear regression that completed 1 - bars earlier }
var X: float;
var ENDBAR, BAR1, BAR2: integer;

Math Functions

© 2003-2006 WL Systems, Inc.

66

EndBar := BarCount - 1;
Bar1 := EndBar - 30;
Bar2 := EndBar - 10;
x := LinearRegLine(#Close, Bar1, Bar2, EndBar);
DrawCircle(8, 0, EndBar, x, #Red, #Thick);
DrawCircle(4, 0, EndBar, x, #Black, #Thick);

9.20 LineExtendX

LineExtendX(x1: float; y1: float; x2: float; y2: float; y: float): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Extends the line specified by the x1, y1, x2, and y2 parameters, solving for x using
the specified y parameter.

Remarks

• The equation used in the solution assumes a linear (not logarithmic) y-scale axis.

Example

{ Determine middle bar between last 2 peaks }
var PRICE1, PRICE2, PRICE3: float;
var BAR, BAR1, BAR2, BAR3: integer;
Bar := BarCount - 1;
Bar1 := PeakBar(Bar, #High, 13);
Price1 := Peak(Bar, #High, 13);
Bar2 := PeakBar(Bar1, #High, 13);
Price2 := Peak(Bar1, #High, 13);
Price3 := (Price1 + Price2) / 2;
Bar3 := Trunc(LineExtendX(Bar1, Price1, Bar2, Price2, Price3));

SetBarColor(Bar3, #Red);
DrawLine(Bar1, Price1, Bar2, Price2, 0, #Blue, #Thin);

9.21 LineExtendY

LineExtendY(x1: float; y1: float; x2: float; y2: float; x: float): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Extends the line specified by the x1, y1, x2, and y2 parameters and solves for y using
the specified x parameter.

Remarks

• The equation used in the solution assumes a linear (not logarithmic) y-scale axis.
See LineExtendYLog in the Wealth-Lab Code Library for the semi-log
complementary function.

• See Also: TrendLineValue

Example

{ Extend recent resistance line to most current bar }
var PRICE1, PRICE2, Price3, Rev: float;
var BAR1, BAR, BAR2: integer;
Rev := 5;

© 2003-2006 WL Systems, Inc.

67 WealthScript Function Reference, Wealth-Lab Developer 4.0

Bar := BarCount - 1;
Bar1 := PeakBar(Bar, #High, Rev);
Price1 := Peak(Bar, #High, Rev);
Bar2 := PeakBar(Bar1, #High, Rev);
Price2 := Peak(Bar1, #High, Rev);
Price3 := LineExtendY(Bar1, Price1, Bar2, Price2, BarCount - 1);

DrawLine(Bar1, Price1, Bar2, Price2, 0, #Blue, #Thick);
DrawLine(Bar2, Price2, BarCount - 1, Price3, 0, #Red, #Thin);

9.22 LN

LN(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the natural log of the specified Value.

Example

{ This function returns the log BaseN of a Number }
function Log(Number, BaseN: float): float;
begin
 Result := LN(Number) / LN(BaseN);
end;

var f: float;
f := Log(81, 3);
ShowMessage('The log base 3 of 81 is ' + FormatFloat('0.0', f));

9.23 Log10

Log10(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the base 10 logarithm for the specified Value.

9.24 Log2

Log2(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the base 2 logarithm for the specified Value.

Math Functions

© 2003-2006 WL Systems, Inc.

68

9.25 Max

Max(n1: float; n2: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the greater of the two specified values, n1 and n2. The result is returned as a
float type.

The ChartScript below is set up for optimization on two variables, which are used for
the moving average periods. To ensure that both MA Price Series are valid for all
permutations of the #OptVars, we use Max to determine which one is greater and use
the result as the first bar in the main loop.

Example

{ Long-only moving avg crossover trading script set up for Optimization
}

{#OptVar1 8;6;14;2}
{#OptVar2 14;8;20;2}
var Bar, StartBar, p1, p2, hMA1, hMA2: integer;

p1 := #OptVar1;
p2 := #OptVar2;
hMA1 := SMASeries(#Close, p1);
hMA2 := SMASeries(#Close, p2);

{ Trunc converts the float type to an integer type }
StartBar := Trunc(Max(p1, p2));
for Bar := StartBar to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossOver(Bar, hMA1, hMA2) then
 BuyAtMarket(Bar + 1, 'XOver');
 end
 else
 if CrossUnder(Bar, hMA1, hMA2) then
 SellAtMarket(Bar + 1, LastPosition, 'XUnder');
end;
PlotSeries(hMA1, 0, #Green, #Thin);
PlotSeries(hMA2, 0, #Red, #Thin);

9.26 Min

Min(n1: float; n2: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the lower of the two specified values, n1 and n2. The result is returned as a
float type.

In the example, the short-only trading system sets a stop based on the value of two
Price Series. We use Min to determine the lesser value of the two series for the
trailing stop.

© 2003-2006 WL Systems, Inc.

69 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Each time the price crosses below 25, increment a counter variable }
var Bar, p1, p2, hMA1, hMA2: integer;
var Stp: float;

p1 := 10;
p2 := 20;
hMA1 := SMASeries(#Close, p1);
hMA2 := SMASeries(#Close, p2);
PlotStops;

for Bar := p2 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossUnder(Bar, hMA1, hMA2) then
 begin
 ShortAtMarket(Bar + 1, 'XUnder');
 { Initialize a stop 3% higher than entry }
 Stp := PositionEntryPrice(LastPosition) * 1.03;
 CoverAtTrailingStop(Bar + 1, Stp, LastPosition, 'Cvr');
 end;
 end
 else
 if CrossOver(Bar, hMA1, hMA2) then
 CoverAtMarket(Bar + 1, LastPosition, 'XOver')
 else
 begin
 Stp := Min(@hMA1[Bar] * 1.02, @hMA2[Bar] * 1.01);
 CoverAtTrailingStop(Bar + 1, Stp, LastPosition, 'TStop');
 end;
end;
PlotSeries(hMA1, 0, #Green, #Thin);
PlotSeries(hMA2, 0, #Red, #Thin);

9.27 Pi

Pi: float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the ratio of a circle's circumference to its diameter, approximately
3.141592854.

9.28 Power

Power(Base: float; Exponent: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Power raises the number specified by Base to the power specified in Exponent.

Note: For a fractional Exponent, Base must be greater than zero, otherwise a run-
time error will result.

Math Functions

© 2003-2006 WL Systems, Inc.

70

Remarks

To take the negative of the root 1/r of some positive number p, you can use:

var x, p: float;
p := 5;
x := (-1) * Power(p, 1/3)

Note that this is not the same as taking the negative root 1/r of p as in:

x = Power(-p, 1/r);

which results in a complex number and a run-time error.

9.29 RadToDeg

RadToDeg(Radians: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the specified radian angle measurement, Radians, to degrees. The
conversion from radians to degrees is given by the formula:

degrees = radians * (180 / pi)

9.30 RandG

RandG(Mean, StdDev: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Generates random numbers with a Gaussian distribution about the Mean. RandG is
useful for simulating data with sampling errors and expected deviations from the
Mean.

Remarks

• Call SetRandSeed before RandG to generate a repetitive random sequence.

• See also Random, RandomInt.

Example

{ Set 200 or 300 Fixed Bars and execute }
var n, m, BarCnt: integer;
var lst: TList = TList.Create;
var h: integer = CreateSeries;
var Pane: integer = CreatePane(150, true, true);

BarCnt := BarCount - 1;
for n := 0 to BarCnt do
 lst.Add(RandG(100, 5.0));

{ Re-order and plot to show the Gaussian distribution }
lst.SortNumeric;
n := 0;
m := 0;
repeat
 @h[m] := lst.Item(n);
 Inc(n);

© 2003-2006 WL Systems, Inc.

71 WealthScript Function Reference, Wealth-Lab Developer 4.0

 @h[BarCnt - m] := lst.Item(n);
 Inc(m);
 Inc(n);
until n >= BarCnt;
PlotSeries(h, Pane, 0, #Histogram);

9.31 Random

Random: float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a random number between zero and one.

Remarks

• Call SetRandSeed before Random to generate a repetitive random sequence.

Example

{ Get a random value between 100 and 200 }
var x: float;
x := Random * 100 + 100;

9.32 RandomInt

RandomInt(Limit: integer): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a random integer between zero and Limit - 1.

Remarks

• Call SetRandSeed before RandomInt to generate a repetitive random sequence.

Example

{ Get a random integer between 0 and 99 }
var ri: integer;
ri := RandomInt(100);
ShowMessage(IntToStr(ri));

9.33 Randomize

Randomize;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Initializes the random number generator with a random value. You can call this
function at the start of a script to ensure that you get a different sequence of random
numbers each time the script is executed.

Math Functions

© 2003-2006 WL Systems, Inc.

72

9.34 RandSeed

RandSeed;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the random number generator's current "seed" value. You can use the
SetRandSeed function to change the seed value, and start a repetitive sequence of
random numbers.

9.35 Round

Round(Value: float): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Rounds the specified floating point number, Value, to the nearest whole number,
which is returned as an integer type.

Remarks

• Round uses "Bankers Rounding", which means that if Value is exactly between two
whole numbers, the result is always an even number.

• Compare to: Int, Trunc

Example

{ n equals 2 and p equals -3 at the end of the example }
var x: float;
var n, p: integer;
x := 2.5;
n := Round(x);
x := -3.49;
p := Round(x);
ShowMessage(IntToStr(n) + #9 + IntToStr(p));

9.36 SetRandSeed

SetRandSeed(Value: integer);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Changes the seed Value of the random number generator. You can generate
repetitive sequences of random numbers by resetting the seed to a set value.

9.37 Sin

Sin(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the sine of the specified angle, Value. The angle should be specified in
degrees.

© 2003-2006 WL Systems, Inc.

73 WealthScript Function Reference, Wealth-Lab Developer 4.0

9.38 Sinh

Sinh(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the hyperbolic sine of the specified angle, Value.

9.39 Sqr

Sqr(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the square of the specified Value. The return value is Value * Value.

9.40 Sqrt

Sqrt(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the square root of the specified Value.

9.41 Tan

Tan(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the tangent of the specified angle, Value. The angle should be in degrees.

9.42 Tanh

Tan(Value: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the hyperbolic tangent of the specified Value.

9.43 TrendLineValue

TrendLineValue(Bar: integer; TrendLine: string): float;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Allows you to obtain the value at Bar of a named Trendline that you drew with Wealth-
Lab Developer 4.0's TrendLine tool. If the named Trendline could not be found for the
current symbol and time frame, the function returns 0.

Math Functions

© 2003-2006 WL Systems, Inc.

74

Remarks

• The equation used in the solution assumes a linear (not logarithmic) y-scale axis.

• See also: LineExtendY

Example

{ Have we crossed the resistance TrendLine? }
var RES: float;
var BAR: integer;
for Bar := 1 to BarCount - 1 do
begin
 res := TrendLineValue(Bar - 1, 'Resistance');
 if PriceClose(Bar - 1) < res then
 begin
 res := TrendLineValue(Bar, 'Resistance');
 if PriceClose(Bar) >= res then
 begin
 SetBarColor(Bar, #Red);
 DrawCircle(5, 0, Bar, res, #Red, #Thin);
 end;
 end;
end;

9.44 Trunc

Trunc(Value: float): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Truncates the decimal portion of the specified floating point number and returns the
integer portion. Trunc returns an integer type.

Compare to: Int, Round

Example

{ n equals 1 at the end of the example }
var x: float;
var n: integer;
x := 1.234;
n := Trunc(x);

© 2003-2006 WL Systems, Inc.

75 WealthScript Function Reference, Wealth-Lab Developer 4.0

10 PerfScript Functions

10.1 Overview

PerfScripts, or Performance Scripts, are Scriptable Performance Reports. You can
customize Wealth-Lab Performance Reports to display whatever performance metrics
that you can imagine using the PerfScript feature. Performance Scripts must be saved

to the special PerfScripts folder, where a sample is included with your Wealth-Lab
Developer 4.0 installation that duplicates the standard Wealth-Lab Performance
Report.

When enabled in the ChartScript Window or $imulator tools, Wealth-Lab will execute a
PerfScript four times to process All Trades (Long+Short), Long Only, Short Only, and
Buy & Hold positions. Since Wealth-Lab automatically makes the appropriate group of
positions available to the PerfScript during each of the four runs, it's not necessary to
write special code to test position types.

Of the seven PerfScript functions, four are used to add data to a performance record,
which is simply a single row of text in the Performance Report. Each row must have a
unique Label. Depending on the type of data to be displayed, you'll reference this
Label using either PerfAddCurrency , PerfAddNumber , PerfAddPct , or
PerfAddString . Consequently, the same performance record can display different
types of data as required for All Trades, Long Only, etc.

For example, for any performance metric that involves a division, you should include
logic to detect if the divisor is zero prior to the division operation. If it is, then you
can use PerfAddString to show 'INF'. Otherwise, use one the other functions to
display a number with the appropriate format.

10.2 AccountExposure

AccountExposure: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the total market exposure in percent for the trading system. Wealth-Lab
calculates exposure on a bar-by-bar basis and measures the area of the portfolio
equity curve that was exposed to the market.

Remarks

• AccountExposure is available only for PerfScripts.

Example

PerfAddPct('Exposure', AccountExposure, 2, #Black, 0, 8);

77 77 78

78

78

PerfScript Functions

© 2003-2006 WL Systems, Inc.

76

10.3 CashInterest

CashInterest: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the total interest earned on uninvested cash during a $imulation ($imulator
only).

Remarks

• CashInterest is available only for PerfScripts.

• Interest and loan options are found in the Options dialog, Trading Costs/Control
options group.

Example

 PerfAddCurrency('Cash Interest', CashInterest, #WinLoss, 0, 8);

10.4 DividendsPaid

DividendsPaid: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the total amount of dividends collected and paid during a $imulation. The
amount can be negative if dividends were paid while holding stock short. To enable
dividend payment, mark the checkbox for "Apply Dividend Payments" in the Trading
Costs/Control options dialog group.

Remarks

• Wealth-Lab Pro only. In "Developer" DividendsPaid always returns zero.

• DividendsPaid is available only for PerfScripts.

Example

 PerfAddCurrency('Dividends', DividendsPaid, #WinLoss, 0, 8);

10.5 MarginLoan

MarginLoan: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the total cash paid out due to margin interest during a $imulation ($imulator
only).

Remarks

• MarginLoan is available only for PerfScripts.

• Interest and loan options are found in the Options dialog, Trading Costs/Control
options group.

© 2003-2006 WL Systems, Inc.

77 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

 PerfAddCurrency('Margin Loan Interest', MarginLoan, #WinLoss, 0, 8);

10.6 PerfAddCurrency

PerfAddCurrency(Label: string; Value: float; Color: integer; Style: integer; Size: integer);

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Adds a floating point value formatted using the Decimal and Currency configuration in
the Options Dialog|System Settings.

Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.

Value Floating point expression of the performance metric to be displayed.

Color Controls the Value's text color using one of the standard color constants,
e.g., #Black, #Red, #Green, etc. For in-the-black/in-the-red coloring

(positive/negative values, respectively), use #WinLoss.

Style Controls the style of the Label and can be either #Bold, #Italic, or 0

for normal type.

Size Point size of font, 8 is standard.

Example

PerfAddCurrency('Net Profit', NetProfit, #WinLoss, 0, 8);

10.7 PerfAddNumber

PerfAddNumber(Label: string; Value: float; Decimals: integer; Color: integer; Style: integer; Size: integer
);

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Adds a floating point value, which is displayed with the specified number of Decimals.
Value is rounded to correspond to the specified Decimals precision.

Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.

Value Floating point expression of the performance metric to be displayed.

Decimals Number of digits to be displayed right of the decimal point. Rational
numbers are zero-filled. Enter 0 for integer expressions.

Color Controls the Value's text color using one of the standard color constants,
e.g., #Black, #Red, #Green, etc. For in-the-black/in-the-red coloring

(positive/negative values, respectively), use #WinLoss.

Style Controls the style of the Label and can be either #Bold, #Italic, or 0

for normal type.

Size Point size of font, 8 is standard.

PerfScript Functions

© 2003-2006 WL Systems, Inc.

78

Example

PerfAddNumber('Number of Trades', PositionCount, 0, #Black, #Bold, 8
);

10.8 PerfAddPct

PerfAddPct(Label: string; Value: float; Decimals: integer; Color: integer; Style: integer; Size: integer);

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Adds a floating point value displayed with the % symbol. Value should already be
formatted in percent terms, i.e., multiplied by 100.

Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.

Value Floating point expression of the performance metric to be displayed.

Decimals Number of digits to be displayed right of the decimal point. Rational
numbers are zero-filled. Enter 0 for integer expressions.

Color Controls the Value's text color using one of the standard color constants,
e.g., #Black, #Red, #Green, etc. For in-the-black/in-the-red coloring

(positive/negative values, respectively), use #WinLoss.

Style Controls the style of the Label and can be either #Bold, #Italic, or 0

for normal type.

Size Point size of font, 8 is standard.

Example

PerfAddPct('Net Profit %', (NetProfit / StartingCapital) * 100, 2,
#WinLoss, #Bold, 8);

10.9 PerfAddString

PerfAddString(Label: string; StringVal: string; Color: integer; Style: integer; Size: integer);

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Adds the string identified by the StringVal expression.

Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.

StringVal String expression or literal to be displayed.

Color Controls StringVal's text color using one of the standard color constants,
e.g., #Black, #Red, #Green, etc.

Style Controls the style of the Label and can be either #Bold, #Italic, or 0

for normal type.

Size Point size of font, 8 is standard.

Example

PerfAddString('Annualized Gain $', 'N/A', #Black, 0, 8);

© 2003-2006 WL Systems, Inc.

79 WealthScript Function Reference, Wealth-Lab Developer 4.0

10.10 PerfAddBreak

PerfAddBreak;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Adds a blank line after the last PerfAdd function call that creates a unique label.

Example

PerfAddBreak;

10.11 StartingCapital

StartingCapital: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the Starting Capital for Portfolio Simulations, or zero for Raw Profit Mode.

Remarks

• StartingCapital is available only for PerfScripts.

Example

PerfAddCurrency('Starting Capital', StartingCapital, #Black, #Bold, 8
);

10.12 TotalCommission

TotalCommission: float;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Returns the total commission generated during a simulation.

Remarks

• TotalCommission is available only for PerfScripts.

• The function is equally applicable to both the $imulator and ChartScript Window
tools in either Portfolio Simulation or Raw Profit mode.

Example

PerfAddCurrency('Total Commission', TotalCommission, #WinLoss, 0, 8);

Position Management Functions

© 2003-2006 WL Systems, Inc.

80

11 Position Management Functions

11.1 Overview

When you need to know about the performance or "properties" of an open or closed
Position so to make a future trading decision, look to the Position Management
category of functions. Each Position that you open will have a set of constant
properties, such as the Bar Number on which the position was opened or the number
of shares/contracts. All of these data are assigned to a Position Number that you later
use to reference a particular Position. Position Numbers start at zero with the first
Position opened by the ChartScript and increments by one for each newly opened (or
split) Position.

While the Position is still open, you can also access up-to-the bar performance data,
like Max Adverse/Favorable Excursions (MAE/MFE). Additionally, your Positions have
extra storage for items such as a risk stop price (SetPositionRiskStop) for position
sizing, a priority number to influence the decisions at the Portfolio Simulation level
(SetPositionPriority), and an arbitrary data value (SetPositionData) that you can
use for any purpose you choose!

11.2 ActivePositionCount

ActivePositionCount: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the number of active Positions currently being held by the trading system.

Example

{ Here we limit the system to 3 active Positions max }
var BAR, N: integer;

for Bar := 21 to BarCount - 1 do
begin
 n := 30;
 while n > 0 do
 begin
 if CrossUnderValue(Bar, RSISeries(#Close, 20), n) then
 if ActivePositionCount < 3 then
 BuyAtMarket(Bar + 1, IntToStr(n));
 n := n - 5;
 end;
 if CrossOverValue(Bar, RSISeries(#Close, 20), 55) then
 for n := 0 to PositionCount - 1 do
 if PositionActive(n) then
 SellAtMarket(Bar + 1, n, '');
end;
var RSIPane: integer;
RSIPane := CreatePane(75, true, true);
PlotSeries(RSISeries(#Close, 20), RSIPane, 205, #Thick);
DrawLabel('RSI(Close, 20)', RSIPane);
AddScanColumn('RSI20', RSI(BarCount - 1, #Close, 20));

110

108 107

© 2003-2006 WL Systems, Inc.

81 WealthScript Function Reference, Wealth-Lab Developer 4.0

11.3 ClearPositions

ClearPositions;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Clears out all Positions and Alerts. You'd only need to use this function if you're
writing a complex script that is basing buy/sell decisions on an idealized profit curve.
In this case, you could run one pass of the system and collect information in one or
more in custom Price Series. You could then clear out the Positions and Alerts and
execute the system again, this time using the metrics that you gathered in the first
run.

Remarks

• In Portfolio Simulation Mode, ClearPositions resets Equity to the Starting Capital
value in the Position Sizing Control, whereas Equity is reset to zero in Raw Profit
Mode.

Example

{ Calculate the win/loss ratio of the system taking all trades.
 Then re-run the system, but only take trades when the prior
 win/loss ratio was above 50%. }
var WinLossPane, Winners, Trades, p, WinLoss, Bar, CMOPane: integer;

CMOPane := CreatePane(80, true, true);
PlotSeries(CMOSeries(#Close, 20), CMOPane, 009, #Thick);
DrawLabel('CMO(Close,20)', CMOPane);

WinLoss := CreateSeries;

for Bar := 20 to BarCount - 1 do
begin
 Winners := 0;
 Trades := 0;
 for p := 0 to PositionCount - 1 do
 begin
 if not PositionActive(p) then
 begin
 Inc(Trades);
 if PositionProfit(p) > 0 then
 Inc(Winners);
 end;
 end;
 if Trades > 0 then
 SetSeriesValue(Bar, WinLoss, Winners * 100 / Trades);

 if CrossOverValue(Bar, CMOSeries(#Close, 20), -40) then
 BuyAtMarket(Bar + 1, 'CMO')
 else if CrossUnderValue(Bar, CMOSeries(#Close, 20), 40) then
 SellAtMarket(Bar + 1, #All, 'CMO');
end;

{ Plot the Win/Loss Ratio }
WinLossPane := CreatePane(100, false, true);
SetPaneMinMax(WinLossPane, 0, 100);
PlotSeries(WinLoss, WinLossPane, #Green, #ThickHist);
DrawLabel('Win/Loss Ratio', WinLossPane);

{ Clear the trades }

Position Management Functions

© 2003-2006 WL Systems, Inc.

82

ClearPositions;

{ Execute the system again, but only take the trade if the
 win/loss ratio was above 50 }
for Bar := 20 to BarCount - 1 do
begin
 if CrossOverValue(Bar, CMOSeries(#Close, 20), -40) then
 begin
 if GetSeriesValue(Bar, WinLoss) > 50 then
 BuyAtMarket(Bar + 1, 'CMO');
 end
 else if CrossUnderValue(Bar, CMOSeries(#Close, 20), 40) then
 SellAtMarket(Bar + 1, #All, 'CMO');
end;

11.4 GetPositionData

GetPositionData(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the value of any user-specific data for this Position [Number]. You can store
a single floating point value for each Position with the SetPositionData function in a
ChartScript (only). If no user-specific data is stored, the function returns 0.

Note: In WLD3.0 and later, position data no longer influences $imulator decisions
during periods of insufficient capital. This task is now accomplished using
SetPositionPriority.

Remarks

• Although you may assign data to a Position at any time after it has been created,
the ChartScript must use SetPositionData on the signal bar if you plan to retrieve
the data using GetPositionData in a SimuScript. Otherwise, using
SetPositionData after the signal bar can result in a look-ahead (peeking) error
during $imulator processing.

• GetPositionData is available for use in a SimuScript referenced from the $imulator
only.

• In a SimuScript, pass the special constant #Current to access the Position that the
$imulator (or Portfolio Simulation) is currently sizing.

Example (SimuScript)

{ A ChartScript stores the current CMO level in the Position data.
 Use this value in a SimuScript to help establish Position size }
var x: float;
x := GetPositionData(#Current);
x := (x + 100) / 2;
x := 100 - x;
SetPositionSizePct(x);

Example

{ This script uses Position Data to store whether the signal was
 generated from an RSI or an SMA Crossover. It uses the Position
 data to execute the corresponding exit. }
var P, BAR, CROSS: integer;
for Bar := 50 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

83 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if CrossOverValue(Bar, RSISeries(#Close, 20), 30) then
 begin
 BuyAtMarket(Bar + 1, 'RSI Cross 30');
 SetPositionData(LastPosition, 1);
 end;
 if CrossOver(Bar, SMASeries(#Close, 20), SMASeries(#Close, 50))
then
 begin
 BuyAtMarket(Bar + 1, 'SMA CrossOver');
 SetPositionData(LastPosition, 2);
 end;
 if CrossUnderValue(Bar, RSISeries(#Close, 20), 70) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 if GetPositionData(P) = 1 then
 SellAtMarket(Bar + 1, P, 'RSI Cross 70');
 if CrossUnder(Bar, SMASeries(#Close, 20), SMASeries(#Close, 50)
) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 if GetPositionData(P) = 2 then
 SellAtMarket(Bar + 1, P, 'SMA CrossOver');
end;

11.5 GetPositionPriority

GetPositionPriority(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Priority value that was assigned to the Position via a call to
SetPositionPriority. A Position's priority determines whether or not it will be
included by the portfolio $imulator tool if there are more trades available than capital.
Positions with a higher priority values take precedence. For example, a priority 5
Position will be included over a priority 1 Position if sufficient cash is not available for
both Positions.

Remarks

• Priority values need not be simple integers, and, they can also be negative values.

• If Positions are not assigned priority by SetPositionPriority, Positions are chosen
randomly when sufficient cash is not available for all trading signals during
$imulations. Note, however, that the random "seed" is always the same so that
$imulation results will be reproducible.

11.6 GetPositionRiskStop

GetPositionRiskStop(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Risk Stop Level (the initial stop price) of the Position. The Risk Stop level
is set by calling SetRiskStopLevel or SetPositionRiskStop from within a
ChartScript (only).

Position Management Functions

© 2003-2006 WL Systems, Inc.

84

Remarks

• Use this value in a SimuScript to determine a position size based on an initial stop
loss level recorded in the ChartScript.

Example (SimuScript)

var XSTOP, XBASIS, XRISK: float;
xStop := GetPositionRiskStop(#Current);
xBasis := PositionBasisPrice(#Current);
xRisk := Abs(xBasis - xStop);
if xRisk > 10 then
 SetPositionSizeShares(1)
else if xRisk > 5 then
 SetPositionSizeShares(2)
else if xRisk > 2.5 then
 SetPositionSizeShares(3)
else if xRisk > 1 then
 SetPositionSizeShares(4)
else
 SetPositionSizeShares(5);

Example

{ Try and buy at the 20 bar low. If we get the trade, set a stop at
the
 30 bar low. The $imulator can then use our stop level to create a
position
 size that will risk whatever percent of capital we desire. }
var BAR, P: integer;
InstallProfitTarget(10);
for Bar := 0 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin

SetRiskStopLevel(Lowest(Bar, #Low, 30) - 0.05);
BuyAtLimit(Bar + 1, Lowest(Bar, #Low, 20), '');

 end
 else
 begin
 P := LastPosition;
 SellAtStop(Bar + 1, GetPositionRiskStop(P), P, '');
 end;
end;

11.7 LastActivePosition

LastActivePosition: integer;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Description

Returns the Position Number index of the most current active Position. If there are no
active Positions, the function returns -1.

Remarks

• The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. Closed means that the
shares have been sold (or covered, for short positions). LastActivePosition
returns the last open trade in the list.

© 2003-2006 WL Systems, Inc.

85 WealthScript Function Reference, Wealth-Lab Developer 4.0

• Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Example

{ This simple average down system can be effective if you have
unlimited capital }
var BAR, P: integer;
for Bar := 20 to BarCount - 1 do
begin
 BuyAtLimit(Bar + 1, Lowest(Bar, #Close, 20), '');
 if LastActivePosition >= 0 then
 for P := 0 to PositionCount - 1 do
 SellAtLimit(Bar + 1, Highest(Bar, #High, 13), P, '');
end;

11.8 LastLongPositionActive

LastLongPositionActive: boolean;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Description

Returns true if the last long Position is currently active.

Remarks

• The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last long position
in the list is open, then LastLongPositionActive returns boolean true.

• Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastLongPositionActive to ensure
that you do not trade the last Position from the wrong symbol.

function LastLongPositionActiveSym(sym: string): boolean;
begin
 Result := LastLongPositionActive;
 if Result then
 begin
 if PositionSymbol(LastPosition) <> sym then
 Result := false;
 end;
end;

11.9 LastPosition

LastPosition: integer;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Description

Returns the Position Number of the most-recently created Position. This function is
handy in Trading Systems that work with only one open Position at a time.

Position Management Functions

© 2003-2006 WL Systems, Inc.

86

Remarks

• The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. Closed means that the
shares have been sold (or covered, for short positions). LastPosition returns the
position number of the last trade in the list.

• LastPosition returns -1 if a position has not yet been created. Note that the
number of the first position is 0.

• LastPosition is equivalent to (PositionCount - 1).

• Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Example

var Bar: integer;
PlotSeries(SMASeries(#Close, 20), 0, #Red, #Thin);
PlotSeries(SMASeries(#Close, 10), 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do
begin
 if CrossOver(Bar, SMASeries(#Close, 10), SMASeries(#Close, 20))
then
 BuyAtMarket(Bar + 1, '')
 else if CrossOver(Bar, SMASeries(#Close, 20), SMASeries(#Close,
10)) then
 SellAtMarket(Bar + 1, LastPosition, '');
end;

11.10 LastPositionActive

LastPositionActive: boolean;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Description

Returns true if the last Position is currently active. This is typically used in single
Position trading systems to determine whether to execute the entry rules or the exit
rules.

Remarks

• The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last position in
the list (returned by LastPosition) is open, then LastPositionActive returns
boolean true.

• Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastPositionActive to ensure that
you do not trade the last Position from the wrong symbol.

function LastPositionActiveSym(sym: string): boolean;
begin
 Result := LastPositionActive;
 if Result then
 begin
 if PositionSymbol(LastPosition) <> sym then

© 2003-2006 WL Systems, Inc.

87 WealthScript Function Reference, Wealth-Lab Developer 4.0

 Result := false;
 end;
end;

Example

var BAR: integer;
InstallStopLoss(20);
InstallProfitTarget(7);
for Bar := 40 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 if CrossOverValue(Bar, RSISeries(#Average, 40), 25) then
 BuyAtLimit(Bar + 1, PriceHigh(Bar), '');
end;

11.11 LastShortPositionActive

LastShortPositionActive: boolean;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Description

Returns true if the last short Position is currently active.

Remarks

• The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last short
position in the list is open, then LastShortPositionActive returns boolean true.

• Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastShortPositionActive to
ensure that you do not trade the last Position from the wrong symbol.

function LastShortPositionActiveSym(sym: string): boolean;
begin
 Result := LastShortPositionActive;
 if Result then
 begin
 if PositionSymbol(LastPosition) <> sym then
 Result := false;
 end;
end;

11.12 MarketPosition

MarketPosition: integer;

RChartScripts xSimuScripts RPerfScripts XCMScripts

Position Management Functions

© 2003-2006 WL Systems, Inc.

88

Description

Returns 0 if the last position is closed, or a position has not yet been created. Returns
1 if the last position is active and long, and -1 if the last position is active and short.
This function is useful for single-position systems that take long and short positions
(see example).

Remarks

• Avoid using MarketPosition in SimuScripts since it will not produce the desired
result when used in the $imulator.

Example

{ Channel Breakout System for Futures }
var HH, LL, HL, LH, BAR: integer;
HH := HighestSeries(#High, 20);
LL := LowestSeries(#Low, 20);
HL := HighestSeries(#Low, 20);
LH := LowestSeries(#High, 20);
for Bar := 21 to BarCount - 1 do
begin
 case MarketPosition of
 0:
 begin
 if not BuyAtStop(Bar + 1, @HH[Bar], '') then
 ShortAtStop(Bar + 1, @LL[Bar], '');
 end;
 1:
 begin
 if SellAtStop(Bar + 1, @LH[Bar], LastPosition, '') then
 ShortAtStop(Bar + 1, @LL[Bar], '');
 end;
 -1:
 begin
 if CoverAtStop(Bar + 1, @HL[Bar], LastPosition, '') then
 BuyAtStop(Bar + 1, @HH[Bar], '');
 end;
 end;
end;

11.13 PositionActive

PositionActive(Position: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the specified Position is open, and false if it has been closed. Use this
function in trading systems that manage multiple Positions.

Remarks

• For SimuScripts, PositionActive returns true if the specified Position is active at
the time of the SimuScript call, otherwise false. You can use this function in
Position Sizing scripts that are based on streaks, like the one that follows.

Example (SimuScript)

{ Use winning streaks of closed positions to establish a position size
}
var STREAK, P: integer;

© 2003-2006 WL Systems, Inc.

89 WealthScript Function Reference, Wealth-Lab Developer 4.0

streak := 0;
for p := PositionCount - 1 downto 0 do
begin
 if not PositionActive(p) then
 begin
 if PositionProfit(p) <= 0 then
 Break
 else
 streak := streak + 1;
 end;
end;
if streak = 0 then
 streak := 1;
if streak > 10 then
 streak := 10;
SetPositionSizePct(streak * 10);

Example

var BAR, P: integer;
for Bar := 40 to BarCount - 1 do
begin
 if CrossOverValue(Bar, RSISeries(#Average, 40), 35) then
 BuyAtLimit(Bar + 1, PriceHigh(Bar), '');
 if CrossUnderValue(Bar, RSISeries(#Average, 40), 70) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 SellAtMarket(Bar + 1, P, '');
end;

11.14 PositionBasisPrice

PositionBasisPrice(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Basis Price of the specified Position. The Basis Price is the price used to
establish the size of the Position.

Remarks

• For next-bar market orders, the Basis Price is the close of the bar on which the
trade is signaled. The actual entry price is the open of the following bar.

• For AtClose orders, the Basis Price is equal to the closing price of the signal bar.

• For stop and limit orders, the Basis Price is equal to the Stop/Limit price. The trade
may be filled at a different price if there is a gap against the Stop/Limit price.

Example (SimuScript)

var XSTOP, XBASIS, XRISK: float;
xStop := GetPositionRiskStop(#Current);
xBasis := PositionBasisPrice(#Current);
xRisk := Abs(xBasis - xStop);
if xRisk > 10 then
 SetPositionSizeShares(1)
else if xRisk > 5 then
 SetPositionSizeShares(2)
else if xRisk > 2.5 then
 SetPositionSizeShares(3)

Position Management Functions

© 2003-2006 WL Systems, Inc.

90

else if xRisk > 1 then
 SetPositionSizeShares(4)
else
 SetPositionSizeShares(5);

Example

{ Display differences between Basis Price and Entry Price }
var Bar: integer;
PlotStops;
for Bar := 4 to BarCount - 1 do
begin
 if LastPositionActive then
 SellAtStop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
 else
 begin
 if BuyAtStop(Bar + 1, Highest(Bar, #High, 3), '') then
 Print(FloatToStr(PositionEntryPrice(LastPosition)
 - PositionBasisPrice(LastPosition)));
 end;
end;

11.15 PositionBarsHeld

PositionBarsHeld(Position: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the number of bars the specified Position was active. This method is useful
when calculating statistics at the end of the script and should not be used within the
trading loop since it does not provide the number of bars currently held.

Remarks

• If the position was closed, PositionBarsHeld returns the same result obtained by
subtracting PositionEntryBar from PositionExitBar.

• If the position is open after the trading loop ends, PositionBarsHeld returns the
result obtained by subtracting PositionEntryBar from BarCount - 1.

11.16 PositionCount

PositionCount: integer;

RChartScripts RùSimuScripts RPerfScripts XCMScripts

Description

Returns the total number of trading system Positions, both open and closed.

Remarks

• In SimuScripts, PositionCount returns the number of Positions at the time the
SimuScript was called. This count does not include the Position that is currently
being processed by the SimuScript.

• Since a Portfolio Simulation can reject trades for insufficient cash, PositionCount
can differ from a Raw Profit PositionCount. Therefore in a SimuScript,
PositionCount returns the number of positions that have been accepted by the
current $imulation run at the time the SimuScript is called.

© 2003-2006 WL Systems, Inc.

91 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example (SimuScript)

{ Scale down Position size the more active Positions that we have }
var PS, P: integer;
ps := 40;
for p := 0 to PositionCount - 1 do
begin
 if PositionActive(p) then
 begin
 ps := ps - 10;
 if ps = 10 then
 Break;
 end;
end;
SetPositionSizePct(ps);

The following ChartScript uses an advanced technique for quickly looping through all
active Positions. Knowing that the most-recently created Positions have the greatest
Position Numbers, we can "count backwards" and exit the PositionCount loop after
determining that all active Positions have been processed. The result is a significant
savings in processing time for ChartScripts that create many Positions since older,
closed Positions are not processed needlessly.

Example

{ The script adds a long position whenever CumDown is 9 or greater.
 When CumUp = 9, all active positions are sold. }
var Bar, p, Processed, APCount: integer;
for Bar := 9 to BarCount - 1 do
begin
 if CumDown(Bar, #Close, 4) >= 9 then
 BuyAtMarket(Bar + 1, '');
 if (CumUp(Bar, #Close, 4) = 9) then
 begin
 APCount := ActivePositionCount;
 Processed := 0;
 for p := PositionCount - 1 downto 0 do
 begin
 if PositionActive(p) then
 begin
 SellAtMarket(Bar + 1, p, '');
 Inc(Processed);
 end;

 if Processed = APCount then
 break;
 end;
 end;
end;

11.17 PositionEntryBar

PositionEntryBar(Position: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar number on which the Position was established.

Example

var Bar: integer;
for Bar := 20 to BarCount - 1 do

Position Management Functions

© 2003-2006 WL Systems, Inc.

92

begin
 if not LastPositionActive then
 begin
 if StochK(Bar, 20) > 70 then
 BuyAtMarket(Bar + 1, 'Stoch');
 end
 else
 begin
 { Sell after 10 days }
 if Bar - PositionEntryBar(LastPosition) = 10 then
 SellAtMarket(Bar + 1, LastPosition, '10 day');
 end;
end;

11.18 PositionEntryPrice

PositionEntryPrice(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the entry price of the specified Position.

Remarks

• When backtesting, PositionEntryPrice returns the actual entry price for signals on
Bar + 1 even though the order is executed on Bar. Do not use the entry price for a
Position created on Bar for other trading rules on the same Bar.

• In general, SimuScripts should use PositionBasisPrice, not PositionEntryPrice,
for the #Current Position. This is because at the time the SimuScript is called, only
the basis price is known for next-bar orders. See the SimuScript example below.

• PositionEntryPrice always returns zero for entry signal Alerts.

Example (SimuScript)

{ Use a larger size if the Basis Price of the current Position
 is less than the average entry price of all Positions thus far. }
var p: integer;
var sumPr, avgPr: float;

if PositionCount = 0 then
 SetPositionSizeShares(200)
else
begin
 for p := 0 to PositionCount - 1 do
 sumPr := sumPr + PositionEntryPrice(p);
 avgPr := sumPr / PositionCount;

 if PositionBasisPrice(#Current) < avgPr then
 SetPositionSizeShares(300)
 else
 SetPositionSizeShares(200);
end;

Example

{ CMO Signals with Profit Target will open multiple Positions, but will
 wait until the price is lower than the previously established
Position. }
var LOWESTPOSITION: float;

© 2003-2006 WL Systems, Inc.

93 WealthScript Function Reference, Wealth-Lab Developer 4.0

var NPANE, LASTBARBOUGHT, BAR, I: integer;

{ Plot 14 day CMO in new chart pane }
nPane := CreatePane(60, TRUE, FALSE);
PlotSeries(CMOSeries(#Close, 20), nPane, 009, 0);
DrawText('CMO 20', nPane, 4, 4, 006, 8);
SetPaneMinMax(nPane, -60, 60);
DrawHorzLine(0, nPane, 666, 0);
DrawHorzLine(50, nPane, 666, 1);
DrawHorzLine(-50, nPane, 666, 1);

SetBarColors(#Black, #Black);
InstallProfitTarget(10);
LastBarBought := 0;
for Bar := 15 to BarCount - 1 do
begin
 if CMO(Bar, #Close, 20) <= -50 then
 SetBarColor(Bar, #Blue)
 else if CMO(Bar, #Close, 20) >= 50 then
 SetBarColor(Bar, #Red);
 ApplyAutoStops(Bar);
 if CMO(Bar, #Close, 20) > -50 then
 if CMO(Bar - 1, #Close, 20) <= -50 then
 begin
 LowestPosition := 9999.9;
 for i := 0 to PositionCount - 1 do
 if PositionActive(i) then
 if PositionEntryPrice(i) < LowestPosition then
 LowestPosition := PositionEntryPrice(i);
 if (LowestPosition = 9999.9) or (PriceClose(Bar) <
LowestPosition) then
 if Bar >= (LastBarBought + 9) then
 begin
 BuyAtMarket(Bar + 1, '');
 LastBarBought := Bar + 1;
 end;
 end;
 if CMO(Bar, #Close, 20) < 50 then
 if CMO(Bar - 1, #Close, 20) >= 50 then
 for i := 0 to PositionCount - 1 do
 if PositionActive(i) then
 SellAtMarket(Bar + 1, i, '');
end;

11.19 PositionExitBar

PositionExitBar(Position: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar number on which the specified Position was closed. If Position is still
active on the last bar of the chart, then PositionExitBar returns 0.

Example

{ Display the shortest and the longest holding time }
var BAR, LOWBAR, HIGHBAR, P, BARSHELD: integer;
for Bar := 20 to BarCount - 1 do
begin
 if not LastPositionActive then

Position Management Functions

© 2003-2006 WL Systems, Inc.

94

 begin
 if CrossUnderValue(Bar, RSISeries(#Close, 10), 20) then
 BuyAtMarket(Bar + 1, '');
 end
 else
 begin
 if CrossOverValue(Bar, RSISeries(#Close, 10), 60) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

LowBar := 0;
HighBar := 0;
for P := 0 to PositionCount - 1 do
begin
 BarsHeld := PositionExitBar(P) - PositionEntryBar(P);
 if BarsHeld > HighBar then
 HighBar := BarsHeld;
 if (BarsHeld < LowBar) or (LowBar = 0) then
 LowBar := BarsHeld;
end;
DrawLabel('Longest Holding Time: ' + IntToStr(HighBar), 0);
DrawLabel('Shortest Holding Time: ' + IntToStr(LowBar), 0);

11.20 PositionExitPrice

PositionExitPrice(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the exit price of the specified Position.

Example

{ This procedure reports on entry and exit levels of all trades
 Note: #9 inserts a tab character and is equivalent to chr(9) }
procedure TradeReport;
begin
 var f, p: integer;
 var s: string;
 f := FileCreate('c:\trade report.txt');
 for p := 0 to PositionCount - 1 do
 begin
 s := 'Entry:' + #9 + DateToStr(GetDate(PositionEntryBar(p)))
 + #9 + FloatToStr(PositionEntryPrice(p)) + #9;
 s := s + 'Exit: ' + #9 + DateToStr(GetDate(PositionExitBar(p))
)
 + #9 + FloatToStr(PositionExitPrice(p));
 FileWrite(f, s);
 end;
end;

11.21 PositionExitSignalName

PositionExitSignalName(Position: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

95 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns the "Signal Name" of the exit signal for the specified Position. The Signal
Name is always the last parameter (SignalName) of the SellAt or CoverAt function
that closed the Position.

Tip: If your strategy has many different entries and exits, you use a Position's
entry or exit signal name as a condition for future trading decisions, if desired.

Example

var BAR: integer;
InstallStopLoss(20);
InstallProfitTarget(100);
InstallTrailingStop(10, 50);
for Bar := 30 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if CrossOverValue(Bar, RSISeries(#Close, 20), 28) then
 BuyAtMarket(Bar + 1, '');
end;
if PositionCount > 0 then
 DrawLabel('Last Position was Closed by '
 + PositionExitSignalName(LastPosition), 0);

11.22 PositionLong

PositionLong(Position: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the specified Position is long, and false if it is short.

Remarks

• To access the Position that the $imulator (or Portfolio Simulation) is currently
working with, use the special constant #Current.

• See also: PositionShort

Example

var BAR: integer;
for Bar := 5 to BarCount - 1 do
begin
 if LastPositionActive then
 if PositionLong(LastPosition) then
 SellAtStop(Bar + 1, Lowest(Bar - 1, #Low, 4), LastPosition, ''
);
 if not LastPositionActive then
 ShortAtStop(Bar + 1, Lowest(Bar - 1, #Low, 4), '')
 else if LastPositionActive and not PositionLong(LastPosition) then
 CoverAtStop(Bar + 1, Highest(Bar - 1, #High, 4), LastPosition,
'');
 if not LastPositionActive then
 BuyAtStop(Bar + 1, Highest(Bar - 1, #High, 4), '');
end;

Position Management Functions

© 2003-2006 WL Systems, Inc.

96

11.23 PositionMAE

PositionMAE(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Adverse Excursion of a closed Position. Max Adverse Excursion is the
worst loss that the Position experienced during its lifetime on an intraday basis. The
result is reported in dollars, but you can use PositionMAEPct to return the MAE in
percentage terms.

Remarks

• The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

• Do not use PositionMAE for Positions that are still active. To obtain the MAE for
an active Position, or the MAE for a particular bar, use the PositionOpenMAE
function.

• Use PositionMAE, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

• Commissions are not considered in the MAE calculation.

Warning! Because it is a cash-based function, PositionMAE cannot be employed in
a ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ftmp: float;

for Bar := 20 to BarCount - 1 do
begin
{ Trading system rules }
end;

{ Find the average PositionMAE }
for p := 0 to PositionCount - 1 do
 ftmp := ftmp + PositionMAE(p);

ftmp := ftmp / PositionCount;
ShowMessage('Avg MAE = ' + FormatFloat('0.00', ftmp));

11.24 PositionMAEPct

PositionMAEPct(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Adverse Excursion of a closed Position in percent. Max Adverse
Excursion is the worst loss that the Position experienced during its lifetime on an
intraday basis. Use PositionMAE to return the MAE in dollar terms.

© 2003-2006 WL Systems, Inc.

97 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

• Do not use PositionMAEPct for Positions that are still active. To obtain the
percentage MAE for an active Position, or the percentage MAE for a particular bar,
use the PositionOpenMAEPct function.

• Use PositionMAEPct, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

• Commissions are not considered in the MAEPct calculation.

Example

var Bar, p: integer;
var ftmp: float;

for Bar := 20 to BarCount - 1 do
begin
{ Trading system rules }
end;

{ Find the average PositionMAEPct }
for p := 0 to PositionCount - 1 do
 ftmp := ftmp + PositionMAEPct(p);

ftmp := ftmp / PositionCount;
ShowMessage('Avg MAE (%) = ' + FormatFloat('0.00%', ftmp));

11.25 PositionMFE

PositionMFE(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Favorable Excursion of a closed Position. Max Favorable Excursion is
the largest gain that the Position experienced during its lifetime on an intraday basis.
The result is reported in dollars, but you can use PositionMFEPct to return the MFE
in percentage terms.

Remarks

• The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

• Do not use PositionMFE for Positions that are still active. To obtain the MFE for an
active Position, or the MFE for a particular bar, use the PositionOpenMFE function.

• Use PositionMFE, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

• Commissions are not considered in the MFE calculation.

Warning! Because it is a cash-based function, PositionMFE cannot be employed in a
ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ftmp: float;

Position Management Functions

© 2003-2006 WL Systems, Inc.

98

for Bar := 20 to BarCount - 1 do
begin
{ Trading system rules }
end;

{ Find the average PositionMFE }
for p := 0 to PositionCount - 1 do
 ftmp := ftmp + PositionMFE(p);

ftmp := ftmp / PositionCount;
ShowMessage('Avg MFE = ' + FormatFloat('0.00', ftmp));

11.26 PositionMFEPct

PositionMFEPct(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Favorable Excursion of a closed Position in percent. Max Favorable
Excursion is the largest gain that the Position experienced during its lifetime on an
intraday basis. Use PositionMFE to return the MFE in dollar terms.

This function returns zero for Positions that are still active. To obtain the percentage
MFE for an active Position, or the percentage MFE for a particular bar, use the
PositionOpenMFEPct function.

Remarks

• The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

• Do not use PositionMFEPct for Positions that are still active. To obtain the
percentage MFE for an active Position, or the percentage MFE for a particular bar,
use the PositionOpenMFEPct function.

• Use PositionMFEPct, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

• Commissions are not considered in the MFEPct calculation.

Example

var Bar, p: integer;
var ftmp: float;

for Bar := 20 to BarCount - 1 do
begin
{ Trading system rules }
end;

{ Find the average PositionMFEPct }
for p := 0 to PositionCount - 1 do
 ftmp := ftmp + PositionMFEPct(p);

ftmp := ftmp / PositionCount;
ShowMessage('Avg MFE (%) = ' + FormatFloat('0.00%', ftmp));

© 2003-2006 WL Systems, Inc.

99 WealthScript Function Reference, Wealth-Lab Developer 4.0

11.27 PositionOpenMAE

PositionOpenMAE(Position: integer; Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Adverse Excursion of an open Position, or the MAE for a Position as of
the specified Bar. Max Adverse Excursion is the worst loss that the Position
experienced during its lifetime on an intraday basis. The result is reported in dollars
(negative), use PositionOpenMAEPct to return the MAE of an open Position in
percentage terms.

Remarks

• The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

• Commissions are not considered in the MAE calculation.

Warning! Because it is a cash-based function, PositionOpenMAE cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ePrice: float;

PlotStops;
for Bar := 50 to BarCount - 1 do
begin
 if LastPositionActive then
 begin { Exit rules }
 p := LastPosition;
 ePrice := PositionEntryPrice(p);

 { Forget about profit and initiate a break-even stop when MAE exceeds
-$750 }
 if PositionOpenMAE(p, Bar) < -750 then
 SellAtLimit(Bar + 1, ePrice, p, 'beStop')
 else
 SellAtLimit(Bar + 1, ePrice * 1.25, p, 'Pft Tgt');
 end
 else { Entry rule }
 if CrossOver(Bar, #Close, SMASeries(#Close, 50)) then
 BuyAtMarket(Bar + 1, '');
end;

11.28 PositionOpenMAEPct

PositionOpenMAEPct(Position: integer; Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Adverse Excursion of an open Position, or the MAE for a Position as of
a specified Bar, in percent. Max Adverse Excursion is the worst loss that the Position
experienced during its lifetime on an intraday basis. Use PositionOpenMAE to return
the MAE of an open Position in dollar terms.

Remarks

Position Management Functions

© 2003-2006 WL Systems, Inc.

100

• The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

• Commissions are not considered in the MAEPct calculation.

Example

var Bar, p: integer;
var ePrice: float;

PlotStops;
for Bar := 50 to BarCount - 1 do
begin
 if LastPositionActive then
 begin { Exit rules }
 p := LastPosition;
 ePrice := PositionEntryPrice(p);

 { Forget about the 25% profit and initiate a break-even stop when
MAEPct drops -15% }
 if PositionOpenMAEPct(p, Bar) <= -15 then
 SellAtLimit(Bar + 1, ePrice, p, 'beStop')
 else
 SellAtLimit(Bar + 1, ePrice * 1.25, p, 'Pft Tgt');
 end
 else { Entry rule }
 if CrossOver(Bar, #Close, SMASeries(#Close, 50)) then
 BuyAtMarket(Bar + 1, '');
end;

11.29 PositionOpenMFE

PositionOpenMFE(Position: integer; Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Max Favorable Excursion of an open Position, or the MFE for a Position as
of a specified Bar. Max Favorable Excursion is the largest gain that the Position
experienced during its lifetime on an intraday basis. The result is reported in dollars,
use PositionOpenMFEPct to return the MFE of an open Position in percentage terms.

Remarks

• The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

• Commissions are not considered in the MFE calculation.

Warning! Because it is a cash-based function, PositionOpenMFE cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

11.30 PositionOpenMFEPct

PositionOpenMFEPct(Position: integer; Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

101 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns the Max Favorable Excursion of an open Position, or the MFE for a Position as
of a specified Bar, in percent. Max Favorable Excursion is the largest gain that the
Position experienced during its lifetime on an intraday basis. Use PositionOpenMFE
to return the MFE of an open Position in dollar terms.

Remarks

• The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

• Commissions are not considered in the MFEPct calculation.

11.31 PositionOpenProfit

PositionOpenProfit(Bar: integer; Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the current profit level of the Position (in dollars) as of the specified Bar. If
the Position is closed, and the Bar number is on or before the Bar on which that the
Position was closed, this function returns the same value as PositionProfit.

Remarks

• The value reported for PositionOpenProfit reflects trading costs as of the specified
Bar, i.e, one-sided commissions and slippage are deducted from profit (or loss)
while the position is open.

Warning! Because it is a cash-based function, PositionOpenProfit cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

Example

{ Record a position's open profit as a Price Series.
 This system buys on a crossover of a 30-period weighted
 moving average and sells after 20 bars. }
var Bar, ProfitPane, hMA, hPftSer: integer;
var fPft: float;

hMA := WMASeries(#Close, 30);
hPftSer := CreateSeries;

InstallTimeBasedExit(20);
for Bar := 30 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin
 if CrossOverValue(Bar, #Close, @hMA[Bar-1]) then
 BuyAtMarket(Bar + 1, 'Xover');
 end
 else
 @hPftSer[Bar] := PositionOpenProfit(Bar, LastPosition);

end;

ProfitPane := CreatePane(75, true, true);
PlotSeriesLabel(hPftSer, ProfitPane, 009, #Histogram, 'Open Profit');

Position Management Functions

© 2003-2006 WL Systems, Inc.

102

PlotSeries(hMA, 0, 909, #Thin);

11.32 PositionOpenProfitPct

PositionOpenProfitPct(Bar: integer; Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the current percentage profit level of the Position as of the specified Bar. If
the Position is closed, and the Bar number is on or before the Bar on which that the
Position was closed, this function returns the same value as PositionProfitPct.

Remarks

• The value reported for PositionOpenProfitPct reflects trading costs as of the
specified Bar, i.e, one-sided commissions and slippage are deducted from profit (or
loss) while the position is open.

Warning! For non-zero commissions, PositionProfitPct is not compatible with the
$imulator.

Example

{ Record a position's open profit percentage as a Price Series.
 This system buys on a crossover of a 30-period weighted
 moving average and sells after 20 bars. }
var Bar, ProfitPane, hMA, hPftSer: integer;
var fPft: float;

hMA := WMASeries(#Close, 30);
hPftSer := CreateSeries;

InstallTimeBasedExit(20);
for Bar := 30 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin
 if CrossOverValue(Bar, #Close, @hMA[Bar-1]) then
 BuyAtMarket(Bar + 1, 'Xover');
 end
 else
 @hPftSer[Bar] := PositionOpenProfitPct(Bar, LastPosition);

end;

ProfitPane := CreatePane(75, true, true);
PlotSeriesLabel(hPftSer, ProfitPane, 009, #Histogram, 'Open Profit
Pct');
PlotSeries(hMA, 0, 909, #Thin);

11.33 PositionOrderType

PositionOrderType(Position: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns an integer indicating the type of order used for the specified Position.

© 2003-2006 WL Systems, Inc.

103 WealthScript Function Reference, Wealth-Lab Developer 4.0

0 = Market
1 = Stop
2 = Limit
3 = Close

Remarks

• See CMOrderType for CommissionScripts.

Example

{ SimuScript:
 Vary the number of shares purchased based on the PositionOrderType }
case PositionOrderType(#Current) of
 0, 1: // AtMarket, AtStop
 SetPositionSizeShares(500);
 2: // AtLimit
 SetPositionSizeShares(300);
 else
 SetPositionSizeShares(100);
end;

11.34 PositionProfit

PositionProfit(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the net profit in dollars of the specified closed Position. Use
PositionProfitPct to return the profit in percentage terms.

Remarks

• The value reported for PositionProfit is reduced by the trading costs, i.e,
commissions and slippage.

• Use PositionOpenProfit to return the current profit of an open Position at a
specific bar. The value reported by PositionProfit for an open Position is invalid.

Warning! Because it is a cash-based function, PositionProfit cannot be employed in
a ChartScript's trading rules if destined for the $imulator.

Example (SimuScript)

{ Use 20% sizing, but scale back to 10% if the last closed Position was
a loss }
var p: integer;
var x: float = 20;
for p := PositionCount - 1 downto 0 do
 if not PositionActive(p) then
 begin
 if PositionProfit(p) < 0 then
 x := 10;
 break;
 end;

SetPositionSizePct(x);

Example

Position Management Functions

© 2003-2006 WL Systems, Inc.

104

{ This function returns the average profit of the last "Num" Positions
}
function AvgProfit(Bar, Num: integer): float;
begin
 var p: integer;
 var sump: float;
 sump := 0;
 for p := PositionCount - 1 downto PositionCount - Num do
 sump := sump + PositionProfit(p);
 Result := sump / Num;
end;

{ Make some arbitrary trades and call the function }
var Bar: integer;
var pft: float;
InstallProfitTarget(5);
InstallStopLoss(2.5);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if Bar Mod 50 = 0 then
 BuyAtMarket(Bar + 1, '');

end;
pft := AvgProfit(BarCount - 1, PositionCount);
ShowMessage('The avg profit of the last '
 + IntToStr(PositionCount) + ' trades was '
 + FormatFloat('#,###.00', pft));

11.35 PositionProfitPct

PositionProfitPct(Position: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the percentage profit of the specified closed Position. Use PositionProfit to
return the profit in dollar terms.

Remarks

• The value reported for PositionProfitPct reflects trading costs, i.e, commissions
and slippage are deducted from profit (or loss).

• Use PositionOpenProfitPct to return the current percentage profit of an open
Position at a specific bar. The value reported by PositionProfitPct for an open
Position is invalid.

Warning! For non-zero commissions, PositionProfitPct is not compatible with the
$imulator.

Example

{ SimuScript: Use average Position Profit to determine Position size }
var XSUM, X: float;
var N, P: integer;
x := 10;
n := 0;
xsum := 0;
for p := PositionCount - 1 downto 0 do
begin

© 2003-2006 WL Systems, Inc.

105 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if not PositionActive(p) then
 begin
 n := n + 1;
 xsum := xsum + PositionProfitPct(p);
 if n = 10 then
 Break;
 end;
end;
if xsum > 0 then
begin
 x := xsum / n;
 if x < 10 then
 x := 10;
end;
SetPositionSizePct(x);

11.36 PositionShares

PositionShares(Position: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the number of shares (or contracts) in the specified Position.

Example

{ Write number of shares of open Positions to debug window }
procedure WriteOpenTrades;
begin
 var i: integer;
 for i := 0 to PositionCount - 1 do
 if PositionActive(i) then
 Print(IntToStr(PositionShares(i)) + ' Shares ' + GetSymbol
);
end;

11.37 PositionShort

PositionShort(Position: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the specified Position is a short Position.

Remarks

• To access the Position that the $imulator (or Portfolio Simulation) is currently
working with, use the special constant #Current.

• See also: PositionLong

Position Management Functions

© 2003-2006 WL Systems, Inc.

106

The example shows how you can use this function in a SimuScript.

Example

{ Risk half as many shares for short positions }
if PositionShort(#Current) then
 SetPositionSizeShares(100)
else
 SetPositionSizeShares(200);

11.38 PositionSignalName

PositionSignalName(Position: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the "Signal Name" of the entry signal for the specified Position. The Signal
Name is always the last parameter (SignalName) of the BuyAt or ShortAt function
that opened the Position.

Remarks

• As shown in the example, you can use PositionSignalName to execute different
exit strategies based on the entry strategy that was used to open the Position.

• In a SimuScript, you can use the PositionSignalName to size a Position based on
the strategy that was used to open the Position, for example.

• By formatting a string with multiple delimited fields, you can pass many types of
data via SignalName, retrieve them with PositionSignalName, and parse the
result with GetToken.

Example

{ The following script combines an RSI and a CMO strategy into a single
system }
var Bar, p: integer;
for Bar := 20 to BarCount - 1 do
begin
{ Exit logic }
 for p := 0 to PositionCount - 1 do
 if PositionActive(p) then
 begin
 if PositionSignalName(p) = 'RSI' then
 begin
 if CrossOverValue(Bar, RSISeries(#Close, 20), 60) then
 SellAtMarket(Bar + 1, p, 'RSI');
 end
 else if CrossOverValue(Bar, CMOSeries(#Close, 20), 50) then
 SellAtMarket(Bar + 1, p, 'CMO');
 end;
{ Entry logic }
 if CrossOverValue(Bar, RSISeries(#Close, 20), 30) then
 BuyAtMarket(Bar + 1, 'RSI');
 if CrossOverValue(Bar, CMOSeries(#Close, 20), -50) then
 BuyAtMarket(Bar + 1, 'CMO');
end;

© 2003-2006 WL Systems, Inc.

107 WealthScript Function Reference, Wealth-Lab Developer 4.0

11.39 PositionSymbol

PositionSymbol(Position): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the symbol of the selected Position.

Example

{ SimuScript:
 Ensure only 1 trade per symbol }
var p: integer;
var s: string;
s := PositionSymbol(#Current);
SetPositionSizePct(10);
for p := 0 to PositionCount - 1 do
 if PositionSymbol(p) = s then
 if PositionActive(p) then
 SetPositionSizeFixed(0);

11.40 SetPositionData

SetPositionData(Position: integer; Value: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you store user-specific data (a single floating point number), Value, for the
specified Position. You can obtain the Position data value using GetPositionData.
Use these functions if you need to track any additional information on Positions that
you need to act on in your script.

For instance, your trading system might take an initial trend-following position, and
then subsequent scalping positions to try and nab quick profits. You can use
SetPositionData to record which type of Positions were taken so that you could apply
the appropriate exit logic.

Remarks

• Although you may assign data to a Position at any time after it has been created,
the ChartScript must use SetPositionData on the signal bar if you plan to retrieve
the data using GetPositionData in a SimuScript. Otherwise, using
SetPositionData after the signal bar can result in a look-ahead (peeking) error
during $imulator processing.

• Wealth-Lab processes sizing before actually creating Positions in the ChartScript
Window and Scans, therefore Value (the data) from SetPositionData is not
available to SimuScripts in these tools. Instead, you can pass data using
SignalName and retrieve it with PositionSignalName in the SimuScript.
SignalName is the last string parameter in the BuyAt and ShortAt signals, and it
may contain all kinds of information, which you can parse using GetToken, if
required.

Example

{ This seasonal system stores the month of entry for use later in a
SimuScript }
var BAR: integer;
for Bar := 40 to BarCount - 1 do

Position Management Functions

© 2003-2006 WL Systems, Inc.

108

begin
 if LastPositionActive then
 SellAtLimit(Bar + 1, Highest(Bar, #High, 20), LastPosition, '')
 else
 if BuyAtLimit(Bar + 1, Lowest(Bar, #Low, 20), '') then
 SetPositionData(LastPosition, GetMonth(Bar));
end;

11.41 SetPositionPriority

SetPositionPriority(Position: integer; Priority: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the Priority value of a Position. A Position's priority determines whether or not it
will be included by the Portfolio $imulator tool if there are more trades available than
capital for a specific bar. Positions with a higher value for Priority take precedence,
i.e., they are processed first. For example, a Position with Priority 10.5 will be
processed before any Position having Priority less than 10.5. In most cases, it's not
required to set priority, and in this case the priority is random. However, specifying
priority is useful, for example, to force the $imulator to choose a "most/least
condition", where condition may be oversold, lowest-priced, etc.

SetPositionPriority is designed for ChartScripts that use Buy/ShortAtMarket (or
AtClose) entries. For example, assume that your trading system generates 10
orders to place on the next bar, but you have cash enough for 4 orders only. Prior to
placing orders, you can decide which of the orders to place based on some indicator or
price.

AtLimit/AtStop Entry Orders

Generally speaking, you should not SetPositionPriority for ChartScripts that use
AtLimit/AtStop entries. Doing so may create a peeking effect since it's not possible to
know which limit (or stop) orders will execute first when orders are placed for multiple
instruments.

Exceptions:

1. If the ChartScript employs a "multi-dip buyer" strategy, use SetPositionPriority
to assign higher priority to AtLimit orders with higher limit prices, for example.
If you don't, the possibility exists for the the $imulator to execute orders with
lower limit prices first (and vice-versa for ShortAtLimit).

2. You can intentionally peek to determine if an AtLimit/AtStop order occurred at
the opening price, and in this case you could assign a priority of 1 to these
Positions. This is a valid backtesting method, demonstrated by the following
simple ChartScript.

Warning! You must employ SetPositionPriority in ChartScripts that use multiple
order-entry types, such as AtMarket and AtLimit orders. Since the
$imulator does not distinguish between the types, set a higher priority
for AtMarket entries so that they are processed before AtLimit/AtStop
orders on the same bar.

var Bar: integer;
var limitprice, priority: float;

InstallTimeBasedExit(5);
for Bar := 10 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

109 WealthScript Function Reference, Wealth-Lab Developer 4.0

begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin
 limitprice := Lowest(Bar, #Low, 10);
 priority := 0;

 { peek to check if limit order will be executed "at market" on the
open }

 if Bar < BarCount - 1 then
 if PriceOpen(Bar + 1) <= limitprice then
 priority := 1;

 if BuyAtLimit(Bar + 1, limitprice, '') then
 SetPositionPriority(LastPosition, priority);
 end;
end;

Remarks

• Use SetPositionPriority on the signal bar. Once you have assigned priority, it
should not be changed on subsequent bars.

• Use the boolean return value of entry signals (especially for AtLimit/AtStop
orders) as a condition to calling SetPositionPriority, e.g.,

{ After a limit buy, give priority to the position having the lowest
RSI }

if BuyAtLimit(Bar + 1, LimitPrice, '') then
 SetPositionPriority(LastPosition, -1 * RSI(Bar, #Close, 14));

• Use GetPositionPriority to obtain the priority of a Position.

• Position priority is used only in the $imulator and Portfolio $imulation Mode in the
Optimizer Control.

Example

{ Buy when CMO is oversold and assign the highest priority
 to the most oversold by multiplying the CMO value by -1 }
var BAR, hRSI, hCMO, CP: integer;
hCMO := CMOSeries(#Close, 20);
CP := CreatePane(75, true, true);
PlotSeriesLabel(hCMO, CP, #Blue, #Thin, 'CMO(20)');

for Bar := 20 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if @hCMO[Bar] < -55 then
 begin
 if BuyAtMarket(Bar + 1, 'CMO') then
 SetPositionPriority(LastPosition, -1 * @hCMO[Bar]);
 end;
 end
 else if @hCMO[Bar] > 45 then
 SellAtMarket(Bar + 1, LastPosition, 'CMO');
end;

Position Management Functions

© 2003-2006 WL Systems, Inc.

110

11.42 SetPositionRiskStop

SetPositionRiskStop(Position: integer; StopLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Note: SetRiskStopLevel supersedes the SetPositionRiskStop function. See
SetRiskStopLevel for information.

Description

Specifies the initial stop level, StopLevel, for the Position. This stop level is used in
the $imulator and other tools in Portfolio Simulation mode when you select the
Maximum Risk Pct Position Sizing option. When this option is selected, you tell the
Portfolio Simulation the percentage of capital you are willing to risk on the trade. The
Portfolio Simulation then uses the Position's RiskStop value to determine how many
shares to assign to the Position.

Important: When you use Maximum Risk Pct sizing, you're responsible for
actually exiting the Position at the stop level in your ChartScript code.

Example

{ Set our risk stop at 50 cents below the signal day's low }
var BAR: integer;
InstallProfitTarget(50);
for Bar := 40 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if LastPositionActive then
 SellAtStop(Bar + 1, GetPositionRiskStop(LastPosition),
LastPosition, '')
 else
 if BuyAtLimit(Bar + 1, Lowest(Bar, #Low, 20), '') then
 SetPositionRiskStop(LastPosition, PriceLow(Bar) - 0.50);
end;

11.43 SetRiskStopLevel

SetRiskStopLevel(StopLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Specifies the initial StopLevel (price) for the next Position to be created. This stop
level is used in the $imulator and other tools in Portfolio Simulation mode when you
select the Maximum Risk Pct Position Sizing option. When this option is selected,
you tell the Portfolio Simulation the percentage of capital you are willing to risk on the
trade. The Portfolio Simulation then uses the Position's RiskStop value to determine
how many shares to assign to the Position.

Remarks

• When you use Maximum Risk Pct sizing, you're responsible for actually exiting
the Position at the stop level in your ChartScript code.

• For automated trading, you can use SetRiskStopLevel to automatically activate a
stop loss order on the same bar on which a position is entered. See "Automated
Trading Options" in the User Guide for more information.

© 2003-2006 WL Systems, Inc.

111 WealthScript Function Reference, Wealth-Lab Developer 4.0

Note: SetRiskStopLevel supersedes the original SetPositionRiskStop function.
The problem with SetPositionRiskStop is that the Position must already be
created. This is fine in the $imulator, which works on a list of trades, but is
not possible at the ChartScript level, where the initial stop level must be
known before the Position is created. Using Maximum Risk Pct position
sizing at the ChartScript level is new to Wealth-Lab Developer 3.0, so this
new function was introduced to support it.

Example

{ Set our risk stop at 50 cents below the signal day's low }
var BAR: integer;
InstallProfitTarget(50);
for Bar := 40 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if LastPositionActive then
 SellAtStop(Bar + 1, GetPositionRiskStop(LastPosition),
LastPosition, '')
 else
 begin
 SetRiskStopLevel(PriceLow(Bar) - 0.5);
 BuyAtLimit(Bar + 1, Lowest(Bar, #Low, 20), '');
 end;
end;

Price Series Functions

© 2003-2006 WL Systems, Inc.

112

12 Price Series Functions

12.1 Overview

There's no use in avoiding it. If you're going to deal with a technical application for
market analysis, you're going to be working with Price Series. Generally speaking a
Price Series refers to an array of values that has the same number of elements as bars
loaded in a chart. The Price Series category of functions allow you to create, analyze,
synchronize, change time frames, and otherwise manipulate an entire series of data
with a minimal amount of effort. Most of these functions automatically create a new
(result) Price Series and return a handle that you use to refer to the new series.

A subset of these functions (CrossOver/Under and TurnUp/Down) provide relative
information between two prices, or possibly between a Price Series and a fixed value.
In this sense, they act in an "indicative" fashion, though they are not what we
consider a true indicator.

12.2 AbsSeries

AbsSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns a new Price Series that contains the absolute values of the Price Specified in
the Series parameter.

Example

var DIFF, ABSDIFF, P: integer;
Diff := SubtractSeries(#Open, #Close);
AbsDiff := AbsSeries(Diff);
p := CreatePane(100, true, true);
PlotSeries(Diff, p, #Black, #Thin);
PlotSeries(AbsDiff, p, #Red, #Thin);

12.3 AddCalendarDays

AddCalendarDays(Interpolate: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Adds all missing calendar days to the chart data, including weekends, holidays, and
any other non-trading day. Newly added bars are considered "synthetic", and these
bar numbers return true when SyntheticBar is called.

The value of the inserted bars depends on the Interpolate parameter. If Interpolate is
false, the new bars assume the OHLC values of the previous bar. If Interpolate is
true, the OHLC values of the new bars are calculated using linear interpolation
between the previous bar and the next actual bar. Note that interpolating values will
result in the bars being created based on future information (next bar's value) so be
careful if using these bars in trading system development.

© 2003-2006 WL Systems, Inc.

113 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• AddCalendarDays is compatible with the Daily scale only.

• AddCalendarDays is not compatible with Real-Time Scans or Real-Time
ChartScript windows.

Example

var Bar: integer;
DrawLabel('BarCount Before: ' + IntToStr(BarCount), 0);
if IsDaily then
 AddCalendarDays(false);
DrawLabel('BarCount After: ' + IntToStr(BarCount), 0);
for Bar := 0 to BarCount - 1 do
 if SyntheticBar(Bar) then
 SetBarColor(Bar, #Red);

12.4 AddFutureBars

AddFutureBars(Bars: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Adds the number of bars specified in the Bars parameter to the end of the chart. The
added bars are considered "synthetic", and calling SyntheticBar with these bar
numbers will return true. The OHLC values of the added bars are taken from the last
actual bar in the chart. You can change the values of these (or any) bars by using the
ChangeBar method.

Note: AddFutureBars is not currently compatible with Real-time Scans or
ChartScript windows.

If AddCalendarDays had previously been called, the future bars will include non-
trading days. If AddCalendarDays had not been called, the future bars will not
include weekend days (Saturday, Sunday).

Remarks

• Functions that make changes to the Primary Data Series, such as ChangeBar and
AddFutureBars, should not be used in scripts opened for Optimization.

• AddFutureBars is not available for use on the web site, only in Wealth-Lab

Developer 4.0.

Warning! Adding futures bars will affect when Alerts are issued for an established
trading system. Alerts are generated when a trading signal occurs after
the last bar of the chart, i.e., on bar number BarCount. This means that if
a system developer is using future bars, Alerts will also be projected into
the future by the number of bars added.

Example

var Bar: integer;
DrawLabel('BarCount Before: ' + IntToStr(BarCount), 0);
if IsDaily then
 AddCalendarDays(false);
AddFutureBars(20);
DrawLabel('BarCount After: ' + IntToStr(BarCount), 0);
for Bar := 0 to BarCount - 1 do

Price Series Functions

© 2003-2006 WL Systems, Inc.

114

 if SyntheticBar(Bar) then
 SetBarColor(Bar, #Red);

12.5 AddSeries

AddSeries(Series1: integer; Series2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Adds the two specified Price Series, Series1 and Series2, and returns the handle to a
new Price Series.

Example

{ Plot the mean price }
var ADDED, MEAN: integer;
Added := AddSeries(#High, #Low);
Mean := DivideSeriesValue(Added, 2);
PlotSeries(Mean, 0, #Blue, #Thick);

12.6 AddSeriesValue

AddSeriesValue(Series: integer; Value: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Adds a constant Value to each element of the Price Series, Series, and returns the
handle to a new Price Series.

Example

{ This script creates a normalized MACD by adding the lowest value,
 bringing all of values in the series above zero. }
var X: float;
var MSER, MPANE: integer;
MSer := MACDSeries(#Close);
x := Abs(Lowest(BarCount - 1, MSer, BarCount));
MSer := AddSeriesValue(MSer, x);
MPane := CreatePane(100, true, true);
PlotSeries(MSer, MPane, #Red, #Histogram);

12.7 AnalyzeSeries

AnalyzeSeries(PriceSeries: integer; Description: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Outputs the value of the Price Series defined by its handle, PriceSeries, to the Trade
Log at the time the trade was signaled. The PriceSeries is also available on the
"Analysis" tab of the ChartScript and $imulator windows for more detailed analysis.

Note: AnalyzeSeries is not compatible in the with ChartScripts that execute
trades on symbols other than the primary symbol, i.e., following a call to
SetPrimarySeries. Additionally and generally speaking, scripts with
WatchList loops should not be used in the $imulator.

© 2003-2006 WL Systems, Inc.

115 WealthScript Function Reference, Wealth-Lab Developer 4.0

You can use AnalyzeSeries to determine how an indicator might be applied to an
existing trading system to filter losing trades without having to actually incorporate
the indicator into the system. In the example below, trading signals are based solely
on the StochRSISeries indicator. At the end of the script, a CMOSeries indicator is
created for analysis.

Example

{ Buy when StochRSI turns up from 0 and sell when turns down from 100 }
var Bar, StochRSIPane, hStRSI: integer;
var cmoSer, cmoPane: integer;

hStRSI := StochRSISeries(#Close, 14);
InstallBreakEvenStop(5);
PlotStops;
for Bar := 30 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if LastPositionActive then
 begin
 if @hStRSI[Bar - 1] >= 99.9 Then
 if TurnDown(Bar, hStRSI) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 if @hStRSI[Bar - 1] <= 0.1 Then
 if TurnUp(Bar, hStRSI) then
 BuyAtMarket(Bar + 1, '');
end;
StochRSIPane := CreatePane(75, true, true);
PlotSeriesLabel(StochRSISeries(#Close, 14), StochRSIPane, 411, 2,
'StochRSI(14)');

cmoPane := CreatePane(75, true, true);
cmoSer := CMOSeries(#Close, 14);
PlotSeriesLabel(cmoSer, cmoPane, #Green, #Thin, 'CMO 14');
AnalyzeSeries(cmoSer, 'CMO 14');

12.8 ChangeBar

ChangeBar(Bar: integer; Date: integer; Time: integer; Open: float; High: float; Low: float; Close:
floaVolume: integer; OpenInterest: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Provides the capability to change all values for the specified Bar's properties: Date,
Time, Open, High, Low, Close, Volume, and OpenInterest. This is most useful in
assigning values to forecasted bars that have been added using the AddFutureBars
method.

The Date parameter should be a standard WealthScript date integer, e.g., 1/15/2003
= 20030115. Likewise, for intraday charts, the Time parameter should be a standard
WealthScript time integer, e.g. 14:00 = 1400. Otherwise, specify zero for Time when
using non-intraday charts.

Remarks

Functions that make changes to the Primary Data Series, such as ChangeBar and
AddFutureBars, should not be used in scripts opened for Optimization.

Price Series Functions

© 2003-2006 WL Systems, Inc.

116

Example

{ Add a copy of the last 10 bars to the end of the chart }
var Bar, Cbars, b: integer;
Cbars := 10;
AddFutureBars(Cbars);
for Bar := BarCount - Cbars to BarCount - 1 do
begin
 b := Bar - Cbars;
 SetBarColor(Bar, #Blue);
 ChangeBar(Bar, GetDate(b), GetTime(b), PriceOpen(b),
 PriceHigh(b), PriceLow(b), PriceClose(b),
 Trunc(Volume(b)), Trunc(OpenInterest(b)));
end;

12.9 ClearExternalSeries

ClearExternalSeries(Symbol: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Clears any external (secondary) price series from memory. External series are
obtained from calls to either GetExternalSeries or SetPrimarySeries. The Symbol
parameter is optional. If it is specified, only the external series of the specified
symbol will be cleared. If you pass a blank string instead, all external series accessed
so far will be cleared.

This function was introduced as a way to optimize scripts that process large lists of
symbols. These scripts can quickly bog down because all of the external series
accessed remain in memory until the script is completed. By calling
ClearExternalSeries, these scripts can free resources that are no longer being used,
resulting in better script performance.

Remarks

 • Do not use ClearExternalSeries for a Symbol on which you've created trades.

Example

ClearExternalSeries('');

12.10 ClearIndicators

ClearIndicators;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Clears any indicators that have been created from memory. This function is useful for
scripts that cycle through all of the symbols in a WatchList and process each symbol in
turn, creating indicators for each symbol. Scripts like this can easily run out of
resources because the indicator series are being re-created, and the old series remain
in memory.

Example

var RSISer, w, Bar: integer;
for w := 0 to WatchListCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

117 WealthScript Function Reference, Wealth-Lab Developer 4.0

 PrintStatus(WatchListSymbol(w));
 ClearIndicators;
 for Bar := 0 to BarCount - 1 do
 begin
 SetPrimarySeries(WatchListSymbol(w));
 RSISer := RSISeries(#Close, 20);
 { ... do more processing here ... }
 end;
end;

12.11 CreateNamedSeries

CreateNamedSeries(SeriesName: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Creates a new blank price series and returns the new series as a PriceSeries variable,
like CreateSeries. You can use the FindNamedSeries function to locate a named
series that you previously created. This pair of functions is used internally by the New
Indicator Wizard.

Example

var n: integer;
n := CreateNamedSeries('MySeries');

12.12 CreateSeries

CreateSeries: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Creates a new blank Price Series and returns the handle of the new Series. The new
Price Series contains the number of values equal to the ChartScript's BarCount. The
values in the Series are initially set to zero. Use SetSeriesValue to load values in the
new series and GetSeriesValue to read the values (or use the shorthand @ syntax).

Remarks

• Generally speaking, use CreateSeries outside of loops and then fill the series with
values in a loop as shown in the example.

Example

{ The following script creates a new Price Series, and stores the
 difference between the 20 day high and the 20 day low. }
var X: float;
var N, BAR, MYPANE: integer;
n := CreateSeries;
for Bar := 20 to BarCount - 1 do
begin
 x := Highest(Bar, #High, 20) - Lowest(Bar, #Low, 20);
 SetSeriesValue(Bar, n, x);
end;
MyPane := CreatePane(100, true, true);
PlotSeries(n, MyPane, #Green, #ThickHist);

Price Series Functions

© 2003-2006 WL Systems, Inc.

118

12.13 CreateSeriesLength

CreateSeriesLength(Length: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Creates a new Length-sized Price Series and returns the handle of the new Series.
The new Price Series contains the number of values equal to the Length parameter,
indexed from zero. The values in the Series are initially set to zero. Use
SetSeriesValue to set values and GetSeriesValue to read values (or use the
shorthand @ syntax).

CreateSeriesLength provides the ability to create a Length-sized array at run-time;
in other words, a pseudo-dynamic array.

Example

var x, hMySer, SerLength: integer;
var f: float;

SerLength := StrToInt(Input('Type in an integer number'));
hMySer := CreateSeriesLength(SerLength);

for x := 0 to SerLength - 1 do
begin
 @hMySer[x] := x * 1.5;
 Print(IntToStr(x) + #9 + FloatToStr(@hMySer[x]));
end;

12.14 CrossOver

CrossOver(Bar: integer; Series1: integer; Series2: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true when Series1 crosses above the Series2 at Bar.

Specifically, CrossOver triggers (true) if both of the following conditions are true:

@Series1[Bar] > @Series2[Bar], AND,
@Series1[Bar - 1] <= @Series2[Bar - 1]

Example

{ A simple Weighted Moving Average Crossover System }
var BAR: integer;
InstallProfitTarget(6);
InstallStopLoss(4);
for Bar := 60 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if CrossOver(Bar, WMASeries(#Close, 30), WMASeries(#Close, 60))
then
 BuyAtMarket(Bar + 1, '');
end;

© 2003-2006 WL Systems, Inc.

119 WealthScript Function Reference, Wealth-Lab Developer 4.0

12.15 CrossOverValue

CrossOverValue(Bar: integer; Series: integer; Value: float): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true when the Price Series crosses above the specified Value at Bar.

Specifically, CrossOver triggers (true) if both of the following conditions are true:

@Series[Bar] > Value, AND,
@Series[Bar - 1] <= Value

Example

{ A Basic "Extreme RSI" type System }
var BAR: integer;
InstallProfitTarget(5);
InstallStopLoss(20);
for Bar := 30 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if CrossOverValue(Bar, RSISeries(#Close, 32), 24) then
 BuyAtMarket(Bar + 1, 'Extreme RSI');
end;

12.16 CrossUnder

CrossUnder(Bar: integer; Series1: integer; Series2: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true when Series1 crosses below Series2 at Bar.

Specifically, CrossUnder triggers (true) if both of the following conditions are true:

@Series1[Bar] < @Series2[Bar], AND,
@Series1[Bar - 1] >= @Series2[Bar - 1]

Example

{ This system opens a new position whenever Stochastic crosses above
 its signal line from below 20. It closes all positions when
 Stochastic crosses below the signal line from above 80. }
var STOCHPANE, SIGNAL, BAR, P: integer;
StochPane := CreatePane(150, true, true);
Signal := EMASeries(StochDSeries(20, 3), 9);
PlotSeries(StochDSeries(20, 3), StochPane, 009, #Thin);
PlotSeries(Signal, StochPane, #Gray, #Thin);

for Bar := 30 to BarCount - 1 do
begin
 if CrossUnder(Bar, StochDSeries(20, 3), Signal) then
 if StochD(Bar - 1, 20, 3) > 80 then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 SellAtMarket(Bar + 1, P, 'Stoch');
 if CrossOver(Bar, StochDSeries(20, 3), Signal) then
 if StochD(Bar - 1, 20, 3) < 20 then
 BuyAtMarket(Bar + 1, 'Stoch');

Price Series Functions

© 2003-2006 WL Systems, Inc.

120

end;

12.17 CrossUnderValue

CrossUnderValue(Bar: integer; Series: integer; Value: float): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true when Price Series crosses below the specified Value at Bar.

Specifically, CrossUnder triggers (true) if both of the following conditions are true:

@Series[Bar] < Value, AND,
@Series[Bar - 1] >= Value

Example

{ This system buys as soon as DSS crosses below 30 }
var DSSPANE, BAR: integer;
DSSPane := CreatePane(100, true, true);
PlotSeries(DSSSeries(10, 20, 5), DSSPane, 905, #Thick);
InstallStopLoss(5);
InstallProfitTarget(15);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if CrossUnderValue(Bar, DSSSeries(10, 20, 5), 30) then
 BuyAtMarket(Bar + 1, 'DSS');
end;

12.18 DivideSeries

DivideSeries(Series1: integer; Series2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Divides each element of Series1 by its corresponding element in Series2, and returns
the handle to the resulting Price Series.

Example

{ Display Relative Strength of DJIA to Nasdaq }
var NAZ, DJ, RS, RSPANE: integer;
Naz := GetExternalSeries('^IXIC', #Close);
DJ := GetExternalSeries('^DJI', #Close);
RS := DivideSeries(DJ, Naz);
RSPane := CreatePane(100, true, true);
PlotSeries(RS, RSPane, #Black, #Thick);
DrawLabel('Strength Relative of DJIA to Nasdaq', RSPane);

12.19 DivideSeriesValue

DivideSeriesValue(Series: integer; Value: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

121 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Divides each element of the specified Price Series by a constant Value and returns the
handle to a new Price Series. You should ensure that Value is non-zero.

Example

{ Divide RSI by 100 to get it in the range of 0 to 1 }
var RSIRANGE, RSIPANE: integer;
RSIRange := DivideSeriesValue(RSISeries(#Close, 30), 100);
RSIPane := CreatePane(100, true, true);
PlotSeries(RSIRange, RSIPane, #Teal, #Thick);

12.20 DivideValueSeries

DivideValueSeries(Value: float; Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Divides a constant Value by the value of each element in the specified Price Series and
returns the handle to a new Price Series.

Note: Be careful not to confuse this with DivideSeriesValue.

12.21 EnableSynch

EnableSynch(Enable: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

If Enable is false, EnableSynch will turn off the default synchronization that occurs for
external series in a ChartScript. An external series is any series referenced through a
call to GetExternalSeries or SetPrimarySeries.

The default synchronization options are controlled via the Options Dialog. When
"Enable Automatic Date/Time Synchronization of External Series" is checked, the
synchronization process truncates any secondary series that has more bars than the
primary series (the symbol that was clicked to execute the script). For detailed
information on "How Secondary Data Series are Synchronized in Wealth-Lab", see the
article by the same name on the Wealth-Lab Articles page.

You can use EnableSynch to turn off the default synchronization behavior set in the
Options Dialog. If you do this, you should use the SynchAll or SynchSeries
statements in your script to perform synchronization manually. Manual
synchronization will perfectly align any secondary series to the primary, by removing
dates that don't exist in the primary, and inserting dates in the secondary that exist in
the primary but not the secondary. By calling SynchAll or SynchSeries after any
indicators are created on the secondary series, you can be sure that the series is
aligned correctly AND that the indicator values are calculated correctly, taking into
account all bars in the pre-aligned secondary series.

Example

{ Print the BarCount of each Symbol }
var w: integer;
EnableSynch(false);

Price Series Functions

© 2003-2006 WL Systems, Inc.

122

for w := 0 to WatchListCount - 1 do
begin
 SetPrimarySeries(WatchListSymbol(w));
 Print(WatchListSymbol(w) + #9 + IntToStr(BarCount));
end;

12.22 FindNamedSeries

FindNamedSeries(SeriesName: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the integer handle of the Price Series with the specified name, SeriesName. If
no PriceSeries with the given name was found, the function returns -1. This will be
the PriceSeries that was created in one of the following manners:

• by a corresponding call to CreateNamedSeries.

• by adding a Custom Field during the creation of an ASCII DataSource. Pass the
"Field Name" that you entered when creating the DataSource.

This function is used internally in the code created by the New Indicator Wizard, and,
unless you have additional names fields for ASCII DataSources, you should rarely
need to call this function yourself.

Remarks

• ASCII Custom Fields work only in the chart data's native time frame. For example,
if you have a daily ASCII DataSource, the Custom Field data is not available if you
switch to Weekly scale from the toolbar.

• The string passed at SeriesName is case sensitive. For example, if the custom field
was defined as 'PE_Ratio', passing 'PE_RATIO' will cause the function to fail. You
can review the actual field name by clicking the Properties button for the
DataSource in the DataSource Manager.

Example

var MySeries: integer;
MySeries := FindNamedSeries('SeriesName');

12.23 FirstActualBar

FirstActualBar: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

This function is useful in scripts that loop through and execute trades on all of the
symbols in a WatchList. In these cases, Wealth-Lab's synchronization feature (see
Tools|Options|Synchronization) will transform secondary data series so that they
synchronize with the Primary series, the one clicked to run the script. If a secondary
data series has a shorter history than the Primary series, data bars are appended to
the beginning of the secondary series so that it's BarCount equals that of the Primary
series. FirstActualBar will return the bar number that represents the first "real" bar
of the secondary series. You can use this value to make sure that you don't enter
trades on the symbol before its actual history began.

© 2003-2006 WL Systems, Inc.

123 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

var FIRST: integer;
SetPrimarySeries('ABGX');
First := FirstActualBar;
RestorePrimarySeries;
DrawLabel('ABGX started trading on bar ' + IntToStr(First), 0);

12.24 GetDescription

GetDescription(Series: integer): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the internal description of the specified Price Series. This function is used in
the New Indicator Wizard to create a properly named Price Series for a new indicator
being created.

Example

var e: integer;
e := EMASeries(#Close, 60);
PlotSeries(e, 0, 009, #Thin);
DrawLabel(GetDescription(e), 0);

12.25 GetExternalSeries

GetExternalSeries(Symbol: string; Series: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the requested Price Series for the specified Symbol. Series must be one of the
following Standard Price Series constants (only):

#Open, #High, #Low, #Close, #Volume, and #OpenInterest

Remarks

• Wealth-Lab will first try to find the Symbol in the WatchList of the primary symbol,
which is the one that was clicked. If it doesn't exist in the primary symbol's
WatchList, it will try to find it in other WatchLists/DataSources, top to bottom,
alphabetically. Use AllowSymbolSearch to limit symbol searches to specific
WatchLists.

• You cannot call GetExternalSeries after you have changed the Primary Series with
SetPrimarySeries, or after you have re-scaled the Primary Series with a Time
Frame function.

• GetExternalSeries generates an error at run time if the Series cannot be found. If
there's reason to suspect a Symbol will not be found, you can "catch" the error with
a try/except block as shown here:

var h: integer;
try
 h := GetExternalSeries('MSFT', #Close);
except
 Print('No data or could not find series');
end;

Price Series Functions

© 2003-2006 WL Systems, Inc.

124

• If you require access to an external symbol's Custom Field(s), do not use
GetExternalSeries. Instead, use SetPrimarySeries, followed by
FindNamedSeries, and finally RestorePrimarySeries.

• External Series functionality is not available for Tick or Second-based charts.

Example

{ Display price of this series relative to CSCO }
var CSCO, REL, RELPANE: integer;
CSCO := GetExternalSeries('CSCO', #Close);
Rel := DivideSeries(#Close, CSCO);
RelPane := CreatePane(100, false, true);
PlotSeries(Rel, RelPane, #Teal, #Thick);

12.26 GetSeriesValue

GetSeriesValue(Bar: integer; Series: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns a value at a specified Bar from the specified Price Series. Use this function to
return values from a Price Series that you create with CreateSeries, or the result of
any WealthScript function that returns a Price Series integer handle.

Remarks

Instead of using GetSeriesValue, you can use the @-symbol shorthand notation. In
the example below, the statement

Per := Round(GetSeriesValue(Bar, AdaptivePer));

is equivalent to

Per := Round(@AdaptivePer[Bar]);

Note: The @ syntax is not compatible with Price Series whose handles are stored
in a declared array; e.g., @h[i][Bar], where h[i] is an integer array of

Price Series handles, is not valid syntax. See the WealthScript Language
Guide for more information.

Example

{ Create an adaptive moving average by multiplying a base period by R-
Squared }
var ADAPTIVEPER, ADAPTIVEMA, BAR, PER: integer;
AdaptivePer := CreateSeries;
AdaptiveMA := CreateSeries;
AdaptivePer := MultiplySeriesValue(RSquaredSeries(#Close, 30), 60);
for Bar := 60 to BarCount - 1 do
begin
 Per := Round(GetSeriesValue(Bar, AdaptivePer));
 if Per < 5 then
 Per := 5;
 SetSeriesValue(Bar, AdaptiveMA, SMA(Bar, #Close, Per));
end;
PlotSeries(AdaptiveMA, 0, #Purple, #Thick);

© 2003-2006 WL Systems, Inc.

125 WealthScript Function Reference, Wealth-Lab Developer 4.0

12.27 MultiplySeries

MultiplySeries(Series1: integer; Series2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Multiples each element of two Price Series, Series1 and Series2, returning the handle
to a new Price Series.

Example

var ROCPANE, ROCSMA, ROCSMA1, ROCSMA2, SMAMULT: integer;

{ Plot 30 Day SMA }
PlotSeries(SMASeries(#Close, 30), 0, 040, #Thick);
DrawText('30 Day SMA', 0, 4, 46, 040, 8);

{ Create a De-Trended 30 Day SMA by accounting for SMA slope }
RocPane := CreatePane(75, true, true);
RocSMA := ROCSeries(SMASeries(#Close, 30), 1);
PlotSeries(RocSMA, ROCPane, 020, #ThickHist);
DrawText('1 Day ROC of 30 Day SMA', RocPane, 4, 4, 020, 8);

RocSMA1 := MultiplySeriesValue(RocSMA, 0.1);
RocSMA2 := AddSeriesValue(RocSMA1, 1.0);
SMAMult := MultiplySeries(SMASeries(#Close, 30), RocSMA2);

PlotSeries(SMAMult, 0, 005, 2);
DrawText('Detrended 30 Day SMA', 0, 4, 56, 005, 8);

12.28 MultiplySeriesValue

MultiplySeriesValue(Series: integer; Value: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Multiplies the Price Series by a constant Value, and returns the integer handle to a
new Price Series. You can use this function to make a copy of a Price Series by
passing 1 as the Value parameter.

Example

{ Divide the stock value by the DJ Index to get a relative
 strength rating, multiple the result by 10000 for scaling }
var DJCLOSE, DIVSERIES, DJPANE: integer;
SetPrimarySeries('^DJI');
DJClose := #Close;
RestorePrimarySeries;
DivSeries := DivideSeries(#Close, DJClose);
DivSeries := MultiplySeriesValue(DivSeries, 10000);
DJPane := CreatePane(150, true, true);
PlotSeries(DivSeries, DJPane, 030, #Thick);

12.29 OffsetSeries

OffsetSeries(Series: integer; Bars: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Price Series Functions

© 2003-2006 WL Systems, Inc.

126

Description

Offsets the specified Price Series by a certain number of Bars and returns the handle
to a new Price Series. Use a negative offset value to shift the Price Series to the right
on the chart. Shifting a moving average to the right often leads to cleaner signals.

Example

{ Display a 60 day moving average, and the same
 average shifted to the right by 4 bars }
var SMASER, SMAOFFSET: integer;
SMASer := SMASeries(#Close, 60);
SMAOffset := OffsetSeries(SMASer, -4);
PlotSeries(SMASer, 0, #Navy, #Thick);
PlotSeries(SMAOffset, 0, #Blue, #Thin);

12.30 RestorePrimarySeries

RestorePrimarySeries;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Restores the primary data source after a call to SetPrimarySeries. You should
always call RestorePrimarySeries after accessing external data sources in your
ChartScript.

Example

{ Compare the RSI of the stock with the RSI of the index }
var DJCLOSE, DJRSI, DJPANE: integer;
SetPrimarySeries('^DJI');
DJClose := #Close;
DJRSI := RSISeries(DJClose, 30);
RestorePrimarySeries;
DJPane := CreatePane(150, true, true);
PlotSeries(DJRSI, DJPane, #Navy, #Thick);
PlotSeries(RSISeries(#Close, 30), DJPane, #Blue, #Thin);

12.31 SetDescription

SetDescription(Series: integer; Description: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Every Price Series is associated with an internal description. You normally don't need
to assign a description yourself, as this is usually done automatically.
SetDescription assigns the Description string of the specified Price Series that will be
returned by a call to GetDescription. The description is displayed in the Data
Window (Ctrl+Alt+V).

Remarks

• SetDescription is primarily intended to provide a description for Price Series
formed by CreateSeries.

• For custom indicators created from the result of another Price Series function such
as SubtractSeries, DivideSeries, etc., use SetDescription to change the Series'
internal description after calculating the indicator. FindNamedSeries will then be

© 2003-2006 WL Systems, Inc.

127 WealthScript Function Reference, Wealth-Lab Developer 4.0

able to identify the Series by its Description string.

Example

var Bar, hSer: integer;
{ A description is automatically assigned }
hSer := CreateSeries;
Print(GetDescription(hSer));

{ Assign your own description }
SetDescription(hSer, 'MySeries1');
Print(GetDescription(hSer));

{ Observe the description in the Data Window }
PlotSeries(hSer, 0, 0, 0);

12.32 SetPrimarySeries

SetPrimarySeries(Symbol: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Use this function to temporarily set the default price data source to a different symbol.
After calling this function, any reference to a standard Price Series, such as #Open,
#High, #Volume, etc, or the Data Access functions such as PriceClose will use the
data source specified by the Symbol parameter. You can also build indicators on the
newly selected data source.

Remarks

• Wealth-Lab will first try to find the Symbol in the WatchList of the primary symbol,
which is the one that was clicked. If it doesn't exist in the primary symbol's
WatchList, it will try to find it in other WatchLists/DataSources, top to bottom,
alphabetically.

• Use AllowSymbolSearch to limit symbol searches to specific WatchLists.

• After calling SetPrimarySeries, you can execute trades on other than the 'clicked'
symbol. This feature is available in the ChartScript Window and EOD Scans (must
select "Allow Complete Scan of Multi-Symbol Scripts") but will cause the $imulator
to terminate prematurely.

• When finished using the external data source, be sure to call
RestorePrimarySeries.

• External Series functionality is not available for Tick or Second-based charts.

Example

{ I like to see the DJ Index and its 200 day moving
 average along with my chart }
var DJCLOSE, DJ200, DJPANE: integer;
SetPrimarySeries('^DJI');
DJClose := #Close;
DJ200 := SMASeries(DJClose, 200);
RestorePrimarySeries;
DJPane := CreatePane(150, true, true);
PlotSeries(DJClose, DJPane, 310, #Thick);
PlotSeries(DJ200, DJPane, #Black, #Dotted);

Price Series Functions

© 2003-2006 WL Systems, Inc.

128

12.33 SetSeriesValue

SetSeriesValue(Bar: integer; Series: integer; Value: float);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Assigns a value to a specific Bar in the specified Price Series. Use this function to set
values of a Price Series that you create with CreateSeries or CreateNamedSeries.

Remarks

Instead of using SetSeriesValue, you can use the @-symbol shorthand notation. In
the example below, the statement

SetSeriesValue(Bar, VolSurge, pct);

is equivalent to

@VolSurge[Bar] := pct;

Note: The @ syntax is not compatible with Price Series whose handles are stored
in a declared array; e.g., @h[i][Bar], where h[i] is an integer array of

Price Series handles, is not valid syntax. See the WealthScript Language
Guide for more information.

Example

{ Below we create and plot an indicator that displays
 percentage of Volume above average }
var V, DIFF, PCT: float;
var VOLPANE, VOLSURGE, BAR: integer;
VolPane := CreatePane(100, false, true);
VolSurge := CreateSeries;
for Bar := 20 to BarCount - 1 do
begin
 v := Volume(Bar);
 diff := v - SMA(Bar, #Volume, 20);
 pct := (diff / SMA(Bar, #Volume, 20)) * 100;
 SetSeriesValue(Bar, VolSurge, pct);
end;
PlotSeries(VolSurge, VolPane, 955, #ThickHist);

12.34 SingleCalcMode

SingleCalcMode(Mode: boolean);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

When the Mode parameter is set true, selected indicators (see Remarks) will return
the value for the specified bar only.

Discussion

When you first call an indicator function, Wealth-Lab constructs the entire indicator
Price Series to optimize speed for accessing indicator values. However, this makes it
difficult to use indicators within a loop as you are populating the values of a custom
Price Series. SingleCalcMode allows you to use selected indicator functions
repetitively to recalculate a result based on the instantaneous values of the underlying
series.

© 2003-2006 WL Systems, Inc.

129 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• SingleCalcMode will work with a subset of supported indicators:
SMA, EMA, LinearReg, RSquared, StdDev, Highest, Lowest

Check the Build descriptions on the Wealth-Lab site for the latest additions.

• Set SingleCalcMode true only for the lines of code where required. When not
required, set the Mode back to false.

• Some indicators do not lend themselves to bar by bar calculation, because their
values depend on the previous value, or they use other complex indicators as
components. If you try to call one of these indicators when SingleCalcMode is
turned on you will receive an error message as a notification that the script might
not be working as intended.

• Note that a call to SMASeries, for example, will create the complete Price Series as
normal, but you could still call SMA within SingleCalcMode to return a newly-
calculated value for a specific bar.

Example

{ Instructions: Load Fixed 100 Bars and compare the results by
 changing the SingleCalcMode parameter to true/false }
var n, MySeries, Pane: integer;

MySeries := CreateSeries;
for n := 0 to 19 do
 @MySeries[n] := n;

{ Change the Mode value here to see the effect }
SingleCalcMode(false);

for n := 20 to BarCount - 1 do
 @MySeries[n] := SMA(n, MySeries, 20);

SingleCalcMode(false);
Pane := CreatePane(100, true, true);
PlotSeries(MySeries, Pane, #Red, #Thin);

12.35 SubtractSeries

SubtractSeries(Series1: integer; Series2: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Subtracts each element of Series2 from its corresponding element in Series1, and
returns the handle to a new Price [difference] Series.

Example

{ Visualize the Difference between two Rate of Changes }
var ROC1, ROC2, ROCDIFF, ROCPANE: integer;
ROC1 := ROCSeries(#Close, 10);
ROC2 := ROCSeries(#Close, 30);
ROCDiff := SubtractSeries(ROC2, ROC1);
ROCPane := CreatePane(100, true, true);
PlotSeries(ROCDiff, ROCPane, 012, #ThickHist);
PlotSeries(ROC1, ROCPane, #Red, #Thin);
PlotSeries(ROC2, ROCPane, #Blue, #Thin);

Price Series Functions

© 2003-2006 WL Systems, Inc.

130

12.36 SubtractSeriesValue

SubtractSeriesValue(Series: integer; Value: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Subtracts a constant Value from each element of the specified Price Series, and
returns the handle of a new Price Series.

Example

{ By subtracting 50 from the RSI we can get an
 indicator that oscillates around zero }
var RSISer, RSIPane: integer;
RSIPane := CreatePane(75, true, true);
RSISer := RSISeries(#Close, 30);
RSISer := SubtractSeriesValue(RSISer, 50);
PlotSeries(RSISer, RSIPane, 009, #Thin);

12.37 SubtractValueSeries

SubtractValueSeries(Value: float; Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Subtracts each element of a Price Series from the specified constant Value, and
returns the handle of a new Price Series.

Example

{ Create a mirror-image by flipping Williams %R }
var PctRPane: integer;
PctRPane := CreatePane(75, true, true);
PlotSeries(WilliamsRSeries(30), PctRPane, 520, #Thick);
PlotSeries(SubtractValueSeries(100, WilliamsRSeries(30)),
PctRPane, 250, #Thick);
DrawLabel('WilliamsR(30)', PctRPane);

12.38 SynchAll

SynchAll;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Synchronizes any Secondary data series that were used in the script (see
SynchSeries).

Example

{ The Oddball System requires synchronized data
 from the NYSE Advances, symbol $ADV }
var ADV, ADVPANE, ADROC, ROCPANE, BAR: integer;

{ Obtain the NYSE Advancing Issues }
ADV := GetExternalSeries('$ADV', #Close);
SynchAll;
HideVolume;

© 2003-2006 WL Systems, Inc.

131 WealthScript Function Reference, Wealth-Lab Developer 4.0

{ Plot it }
ADVPane := CreatePane(75, true, true);
PlotSeries(ADV, ADVPane, 112, #Thick);
DrawLabel('NYSE Advancing Issues', ADVPane);

{ Get the 7 bar ROC of the NYSE Advances }
ADROC := ROCSeries(ADV, 7);

{ Plot it }
ROCPane := CreatePane(75, true, true);
PlotSeries(ADROC, ROCPane, 224, #ThickHist);
DrawLabel('7 bar ROC of NYSE Advancing Issues', ROCPane);

{ Oddball Trading Rules }
for Bar := 20 to BarCount - 1 do
begin
 if GetTime(Bar) <= 1500 then
 begin
{ Currently in a long Position }
 if PositionShort(LastPosition) then
 begin
 if ROC(Bar, ADV, 7) > 3 then
 begin
 CoverAtClose(Bar, LastPosition, '');
 BuyAtClose(Bar, '');
 end;
 end
 else
{ Currently in a short Position }
 begin
 if ROC(Bar, ADV, 7) < 1 then
 begin
 SellAtClose(Bar + 1, LastPosition, '');
 ShortAtClose(Bar + 1, '');
 end;
 end;
 end;
end;
{$I 'Profit Pane (Bottom)'}

12.39 SynchSeries

SynchSeries(Symbol: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Synchronizes the data in a Secondary data series from Symbol (obtained from
GetExternalSeries or SetPrimarySeries) to the Primary data series, so that all bars
are perfectly aligned by date. There are two actions that SynchSeries can perform
on the Secondary Series (it never modifies the Primary Series). First, if the Secondary
Series contains dates that do not exist in the Primary Series, these bars are eliminated
from the Secondary Series. Next, if the Primary Series contains dates that do not
exist in the Secondary, synthetic bars of data are added to the Secondary Series to
make up the missing bars. These synthetic bars obtain their value from the previous
bar's data.

You should call SynchSeries only after creating any desired indicators from the
Secondary Series. The synchronization process is applied to all indicators created
from the Secondary Series, ensuring that they align properly with the dates in the

Price Series Functions

© 2003-2006 WL Systems, Inc.

132

Primary Series. If you create your indicators after calling SynchSeries, bars may be
removed or duplicated, and the indicators would be based on imperfect data.

However, if you want to perform operations that combine the Secondary Series and
the Primary (using DivideSeries for example), do so after the synchronization has
taken place.

Example

{ This script shows visually how data might be misaligned.
 It obtains the Nasdaq index, then makes a copy of the data.
 The SynchSeries then synchronizes the original data series.
 The script then plots both the synchronized and the original
 Series so you can see if any data problems existed. }
var NAZ, NAZCOPY, NAZPANE: integer;
Naz := GetExternalSeries('^IXIC', #Close);
NazCopy := MultiplySeriesValue(Naz, 1);
SynchSeries('^IXIC');
NazPane := CreatePane(100, true, true);
PlotSeries(Naz, NazPane, #Black, #Thin);
PlotSeries(NazCopy, NazPane, #Red, #Thin);

12.40 SyntheticBar

SyntheticBar(Bar: integer): boolean;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns true if the specified Bar number is a "synthetic" bar. A synthetic bar is a bar
that was added to the chart as a result of a call of AddCalendarDays or
AddFutureBars.

12.41 TurnDown

TurnDown(Bar: integer; Series: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the Price Series has turned down as of the specified Bar. A Price
Series has "turned down" if its value is less than its previous value, and its previous
value was greater than or equal to the value preceding it.

Specifically, given a Series D, TurnDown returns true if

@D[Bar] < @D[Bar - 1], and,
@D[Bar - 1] >= @D[Bar - 2]

Example

{ Buy when Williams %R turns down and is above 80 }
var PctRPane: integer;
PctRPane := CreatePane(75, true, true);
PlotSeries(WilliamsRSeries(30), PctRPane, 009, #Thin);
var Bar: integer;
InstallStopLoss(5);
InstallProfitTarget(10);
for Bar := 30 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

133 WealthScript Function Reference, Wealth-Lab Developer 4.0

 ApplyAutoStops(Bar);
 if TurnDown(Bar, WilliamsRSeries(30)) then
 if WilliamsR(Bar, 30) > 80 then
 BuyAtMarket(Bar + 1, 'WR');
end;

12.42 TurnUp

TurnUp(Bar: integer; Series: integer): boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the Price Series has turned up as of the specified Bar. A Price Series
"turns up" if its value is greater than its previous value, and its previous value was
less than or equal to the value preceding it.

Specifically, given a Series U, TurnUp returns true if

@U[Bar] > @U[Bar - 1], and,
@U[Bar - 1] <= @U[Bar - 2]

Example

{ Enter the market when the slow stochastic turns up from below 15 }
var Bar, StochPane: integer;
StochPane := CreatePane(100, true, true);
PlotSeries(StochDSeries(60, 5), StochPane, 202, #Thick);
for Bar := 65 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if StochD(Bar - 1, 60, 5) < 15 then
 if TurnUp(Bar, StochDSeries(60, 5)) then
 BuyAtMarket(Bar + 1, 'StochasticD Turns Up');
 end
 else
 begin
 if CrossOverValue(Bar, StochDSeries(60, 5), 80) then
 SellAtMarket(Bar + 1, LastPosition, 'StochD Crosses 80');
 end;
end;

SimuScript Functions

© 2003-2006 WL Systems, Inc.

134

13 SimuScript Functions

13.1 Overview

SimuScripts are an advanced feature of Wealth-Lab Developer 4.0 that let you
experiment with your very own position-sizing rules in the $imulator as well as in the
ChartScript, Rankings, and Scans tools when Portfolio Simulation mode is selected. A
SimuScript is a special type of ChartScript that must be stored in the "SimuScripts"
folder. For more information, see the chapter on SimuScripts in the WealthScript
Function Reference.

Generally speaking, besides the specific SimuScript-category functions, you can use
any of the functions in the other categories excluding the functions that appear in the
following categories:

· Alerts
· Cosmetic Charts
· System
· Time Frame
· Trading System

13.2 BarCount

BarCount: integer;

RChartScripts RùSimuScripts RPerfScripts XCMScripts

Description

Returns the total number of bars available at the time the current $imulator (or
Portfolio Simulation) trade was opened.

Example

{ See if we've had at least a 20% Equity rise in the last 100 Bars }
var CHANGE: float;
var GAIN20: boolean;
Gain20 := false;
if BarCount > 100 then
begin
 Change := Equity(BarCount - 1) - Equity(BarCount - 100);
 Change := (Change / Equity(BarCount - 100)) * 100;
 if Change >= 20 then
 SetPositionSizePct(50)
 else
 SetPositionSizePct(5);
end;

13.3 BuyAndHold

BuyAndHold(Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Buy & Hold Equity curve value at the specified Bar.

© 2003-2006 WL Systems, Inc.

135 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Use any surges in the Buy & Hold equity curve to
 increase out position size }
var xCurrent, xPast, xDiff, xPct: float;
SetPositionSizePct(10);
if BarCount > 20 then
begin
 xCurrent := BuyAndHold(BarCount - 1);
 xPast := BuyAndHold(BarCount - 20);
 xDiff := xCurrent - xPast;
 xPct := (xDiff / xCurrent) * 100;
 if xPct > 0 then
 SetPositionSizePct(10 + xPct);
end;

13.4 CandidateCount

CandidateCount: integer;

XChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns the number of potential Positions that are being processed for the bar on
which the SimuScript was called.

Remarks

• CandidateCount can be used, for example, to spread current cash or equity
equally over trading signals generated on the same bar in Portfolio $imulations only
(see warning).

Warning! Generally, use of CandidateCount should be restricted to testing
trading systems that use market order entries exclusively. If used in
conjunction with stop or limit entries a peeking effect can occur since
only the theoretical trades that actually take place are counted.

• CandidateCount returns the count of all Alerts for all order types
(Market/Limit/Stop/Close).

Example

{ Spread free cash equally over multiple signals generated on the same
bar if Cash > 10000. (No margin assumed) }

const MINSIZE = 10000;
var Bar: integer = BarCount - 1;
var Size: float;

if Cash(Bar) < MINSIZE then
 SetPositionSizeShares(0)
else if CandidateCount = 1 then
 SetPositionSizeFixed(MINSIZE)
else
begin
 Size := Cash(Bar) / CandidateCount;
 SetPositionSizeFixed(Size);
end;

SimuScript Functions

© 2003-2006 WL Systems, Inc.

136

13.5 Cash

Cash(Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Cash level at the specified Bar. The Cash level is equal to Equity minus
current market Exposure.

Warning! The Cash function is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SimuScript: Don't take a new Position if our Cash reserve is less
than $5,000.
 If this happens we need a vacation anyway. }
if Cash(BarCount - 1) < 5000 then
 SetPositionSizeShares(0);

13.6 DrawDown

DrawDown(Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the drawdown for the specified Bar. DrawDown is calculated on a closing
basis and is the dollar amount below the last peak in the equity curve.

Remarks:

• DrawDown retains its negative sign. For example, a drawdown of $5,000 is
returned as -5000.

• To obtain the DrawDown for the current bar in a SimuScript, pass BarCount - 1
as the Bar parameter.

Warning! DrawDown is also available for ChartScripts, but it cannot be employed in
a system's trading rules if destined for the $imulator.

Example

{ SimuScript sizing example based on drawdown }
var HighestEquity: float;

{ Use Global Storage to track Highest Equity }
if PositionCount = 0 then
begin
 ShowMessage('Init');
 SetGlobal('Highest', Equity(0));
end;

HighestEquity := GetGlobal('Highest');
if Equity(BarCount - 1) > HighestEquity then
begin
 HighestEquity := Equity(BarCount - 1);
 SetGlobal('Highest', HighestEquity);
end;

© 2003-2006 WL Systems, Inc.

137 WealthScript Function Reference, Wealth-Lab Developer 4.0

{ Have we doubled account size? }
if HighestEquity > Equity(0) * 2 then
begin
 if -DrawDown(BarCount - 1) > HighestEquity * 0.10 then
 SetPositionSizePct(0)
 else
 SetPositionSizePct(10);
end
else
 SetPositionSizePct(25);

13.7 DrawDownPct

DrawDownPct(Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the percentage drawdown for the specified Bar. DrawDownPct is calculated
on a closing basis and represents the percent decrease in equity since the last peak in
the equity curve.

Remarks:

• DrawDownPct is reported in percentage terms, and, it retains its negative sign.
For example, a 5% drawdown is returned as -5.

• To obtain the DrawDownPct for the current bar in a SimuScript, pass BarCount -
1 as the Bar parameter.

Warning! DrawDownPct is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SimuScript: Preserve Capital by taking no trades during large
drawdown periods }
if DrawDownPct(BarCount - 1) < -5 then
 SetPositionSizeShares(0)
else
 SetPositionSizePct(10);

13.8 Equity

Equity(Bar: integer): float;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the total account value at the specified Bar. In Wealth-Lab, Equity refers to
the total Cash plus Market Exposure.

SimuScript Functions

© 2003-2006 WL Systems, Inc.

138

Remarks

• Do not use Equity in a ChartScript that is destined for the $imulator, which
processes Portfolio Equity while sizing Positions following ChartScript execution.
Search for the following articles in the Knowledge Base for more information:
Interacting Dynamically with Portfolio Level Equity and Understanding the
$imulator.

Warning! The Equity function is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SimuScript
 Take the money and run! }
if Equity(BarCount - 1) > 120000 then
 SetPositionSizeShares(0);

13.9 SetPositionSizeFixed

SetPositionSizeFixed(Value: float);

XChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Instructs the $imulator (or Portfolio Simulation) to assign a fixed Position size, a dollar
Value, to the Position currently being processed by the SimuScript.

Example

{ Set a Position size of half current available cash }
SetPositionSizeFixed(Cash(BarCount - 1) / 2);

13.10 SetPositionSizePct

SetPositionSizePct(Value: float);

XChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Instructs the $imulator (or Portfolio Simulation) to assign a percentage, Value, of the
total Equity size (the net value of the Portfolio, cash + equities) to the Position that is
currently being processed by the SimuScript.

Example

{ The ChartScript Code used SetPositionData to establish
 the percentage of equity that should be used. The
 "PositionData" must be set in the ChartScript code. }
x := GetPositionData(#Current);
SetPositionSizePct(x);

13.11 SetPositionSizeShares

SetPositionSizeShares(Shares: integer);

XChartScripts RSimuScripts XPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

139 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Tells the $imulator (or Portfolio Simulation) to assign a fixed number of Shares to the
Position currently being processed.

Example

{ Set the value number of shares based on the position's basis price. }
var Basis: float;
var Shrs: integer;

Basis := PositionBasisPrice(#Current);
if Basis < 10 then
 Shrs := 800
else if Basis < 20 then
 Shrs := 500
else if Basis < 50 then
 Shrs := 300
else
 Shrs := 200;

SetPositionSizeShares(Shrs);

13.12 SortByEntryDate

SortByEntryDate;

XChartScripts xSimuScripts XPerfScripts XCMScripts

Description

Instructs the SimuScript to access Positions in the order in which they were opened.
The sort order becomes important if you write SimuScripts that assign Position size
based on streaks.

Remarks

$imulator only. Not available for Portfolio Simulations ran from the
ChartScript window.

Example

{ Increase Position Size based on last 5 submitted trades }
var n, p: integer;
var x: float;
x := 1000;
n := 0;
SortByEntryDate;
for p := PositionCount - 1 downto 0 do
 if not PositionActive(p) then
 begin
 n := n + 1;
 if n > 5 then
 Break;
 if PositionProfit(p) > 0 then
 x := x * 2;
 end;
SetPositionSizeFixed(x);

SimuScript Functions

© 2003-2006 WL Systems, Inc.

140

13.13 SortByExitDate

SortByExitDate;

XChartScripts xSimuScripts XPerfScripts XCMScripts

Description

Instructs the SimuScript to access Positions in the order in which they were closed.
The sort order becomes important if you write SimuScripts that assign Position size
based on streaks.

Remarks

$imulator only. Not available for Portfolio Simulations ran from the
ChartScript window.

Example

{ Increase Position Size as we get streaks of winners }
var p: integer;
var x: float;
x := 1000;
SortByExitDate;
for p := PositionCount - 1 downto 0 do
 if not PositionActive(p) then
 if PositionProfit(p) > 0 then
 x := x + 1000
 else
 Break;
SetPositionSizeFixed(x);

© 2003-2006 WL Systems, Inc.

141 WealthScript Function Reference, Wealth-Lab Developer 4.0

14 String Functions

14.1 Overview

To compare, parse, or otherwise manipulate string variables, the String category of
functions has what it takes.

14.2 CharAt

CharAt(Value: string; Index: integer): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a single string character at the Index position from the Value string.

Remarks

• The Index of the first character in the Value string is 1.

• If the Index is invalid, CharAt returns "NUL", i.e., ASCII Code 0.

• To return a complete substring instead of just one character, use Copy.

Example

{ A re-useable vertical labeling routine }
procedure VerticalLabel(Bar: integer; str: string; AbovePrices:
boolean; Color, Size: integer);
begin
var n: integer;
 if AbovePrices then
 begin
 for n := Length(str) downto 1 do
 AnnotateBar(CharAt(str, n), Bar, AbovePrices, Color, Size);
 end
 else
 for n := 1 to Length(str) do
 AnnotateBar(CharAt(str, n), Bar, AbovePrices, Color, Size);
end;

const S1 = 'PEAK';
const S2 = 'TROUGH';
var Bar, PB, TB: integer;

{ Make extra room for peak label }
HidePaneLines;
CreatePane(20, true, false);

Bar := BarCount - 1;
PB := PeakBar(Bar, #Close, 5);
VerticalLabel(PB, S1, true, #Blue, 8);
TB := TroughBar(Bar, #Close, 5);
VerticalLabel(TB, S2, false, #Red, 8);

String Functions

© 2003-2006 WL Systems, Inc.

142

14.3 Chr

Chr(ASCIICode: integer): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the string character of the specified ASCIICode, which may be a literal whole
number or integer variable.

Remarks

• Alternatively, you may use the shorthand "#asciicode" notation. In this case, you

must use a literal number from 0 to 255, inclusive, as shown in the example.

• See also: Ord

Example

{ Print a list of the ASCII characters to the debug
 window starting with printable characters }
var i: integer;
for i := 33 to 255 do
{ Separate the items by a Tab character, ASCII 9 }
 Print(IntToStr(i) + #9 + Chr(i));

14.4 CompareStr

CompareStr(s1: string; s2: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Compares two strings, s1 and s2, case sensitively. The function returns 0 if the two
strings are equal. If the first string is greater than the second (alphabetically), the
function returns a positive integer, and it returns a negative integer if the second
string is greater.

Example

var s1, s2: string;
s1 := Input('Enter First String');
s2 := Input('Enter Second String');
ShowMessage('CompareStr Result is: '
 + IntToStr(CompareStr(s1, s2)));

14.5 CompareText

CompareText(s1: string; s2: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Compares two strings, s1 and s2, without case sensitivity. The function returns 0 if
the two strings are equal. If the first string is greater than the second
(alphabetically), the function returns a positive integer, and it returns a negative
integer if the second string is greater.

Example

© 2003-2006 WL Systems, Inc.

143 WealthScript Function Reference, Wealth-Lab Developer 4.0

var s1, s2: string;
s1 := Input('Enter First String');
s2 := Input('Enter Second String');
ShowMessage('CompareText Result is: '
 + IntToStr(CompareText(s1, s2)));

14.6 Copy

Copy(String: string; Index: integer; Count: Integer): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a substring from the specified String. The substring begins at the position
specified in the Index parameter, and has a length specified by the Count parameter.

Example

function GetFirstWord(s: string): string;
var n: integer;
begin
 Result := '';
 n := Pos(' ', s);
 if n > 2 then
 Result := Copy(s, 1, n - 1);
end;
DrawLabel(GetFirstWord(GetSecurityName), 0);

14.7 Delete

Delete(String: string; Index: integer; Count: integer);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Removes a substring from the specified String. The substring that is removed begins
at the value of the Index parameter, and has a length specified by the Count
parameter.

Example

var s: string;
s := 'Honest Abe Lincoln';
Delete(s, 8, 4);
ShowMessage(s);

14.8 FloatToStr

FloatToStr(Value: float): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the specified floating point Value to a string. For more control over the
conversion process, use the FormatFloat function.

Example

{ Display the change over a one year period }

String Functions

© 2003-2006 WL Systems, Inc.

144

var X, X2, XCHANGE, XPCT: float;
x := PriceClose(BarCount - 251);
x2 := PriceClose(BarCount - 1);
xChange := x2 - x;
xPct := (xChange / x) * 100;
DrawLabel('Net Change over a past year: '
 + FloatToStr(xPct) + '%', 0);

14.9 FormatFloat

FormatFloat(FormatString: string; Value: float);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the specified floating point value to a string, using the specified
FormatString. The following characters most commonly appear in the format string:

0 specifies a digit and forces leading/trailing zeroes if Value does not have a
digit that falls in the position appearing in FormatString

same as 0, but displays nothing if Value has no corresponding digit

, (comma) digit grouping symbol (thousands only)

. (period) decimal point

other Other printable characters are displayed as literals in the position where
they appear in the format string. You can add currency symbols ($, €, etc.)
or the percent sign (%), e.g., '$#,##0.00' or '0.0%'

Remarks

• Using a comma "," in FormatString will add the Digit grouping symbol defined in
your Windows Regional Options Numbers tab. Regardless of the comma's position
in the format string, the grouping will be by thousands.

• Using a period "." in the format code will add a Decimal symbol defined in your
Windows Regional Options Numbers tab. Using more than one period in
FormatString will generate an error.

Example

{ Print a closing value to the debug window }
var BAR: integer;
Print(FormatFloat('#,##0.00', PriceClose(Bar)));

14.10 GetToken

GetToken(String: string; TokenNum: integer; Delimiter: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Parses a String and returns an individual token. The String itself remains unaffected
by the function call. You specify a character to use as a Delimiter, and the token
number, TokenNum, to return. Pass 0 to return the first token, 1 for the second, etc.

Remarks

• GetToken returns a null string (ASCII Code 0) if the specified TokenNum does not

© 2003-2006 WL Systems, Inc.

145 WealthScript Function Reference, Wealth-Lab Developer 4.0

exist in the String.

Example

{ Return a token from a space-delimited string }
s := 'This is a line of tokens';
sToken := GetToken(s, 5, ' ');
{ sToken now contains the string "tokens" }

14.11 Insert

Insert(Source: string; S: string; Index: Integer);

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Inserts a substring, Source, into a string S beginning at a point specified by the Index
parameter.

Example

var s: string;
s := 'Honest Lincoln';
Insert('Abe ', s, 8);
ShowMessage(s);

14.12 IntToStr

IntToStr(Value: integer): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Convert the integer value specified in the Value parameter to a string.

Example

{ Display the total number of bars in the chart }
DrawLabel('The Chart has ' + IntToStr(BarCount) + ' Bars', 0);

14.13 Length

Length(String: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the length of the specified String.

Example

var s: string;
s := 'Wealth-Lab';
n := Length(s); //n is now 10

String Functions

© 2003-2006 WL Systems, Inc.

146

14.14 LowerCase

LowerCase(Value: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a lowercase copy of the specified string, Value.

Example

{ Capitalize the first letter of the name only }
var S, FIRSTLETTER: string;
s := LowerCase(GetSecurityName);
if s = '' then
 Exit;
FirstLetter := UpperCase(Copy(s, 1, 1));
s := FirstLetter + Copy(s, 2, Length(s));
ShowMessage(s);

14.15 Ord

Ord(Value: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the ordinality (ASCII code) of the first character of the specified Value.

Remarks

• Value can be any sequence of characters, but must not be a blank string.

• See also: Chr

Example

{ Create a table of printable characters }
var c: integer;
for c := 32 to 128 do
 Print(IntToStr(c) + #9 + Chr(c)
 + #9 + IntToStr(Ord(Chr(c))));

14.16 Pos

Pos(SubString: string; String: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns the index value (position) of the first character in a specified Substring that
occurs in a given String.

Example

var s: string;
var n: integer;
s := Input('Give me a string!');
n := Pos('A', UpperCase(s));
if n = 0 then
 ShowMessage('The letter ''A'' is not present.')

© 2003-2006 WL Systems, Inc.

147 WealthScript Function Reference, Wealth-Lab Developer 4.0

else
 ShowMessage('The letter ''A'' is at position ' + IntToStr(n) + '.'
);

14.17 StrToFloat

StrToFloat(Value: string): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the specified string, Value, to a floating point value.

Example

{ Read a value from an external file and convert to floating point }
var f: integer;
var s: string;
var x: float;
f := FileOpen('MyFile.txt');
s := FileRead;
x := StrToFloat(s);

14.18 StrToFloatDef

StrToFloatDef(Value: string; Default: float): float;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the specified string, Value, to a floating point value. If the string does not
represent a valid floating point value, the function returns the value provided in the
Default parameter.

Example

{ Let the user specify the Standard Deviations to use for Bollinger
Bands }
var S: string;
var X: float;
s := Input('Bollinger Band Std Dev?');
x := StrToFloatDef(s, 1.5);
PlotSeries(BBandLowerSeries(#Close, 10, x), 0, 009, #Thin);
PlotSeries(BBandUpperSeries(#Close, 5, x), 0, 009, #Thin);

14.19 StrToInt

StrToInt(Value: string): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the string specified in the Value parameter to an integer.

Example

function ConvertDate(Date: string): integer;
begin
 var y, m, d: string;

String Functions

© 2003-2006 WL Systems, Inc.

148

 m := GetToken(Date, 0, '/');
 d := GetToken(Date, 1, '/');
 y := GetToken(Date, 2, '/');

 Result := StrToInt(y) * 10000
 + StrToInt(m) * 100
 + StrToInt(d);
end;

const MyDate = '5/18/2005';
Print('ConvertDate returns: ' + IntToStr(ConvertDate(MyDate)));
try
 Print('StrToDate returns: ' + IntToStr(StrToDate(MyDate)));
except
 Print('');
 Print('Your computer''s short date format is not mm/dd/yyyy');
end;

14.20 StrToIntDef

StrToIntDef(Value: string; Default: integer): integer;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Converts the string specified in the Value parameter to an integer. If the string isn't a
valid integer, the function instead returns the value in the Default parameter.

Example

{ Let the user specify the period they want to use }
var S: string;
var N: integer;
s := Input('EMA Period?');
n := StrToIntDef(s, 50);
PlotSeries(EMASeries(#Close, n), 0, 002, #Thick);

14.21 Trim

Trim(s: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a copy of the specified string, s, with leading and trailing blanks trimmed off.

Example

{ Read a line from an external file }
var s: string;
var n: integer;
n := FileOpen('C:\MyFile.txt');
s := FileRead(n);
s := Trim(s);

14.22 TrimLeft

TrimLeft(s: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

© 2003-2006 WL Systems, Inc.

149 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns a copy of the specified string, s, with leading blanks trimmed off.

Example

{ Get second word of company name }
var s: string;
var n: integer;
s := GetSecurityName;
n := Pos(' ', s);
if n > 0 then
begin
 s := Copy(s, n, Length(s));
 s := TrimLeft(s);
end;

14.23 TrimRight

TrimRight(s: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns a copy of the specified string, s, with trailing blanks trimmed off.

Example

{ Output contents of a file }
var s: string;
var f: integer;
f := FileOpen('C:\MyFile.txt');
while not FileEOF(f) do
 Print(TrimRight(FileRead(f)));

14.24 UpperCase

UpperCase(s: string): string;

RChartScripts RSimuScripts RPerfScripts RCMScripts

Description

Returns an uppercase copy of the specified string, specified in the parameter s.

Example

{ Print the names of all your ChartBooks to the Debug window }
var F: integer;
f := FileOpen('Namespaces.txt');
while not FileEOF(f) do
 Print(UpperCase(FileRead(f)));

System Functions

© 2003-2006 WL Systems, Inc.

150

15 System Functions

15.1 Overview

In the System category, you'll find a broad array of functions whose primary purpose
is to interact with the user and external objects or programs. They also provide a
manner to control and generate output for Scans, the Commentary Window, and chart
image files. Finally, a subset of the System Functions furnish methods to easily work
with an entire group of symbols - a WatchList.

Note: Generally speaking, the System category of WealthScript functions are not
available for SimuScripts.

15.2 Abort

Abort;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Causes a script to stop processing immediately. Wealth-Lab reports an error message
upon executing an Abort statement.

Remarks

• You can abort ChartScript processing manually by striking the Esc key.

• Use Exit instead of Abort to terminate/exit a procedure without error.

Example

if BarCount < 100 then
 Abort;

15.3 AddCommentary

AddCommentary(Line: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Adds a Line of commentary to the ChartScript Commentary window. You can use any
valid HTML tags in your commentary (see the User Guide in the Help File for some
examples). To force a line break end your string with the tag '
'.

Tip: To open the Commentary window, select View|Commentary Window
(Ctrl+Alt+C) from the main menu, or select its icon from the View toolbar.

Example

var Bar: integer;
var s: string;
var x1, x2, x: float;
const FMT = '#0.00';

© 2003-2006 WL Systems, Inc.

151 WealthScript Function Reference, Wealth-Lab Developer 4.0

Bar := BarCount - 1;
s := '<h1>' + GetSymbol + '</h1>';
AddCommentary(s);
if not (GetSecurityName = '') then
begin
 s := '<h2>(' + GetSecurityName + ')</h2>';
 AddCommentary(s);
end;
AddCommentary('Dual Stochastic Sell Strategy
');
x1 := StochD(Bar, 45, 5);
s := 'FastD(45): ' + FormatFloat(FMT, x1) + '
';
AddCommentary(s);
x2 := StochD(Bar, 7, 5);
s := 'FastD(7): ' + FormatFloat(FMT, x2) + '
';
AddCommentary(s);
x1 := Lowest(Bar, #Low, 10);
s := 'Lowest 10 Bar Low: $' + FormatFloat(FMT, x1) + '
';
AddCommentary(s);

15.4 AddScanColumn

AddScanColumn(Name: string; Value: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Adds a custom column, Name, to the Real-Time Scans and WatchList Scans tools, and
populates the column with the numeric value specified in the Value parameter. You
can sort the symbols in the Scan tools by clicking on the heading of your custom
columns.

Remarks

• The Value displayed in the custom column is fixed to 2 decimals of significance.
Use AddScanColumnStr to display more precision.

• Typically, you'll want to provide the value of one or more indicators on the final
bar of the chart, i.e. the signal bar. The data is displayed in the Custom Columns
View after running a WatchList Scan, or as a new column in the Scan Results for
Real-Time Scans.

• AddScanColumn should not be used conditionally. Since all scanned symbols are
always added to the Custom Columns view of the Scans tool, adding values
conditionally would create variable length records, which can cause printing
incompatibilities.

Example

{ Add the most recent MACD as a custom column in the WatchList Scan
tool }
var BAR: integer;
Bar := BarCount - 1;
AddScanColumn('MACD', MACD(Bar, #Close));

15.5 AddScanColumnStr

AddScanColumnStr(Name: string; Value: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

System Functions

© 2003-2006 WL Systems, Inc.

152

Description

Adds a custom column, NAddame, to the Real-Time Scans and WatchList Scans tools,
and populates the column with the string specified in the Value parameter. You can
sort the symbols in the Scan tools by clicking on the heading of your custom columns.

Remarks

• Use AddScanColumnStr with FormatFloat to control the display precision of a
number.

• Typically, you'll want to provide a string message on the final bar of the chart, i.e.
the signal bar. The data is displayed in the Custom Columns View after running a
WatchList Scan, or as a new column in the Scan Results for Real-Time Scans.

• AddScanColumnStr should not be used conditionally. Since all scanned symbols
are always added to the Custom Columns view of the Scans tool, adding values
conditionally would create variable length records, which can cause printing
incompatibilities.

Example

var C: float;
var S: string;
s := WatchListName;
AddScanColumnStr('List', s);

{ Show the final closing price with 3 decimals of precision }
C := PriceClose(BarCount - 1);
AddScanColumnStr('Close', FormatFloat('0.000', C));

15.6 AllowSymbolSearch

AllowSymbolSearch(DataSource: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Specifies the DataSource(s) that will be searched when an external symbol is
requested that is not within the same DataSource as the symbol being executed in the
chart. If you do not call AllowSymbolSearch, Wealth-Lab searches for the external
data in all of your DataSources in alphabetical order. Call AllowSymbolSearch one
or more times in the script to allow only certain DataSources to be searched.

Example

{ Allow the script to search these daily DataSources only and ignore
 Intraday DataSources }
AllowSymbolSearch('Dow 30');
AllowSymbolSearch('Nasdaq 100');

15.7 CreateOleObject

CreateOleObject(ClassName: string): ComVariant;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

153 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Creates an instance of an OLE (Object/Linking and Embedding) object with the
specified COM ClassName. The return value of this function should be stored into a
variable of data type ComVariant. Once created, you can call any methods that are
available in the object.

Example

{ Interfacing to a Wealth-Lab add-in written as a COM DLL }
var lib: ComVariant;
var CustomSeries: integer;
lib := CreateOleObject('AddOnLib.WLAddOn');
lib.ExecuteProc(123, IWealthLabAuto);
CustomSeries := CreateSeries;
lib.CustomIndicator(CustomSeries, #Close, 24, IWealthLabAuto);
PlotSeries(CustomSeries, 0, #Red, #Thick);

15.8 GetGlobal

GetGlobal(VariableName: string): Variant;

RChartScripts RSimuScripts XPerfScripts RCMScripts

Description

Retrieves a variant value from the variable VariableName in a global storage area,
which is available to all Wealth-Lab scripts, excluding PerfScripts. Assign values to
the global storage area by using SetGlobal.

Values assigned to the global storage area retain their values between script runs.
You can, for example, set a global variable in a ChartScript and then access the value
in a SimuScript.

Remarks

• If the global variable VariableName does not exist GetGlobal returns Null.

Note: In prior versions of Wealth-Lab, GetGlobal returned 0 for non-existent
global variables. This made it difficult to store strings in a global variables
and test for their existence.

Example

{ Retrieve the BarCount stored in Global Storage. See SetGlobal
example }
var MyVar: string;
if GetGlobal('AABarCount') = Null then
begin
MyVar := Input('Enter a Value:');
SetGlobal('AABarCount', MyVar);

end
else
MyVar := GetGlobal('AABarCount');

ShowMessage('The value is: ' + MyVar);

15.9 GetScriptName

GetScriptName: string;

RChartScripts xSimuScripts XPerfScripts XCMScripts

System Functions

© 2003-2006 WL Systems, Inc.

154

Description

Returns the name of the ChartScript that is currently being executed.

Remarks

• In a SimuScript, GetScriptName returns the name of the ChartScript.

• Not valid for SimuScripts used by the $imulator.

Example

var s: string;
s := GetScriptName;
if s = '' then
 s := 'Untitled';
Print('The ChartScript name is ' + s);

15.10 GetTickCount

GetTickCount: integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the number of milliseconds that the operating system has been operating.
This value is used for benchmarking purposed. By taking the TickCount before and
after an operation, and then subtracting the difference, you can gauge how long an
operation is taking to complete.

Example

var Bar, n1, n2, r, i: integer;
var x: float;
n1 := GetTickCount;
x := 0;
for i := 30 to BarCount - 1 do
 x := x + RSI(Bar, #Close, 30);
n2 := GetTickCount;
ShowMessage('Loop took ' + IntToStr(n2 - n1) + ' ms to complete');

15.11 Input

Input(Caption: string): string;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Displays an input dialog where the user can enter a value, which is always returned as
a string type, that is returned by the function. The specified Caption is displayed as a
message to prompt the user for input.

Note: The Input function is not compatible with ChartScript Integrated Debugger
when Stepping.

Example

{ Get the period for an indicator each time the ChartScript is executed
}
var Period: integer;
var s: string;

© 2003-2006 WL Systems, Inc.

155 WealthScript Function Reference, Wealth-Lab Developer 4.0

s := Input('Indicator Period?');
Period := StrToInt(s);
PlotSeriesLabel(EMASeries(#Close, Period), 0, #Blue, #Thick, 'EMA('
+ s + ')');

15.12 IWealthLabAddOn3

IWealthLabAddOn3: COMVariant;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns an instance of Wealth-Lab Developer 4.0's COM Add-On Interface. You can
write add-ins to Wealth-Lab Developer 4.0 in any language capable of producing an
ActiveX (COM) DLL. Your add-ins should accept the IWealthLabAddOn3 interface as
a parameter to their function calls. They can then utilize the methods of the interface
to execute trades and create custom indicators.

For more information on the IWealthLabAddOn3 interface see the Add-On API
article on the Wealth-Lab.com web site.

Example

{ Interfacing to a Wealth-Lab add-in written in Visual Basic }
var lib: ComVariant;
var CustomSeries: integer;
lib := CreateOleObject('VBWL.VBWLInterface');
lib.Execute(IWealthLabAddOn3);
CustomSeries := CreateSeries;
lib.CustomIndicator(#Close, CustomSeries, 24, IWealthLabAddOn3);
PlotSeries(CustomSeries, 0, #Navy, #Thick);

15.13 IWealthLabAuto

IWeathLabAuto: COMVariant;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns an instance of Wealth-Lab Developer 2.1's COM Automation Interface. You
can write add-ins to Wealth-Lab Developer 2.1 in any language capable of producing
an ActiveX (COM) DLL. Your add-ins should accept the IWeathLabAuto interface as
a parameter to their function calls. They can then utilize the methods of the interface
to execute trades and create custom indicators.

For more information on the IWealthLabAuto interface see the COM Reference
article on the Wealth-Lab.com web site.

Example

{ Interfacing to a Wealth-Lab 2.1 add-in written in Visual Basic }
var lib: ComVariant;
var CustomSeries: integer;
lib := CreateOleObject('VBWL.VBWLInterface');
lib.Execute(IWealthLabAuto);
CustomSeries := CreateSeries;
lib.CustomIndicator(#Close, CustomSeries, 24, IWealthLabAuto);
PlotSeries(CustomSeries, 0, #Navy, #Thick);

System Functions

© 2003-2006 WL Systems, Inc.

156

15.14 IsRealTime

IsRealTime: boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns boolean true if the script is accessing data from a Live Feed. Otherwise the
function returns false.

Example

{ For example, use IsRealTime to disable LastBar logic }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if LastBar(Bar) and (not IsRealTime) then
 SellAtClose(Bar, LastPosition, 'EOD');
 end
 else
 begin
 { Entry logic }
 end;
end;

15.15 Null

Null: variant;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns a Variant "Null" value. See GetGlobal for more information.

15.16 PlaySound

PlaySound(FileName: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Plays the sound specified in the FileName parameter. FileName should be a fully-
qualified wave file (*.WAV).

For intraday trading systems that hold stop and/or limit exit signals open for multiple
bars, you may not want to hear an audible Alert for each new bar. Below, we
demonstrate how to play a sound for the entry signal and once only for the bracketed-
order exit signal(s).

Example

{ Be sure to turn off 'Alert Triggered from ChartScript Window' in
Tools|Options|Sounds }
var Bar, p: integer;
var EntryPrice: float;
const EntrySound = 'C:\Program Files\Wealth-Lab, Inc\Wealth-Lab

Developer 3.0\Alert4.wav';

© 2003-2006 WL Systems, Inc.

157 WealthScript Function Reference, Wealth-Lab Developer 4.0

const ExitSound = 'C:\Program Files\Wealth-Lab, Inc\Wealth-Lab
Developer 3.0\Alert1.wav';

PlotStops;
for Bar := 20 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 p := LastPosition;
 EntryPrice := PositionEntryPrice(p);

 { Sound exit alert only if the first bar after entry is the last bar
in the chart }

 if Bar = BarCount - 1 then
 if Bar - PositionEntryBar(p) = 0 then
 PlaySound(ExitSound);

 if not SellAtStop(Bar + 1, EntryPrice * 0.95, p, '5% StopLoss')
then
 SellAtLimit(Bar + 1, EntryPrice * 1.08, p, '8% ProfitTarget')
 end
 else
 if TurnUp(Bar, SMASeries(#Close, 20)) then
 begin
 BuyAtMarket(Bar + 1, '');
 if Bar = BarCount - 1 then // Sound entry alert
 PlaySound(EntrySound);
 end;
end;

15.17 Print

Print(Value: string);

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Prints the specified string Value into the Debug window.

Remarks

• All messages are printed to the Debug window upon completion of script
processing. Use PrintFlush to immediately force debug strings to appear in the
Debug window.

• The Debug window is cleared at the end of ChartScript processing prior to printing
messages from the queue. Consequently, the window displays only the results
from the most recent ChartScript run.

Example

{ Print the bars where there were SMA crossovers }
if CrossOver(Bar, SMASeries(#Close, 20), SMASeries(#Close, 60))
then
 Print(IntToStr(Bar));

15.18 PrintFlush

PrintFlush;

RChartScripts RSimuScripts XPerfScripts XCMScripts

System Functions

© 2003-2006 WL Systems, Inc.

158

Description

Causes any debug strings that have been issued via Print to be immediately displayed
in the Debug window, View|Debug Window (Ctrl+Alt+D). Normally, the debug
strings are visible only after the ChartScript run completes.

Remarks

• Repetitive use of PrintFlush can increase a ChartScript's execution time
significantly.

15.19 PrintStatus

PrintStatus(Value: string);

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Causes the specified string to be immediately displayed in the lower-left status bar of
Wealth-Lab Developer 4.0.

Remarks

• View | Status Bar must be selected from the main menu for the Status Bar to be
visible (default).

Example

var SSYM: string;
var WL, BAR: integer;

for WL := 0 to WatchListCount -1 do
begin
 sSym := WatchListSymbol(WL);
 PrintStatus('Now Processing ' + sSym);
 SetPrimarySeries(sSym);
 for Bar := 20 to BarCount - 1 do
 begin
 { ... more statements ... }
 end;
end;

15.20 RunProgram

RunProgram(ProgramName: string; Wait: boolean);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Executes the specified program, ProgramName. If the Wait parameter is true, the
script resumes executing only after the program terminates. Otherwise the script
continues executing immediately after the program is launched.

Example

ShowMessage('About to launch Notepad ...');
RunProgram('Notepad.exe', true);
ShowMessage('Notepad Closed!');

© 2003-2006 WL Systems, Inc.

159 WealthScript Function Reference, Wealth-Lab Developer 4.0

15.21 SaveChartImage

SaveChartImage(FileName: string; Width: integer; Height: integer; ImageType: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Saves the current chart image to either a Bitmap or a GIF file. Specify the file name
in the first parameter, FileName. Specify how large the resulting image should be by
supplying values to the Width and Height parameters. The last parameter,
ImageType, should contain either 'BMP' or 'GIF' which specifies which image format to
save the chart.

Remarks

• Available from the ChartScript window only.

• Works for Real-Time ChartScript windows as well as for static data.

Saving Multiple Chart Images

The script below demonstrates how you can perform a batch job in WealthScript using
the WL3 COM Automation object ExecuteScript method. Open a new ChartScript
Window (Ctrl+N) and then copy, and paste the code into the Editor. When you click
on a symbol, the ChartScript specified in the ScriptName constant will be executed for
each symbol in the WatchList. Consequently, by placing SaveChartImage in the
ScriptName script ('Glitch Index' here), a chart image will be saved for each symbol.
The name of the resulting file should be variable by symbol so that the same file is not
continuously overwritten.

{$NO_AUTO_EXECUTE}
const ScriptName = 'Glitch Index';
var obj: COMVariant;
var w: integer;
var sym, WatchList: string;

WatchList := WatchListName;
obj := CreateOleObject('WealthLab.WL3');
for w := 0 to WatchListCount - 1 do
begin
 sym := WatchListSymbol(w);
 obj.ExecuteScript(ScriptName, WatchListName, sym);
end;

Example

{ Use 'as is' or paste at the bottom of any script to employ the batch
method above }
var str: string = GetSymbol + '_' + IntToStr(GetDate(BarCount - 1))
+ '_' + GetScriptName;

{ Note! The folder specified here must exist }
SaveChartImage('C:\Data\Images\' + str + '.GIF', 600, 400, 'GIF');

15.22 SetGlobal

SetGlobal(VariableName: string; Value: variant);

RChartScripts RSimuScripts XPerfScripts RCMScripts

Description

System Functions

© 2003-2006 WL Systems, Inc.

160

Allows you to store a variable, VariableName, and its Value in Wealth-Lab's global
storage area. Use GetGlobal to retrieve the Value of the global variable assigned by
SetGlobal.

Remarks

• Variables stored in the global storage area retain their values indefinitely, even
between script calls.

• The name of the variable is specified in the VariableName parameter. If the
variable already exists in the global storage area it will be overwritten.

• Specify the value in the Value parameter. Since the Value parameter is of type
Variant, you can store values of any type (integer, string, float or boolean) in
the global storage area.

Example

{ Store the BarCount by symbol }
var s: string;
s := GetSymbol + 'BarCount';
SetGlobal(s, BarCount);

15.23 SetOptimizeValue

SetOptimizeValue(OptValue : float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

SetOptimizeValue accepts a single parameter, OptValue, which is used as the "User
Defined" optimization metric. Typically, following the trading loop, you will cycle
through the Positions to calculate some sort of trading metric and pass it as the
OptValue parameter. This calculated value is added to the Optimization Results
tabulations and graphs for both Exhaustive and Monte Carlo techniques, and, when
running MC optimizations you may choose User Defined as the optimization target.

In the example we demonstrate a simple long-only, weighted-moving average
crossover system with an 8% stop loss. The script is ready to optimize over the slow
and fast periods of the moving average, and at the end, it calculates the average
number of days in a trade for the User Defined metric.

Note: To see the optimization results, you must save this script and then Open the
ChartScript for Optimization, Ctrl+T. Then from the Optimization view,
select either Exhaustive or Monte Carlo methods. If Monte Carlo, you can
further choose User Defined as the Optimization Metric, or target. Finally,
click Begin to start the optimization process.

Remarks

• If a WatchList having more than one security is selected for a Portfolio $imulation
Mode optimization (Portfolio $imulation Mode checked in the Optimization Control
frame), the User-Defined value will be displayed as an average value.

Example

{#OptVar1 24;20;32;4}
{#OptVar2 14;10;18;2}
var Bar: integer;
var SlowPer, FastPer, SlowMA, FastMA: integer;

© 2003-2006 WL Systems, Inc.

161 WealthScript Function Reference, Wealth-Lab Developer 4.0

SlowPer := #OptVar1;
FastPer := #OptVar2;
SlowMA := WMASeries(#Close, SlowPer);
FastMA := WMASeries(#Close, FastPer);

InstallStopLoss(8);
PlotStops;
for Bar := SlowPer to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin
 if CrossOver(Bar, FastMA, SlowMA) then
 BuyAtMarket(Bar + 1, 'CrossedOver');
 end
 else
 if CrossUnder(Bar, FastMA, SlowMA) then
 SellAtMarket(Bar + 1, LastPosition, 'CrossedUnder');
end;

{ Calculate Avg Days in Trade as User Defined optimization metric }
var p, TotalDays: integer;
for p := 0 to PositionCount - 1 do
 TotalDays := TotalDays + PositionExitBar(p) - PositionEntryBar(p
);

if PositionCount = 0 then
 SetOptimizeValue(0.0)
else
 SetOptimizeValue(TotalDays / PositionCount);

15.24 SetPeakTroughMode

SetPeakTroughMode(Mode: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Specifies the way the Peak/Trough functions calculate a reversal amount. You can
base Peak/Trough calculations on a percentage reversal, or a raw value "point"
reversal. The Mode parameter can be one of the following constants:

#AsPercent - Peak/Trough reversals are expressed as percentages (default
behavior)

#AsPoint - Peak/Trough reversals values are calculated based on raw value, i.e.
points

For example, imagine you are calculating Peak/Troughs based on a reversal of 10. In
percentage mode, the underlying Price Series has to move 10 percent higher than the
lowest point in order for a Trough the be recorded. Likewise, prices must move 10
percent lower than a recent high for a Peak to be recorded. If you change the
Peak/Trough mode to #AsPoint the the underlying Price Series must move up or down
10 points rather than 10 percent.

Remarks

The #AsPoint mode is especially useful when calculating Peak/Troughs based on Price
Series that can have zero and negative values. Percentage Peak/Trough reversals
cannot be calculated on such Price Series.

System Functions

© 2003-2006 WL Systems, Inc.

162

Example

{ Draw Peaks/Troughs of an indicator that can enter the negative range
}
var P, T: float;
var REV, INDICATOR, PANE, PB_, PB, TB: integer;
Rev := 5;
Indicator := CMOSeries(#Close, 20);
Pane := CreatePane(150, true, true);
PlotSeries(Indicator, Pane, #Blue, #Thick);
PB_ := 0;
SetPeakTroughMode(#AsPoint);
PB := PeakBar(BarCount - 1, Indicator, Rev);
P := Peak(BarCount - 1, Indicator, Rev);
while (PB <> PB_) and (PB > 0) do
begin
 TB := TroughBar(PB, Indicator, Rev);
 T := Trough(PB, Indicator, Rev);
 DrawLine(PB, P, TB, T, Pane, #Red, #Thick);
 PB_ := PB;
 PB := PeakBar(TB, Indicator, Rev);
 P := Peak(TB, Indicator, Rev);
 DrawLine(PB, P, TB, T, Pane, #Red, #Thick);
end;

15.25 ShowMessage

ShowMessage(Message: string);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Displays the specified Message in a dialog box. The ChartScript flow of execution is
suspended until the user clicks on the dialog.

Example

if PositionProfit(LastPosition) < 1000 then
begin
 ShowMessage('Time to Throw in the Towel!');
 Abort;
end;

15.26 Sleep

Sleep(Milliseconds: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Causes the script to pause processing for the specified number of Milliseconds. You
can abort a script that's sleeping by pressing the Esc key, or selecting Chart|Stop
Execution from the main menu.

Note: The Sleep function is not compatible with ChartScript Integrated Debugger.

Example

Sleep(2000);

© 2003-2006 WL Systems, Inc.

163 WealthScript Function Reference, Wealth-Lab Developer 4.0

15.27 UseUpdatedEMA

UseUpdatedEMA(Use: boolean);

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

This function controls which exponent formula is used when computing an EMA
(Exponential Moving Average). By default, Wealth-Lab uses the following formula to
calculate the exponent:

(1 / Periods) * 2

Another common method of calculating the Exponent is:

2 / (1 + Periods)

Passing true as the Use parameter to UseUpdatedEMA will cause Wealth-Lab to use
the second form when computing EMA's. This also affects native indicators that are
based on EMA, such as CADO, DSS, TRIX, MACD, Volatility, etc.

Remarks

• EMA-based native indicators having the same parameters, e.g., EMASeries(

#Close, 100) and EMASeries(#Close, 100), will utilize the UseUpdatedEMA

setting that is active at the time of the first reference to the indicator only. If you
require both settings for the same EMA series, see the example for a solution.

• You can set the default preference for the EMA exponent calculation in the Options
Dialog (F12)|Indicator Calculations. UseUpdatedEMA overrides the default
setting.

Example

{ This script shows the difference between the 2 EMA exponent forms }
var EMASER, COPIED, EMASER2: integer;
UseUpdatedEMA(false);
EMASer := EMASeries(#Close, 12);
Copied := AddSeriesValue(#Close, 0);
UseUpdatedEMA(true);
EMASer2 := EMASeries(Copied, 12);
PlotSeries(EMASer, 0, #Red, #Thin);
PlotSeries(EMASer2, 0, #Blue, #Thin);

15.28 WatchListAddSymbol

WatchListAddSymbol(Name: string; DSName: string; Symbol: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Adds the specified Symbol to the WatchList specified in the Name parameter. The
DSName parameter is optional. If provided, it should contain the name of the
DataSource that contains the Symbol being added. If left blank, the value defaults to
the DataSource of the symbol that was clicked to execute the script.

Remarks

• Available from the ChartScript window only.

• The Symbol will not be added to the WatchList if it already exists - even if it was

System Functions

© 2003-2006 WL Systems, Inc.

164

from a different DataSource.

• WatchListAddSymbol creates the WatchList specified in the Name parameter if it
does not already exist.

Example

{ Create a WatchList of the 5 most oversold symbols }
var w: integer;
var lst: TList;
var sym: string;
var x: float;

lst := TList.Create;
WatchListClear('Oversold');

for w := 0 to WatchListCount - 1 do
begin
 sym := WatchListSymbol(w);
 SetPrimarySeries(sym);
 x := RSI(BarCount - 1, #Close, 20);
 lst.AddData(x, sym);
end;

lst.SortNumeric;
for w := 0 to 4 do
begin
 sym := lst.Data(w);
 WatchListAddSymbol('Oversold', '', sym);
end;

15.29 WatchListClear

WatchListClear(Name: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Clears all of the symbols in the WatchList specified in the Name parameter.

Remarks

• Available from the ChartScript window only.

• The Name string is not case sensitive.

Example

{ Create a WatchList of all symbols where price is
 above 200 day moving average }
var Bar, w: integer;
var sym: string;
WatchListClear('Above 200 Day SMA');
for w := 0 to WatchListCount - 1 do
begin
 sym := WatchListSymbol(w);
 SetPrimarySeries(sym);
 Bar := BarCount - 1;
 if PriceClose(Bar) > SMA(Bar, #Close, 200) then
 WatchListAddSymbol('Above 200 Day SMA', '', sym);
end;

© 2003-2006 WL Systems, Inc.

165 WealthScript Function Reference, Wealth-Lab Developer 4.0

15.30 WatchListCount

WatchListCount: integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the number of symbols available in the currently selected WatchList.

Remarks

• Not compatible with real-time ChartScript mode.

• WatchList functions are generally intended for use in the ChartScript Window only.

Exceptions:

1. WatchListCount cannot be used with SetPrimarySeries in the $imulator if you
create trades before calling RestorePrimarySeries. This will cause the
$imulator to stop processing after the first symbol. A ChartScript that does not
trade on secondary symbols can call WatchListCount to create an index
indicator, for example.

2. If the ChartScript does create trades on secondary symbols, you can force End-
of-day Scans to complete an entire scan by selecting "Multi-Symbol Script
Scanning".

Example

{ Create an analysis file for all symbols in the WatchList.
 Output the RSI level and net gain after 20 bars }
var n, f, Bar: integer;
var val, change: float;
f := FileCreate('WatchList RSI Analysis.csv');
for n := 0 to WatchListCount - 1 do
begin
 SetPrimarySeries(WatchListSymbol(n));
 Bar := 20;
 while Bar < BarCount - 20 do
 begin
 val := RSI(Bar, #Close, 20);
 change := PriceClose(Bar + 20) - PriceClose(Bar);
 change := (change / PriceClose(Bar)) * 100;
 FileWrite(f, GetSymbol + ',' + IntToStr(Bar) + ',' +
 FloatToStr(val) + ',' + FloatToStr(change));
 Bar := Bar + 20;
 end;
end;

15.31 WatchListDelete

WatchListDelete(Name: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Deletes the WatchList specified by the Name parameter completely. The Name string
is not case sensitive.

System Functions

© 2003-2006 WL Systems, Inc.

166

Remarks

• After running a ChartScript that contains WatchListDelete, to see the result in the
same ChartScript window you must refresh the DataSource tree by right clicking
within it and selecting Refresh.

• If the specified WatchList does not exist, no action is taken and the statement is
executed without error.

• WatchListDelete will not delete an actual DataSource. However, after passing a
DataSource Name, it will appear to be deleted after refreshing the DataSource tree
in the ChartScript window. This is because Wealth-Lab creates a mirrored
WatchList for each DataSource. You can recover such WatchLists by simply
restarting Wealth-Lab.

Example

{ Delete the WatchList created by the WatchListAddSymbol example }
WatchListDelete('Oversold');

15.32 WatchListName

WatchListName: string;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Returns WatchList name containing the symbol that was clicked to execute the script.

Example

DrawLabel('The WatchList is: ' + WatchListName, 0);

15.33 WatchListRemoveSymbol

WatchListRemoveSymbol(Name: string; Symbol: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Removes the specified Symbol from the WatchList specified by the Name parameter.

Remarks

• Available from the ChartScript window only.

15.34 WatchListSelect

WatchListSelect(WatchList: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Executes the ChartScript on the specified WatchList. If the ChartScript is currently
being executed on a symbol in a WatchList different from the one specified in the
WatchList parameter, this function aborts the script processing, selects the first
symbol in the specified WatchList tree folder, and re-executes the script on this
symbol. If the script is already being executed on a symbol within the selected
WatchList, processing continues normally.

© 2003-2006 WL Systems, Inc.

167 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• Available from the ChartScript window only.

• Not compatible with real-time ChartScript mode.

Example

{ Make sure the script executes in a specific Intraday WatchList }
WatchListSelect('QCharts 15 Minute');

15.35 WatchListSymbol

WatchListSymbol(n: integer): string;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the specified symbol from the currently selected WatchList. You can use this
function, combined with WatchListCount, to write ChartScripts that act on all of the
symbols in a WatchList.

Remarks

• Not compatible with real-time ChartScript mode.

• WatchList functions are generally intended for use in the ChartScript Window only.

Exceptions:

1. WatchListSymbol cannot be used with SetPrimarySeries in the $imulator if
you create trades before calling RestorePrimarySeries. This will cause the
$imulator to stop processing after the first symbol.

2. If the ChartScript does create trades on secondary symbols, you can force End-
of-day Scans to complete an entire scan by selecting "Multi-Symbol Script
Scanning".

Example

{ The following script executes for each symbol in the WatchList }
var n: integer;
for n := 0 to WatchListCount - 1 do
begin
 SetPrimarySeries(WatchListSymbol(n));
 { ... }
end;

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

168

16 Technical Indicator Functions

16.1 Overview

Technical Indicators make technical analysis possible. The indicators found in this
reference are native to WealthScript, but by no means include all of the indicators
available to Wealth-Lab users! You have the ability to create your own Custom
Indicators, and many such indicators are uploaded by Wealth-Lab users every week.
These will be downloaded directly to your Studies folder when you perform the
Community|Download ChartScripts action.

To use either native or custom indicators in your ChartScripts, you can use the
QuickPlot utility by dragging and dropping them right from the main Indicators tool
bar. You can also use the Include Manager, Tools|Include Manager (F6), to make
a reference to a custom indicator yourself, although Quickplot adds these references
automatically.

Indicators have two syntax forms. The first form returns the value of the indicator at
a specific Bar number, and the second syntax form returns an integer handle
reference to the indicator's entire Price Series. See Working with Technical Indicator
Functions in the WealthScript Guide.

16.2 AccumDist

AccumDist(Bar: integer): float;
AccumDistSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Accumulation/Distribution (created by L. Williams) uses the closing price's proximity
to the high or low to determine if accumulation or distribution is occurring in the
market. The proximity value is multiplied by volume to give more weight to moves
with higher volume.

You can often spot divergences between price action and the AccumDist indicator. For
example, if prices make a new high but the move is not accompanied by sufficient
volume, AccumDist will fail to make a new high. Divergences can be a sign the trend
is nearing completion.

Interpretation

© 2003-2006 WL Systems, Inc.

169 WealthScript Function Reference, Wealth-Lab Developer 4.0

The actual value of the AccumDist is unimportant, concentrate on its direction.

• When both price and AccumDist are making higher peaks and higher troughs, the
up trend is likely to continue.

• When both price and AccumDist are making lower peaks and lower troughs, the
down trend is likely to continue.

• When price continues to make higher peaks and AccumDist fails to make higher
peak, the up trend is likely to stall or fail.

• When price continues to make lower troughs and AccumDist fails to make lower
troughs, the down trend is likely to stall or fail.

• If during a trading range, the AccumDist is rising then accumulation may be taking
place and is a warning of an upward break out.

• If during a trading range, the AccumDist is falling then distribution may be taking
place and is a warning of an downward break out.

Calculation

AccumDist = (((Close-Low) - (High-Close)/(High-Low)) x Volume) + I
I = yesterday's AccumDist value

Example

{ Look for a diverging slope of AccumDist and price }
var BAR: integer;
for Bar := 10 to BarCount - 1 do
begin
 if AccumDist(Bar) > AccumDist(Bar - 10) then
 if PriceClose(Bar) < PriceClose(Bar - 10) then
 SetBarColor(Bar, #Red);
end;
var AccumDistPane: integer;
AccumDistPane := CreatePane(100, false, true);
PlotSeries(AccumDistSeries, AccumDistPane, 202, #Thick);
DrawLabel('AccumDist', AccumDistPane);

16.3 ADX

ADX(Bar: integer; Period: integer): float;
ADXSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

ADX stands for Average Directional movement Index and is used to measure the
overall strength of the trend. The ADX indicator is an average of DX values, see DX.
The ADX is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative direction using the DIPlus and DIMinus indicators along with the ADX.

Interpretation

• The ADX is an excellent indicator for showing trend strength. The larger its value
the stronger the current trend. A value above 25 is considered to be a trending
market.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

170

• When the ADX turns down from high values, then the trend maybe ending. It
might be a good time to start closing open positions.

• If the ADX is declining, then the market is becoming less directional, the current
trend is weakening. You should not be trading a trend system.

• When the ADX stays at a low value, the market is considered to be flat or dull. The
longer the ADX stays at a low value the more likely a strong trending move will
occur.

• If after staying low for a lengthy time, the ADX rises by 4 or 5 units, (for example,
from 15 to 20), it gives a strong signal to trade the current trend.

• If the ADX is rising then the market is showing a strengthening trend. The value of
the ADX is proportional to the slope of the trend. The slope of the ADX line is
proportional to the acceleration of the price movement (changing trend slope). If
the trend is a constant slope then the ADX value tends to flatten out.

Calculation

ADX is equivalent to the Wilder's moving average (see WilderMA) of the direction
movement (DX) over the specified Period.

Example

{ Use ADX to determine how much prices are trending, color bars
accordingly }
var BAR, n: integer;
var x: float;
for Bar := 20 to BarCount - 1 do
begin
 x := ADX(Bar, 20);
 n := Round(x / 5);
 SetBarColor(Bar, n * 100);
end;

16.4 ADXR

ADXR(Bar: integer; Period: integer): float;
ADXRSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

ADXR stands for Average Directional Movement Index Rating, and is a component of
the Directional Movement System developed by Welles Wilder. This system attempts
to measure the strength of price movement in positive and negative directions, as well
as the overall strength of the trend. The ADXR component is simply a special type of
moving average (WilderMA) applied to the ADX indicator.

The ADXR can be used to determine if price movement is sufficiently directional to be
worth trading. In other words, use the ADXR as a filter to trade with trend following
tools.

Interpretation

· ADXR is sometimes used as a signal line. A buy signal occurs when ADX crosses
above ADXR, and a sell occurs when ADX crosses below ADXR.

© 2003-2006 WL Systems, Inc.

171 WealthScript Function Reference, Wealth-Lab Developer 4.0

 · Welles Wilder's rule is to use trend follow systems when ADXR is above 25 and
when ADXR drops below 20 then do not use a trend following system.

 · ADXR behaves like an Averaged ADX. See ADX. The ADXR is a lagging indicator
and will give signals after the ADX.

 · The ADXR can be used in place of the ADX in the Directional Movement system. It
results in more conservative trading signals.

Calculation

ADXR = (ADX(today) + ADX(n days ago)) / 2

Example

{ Flag ADX/ADXR CrossOvers }
var BAR: integer;
for Bar := 20 to BarCount - 1 do
 if CrossOver(Bar, ADXSeries(14), ADXRSeries(14)) then
 SetBackgroundColor(Bar, #RedBkg);

16.5 AroonDown

AroonDown(Bar: integer; Series: integer; Period: integer): float;
AroonDownSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Aroon indicator developed by Tushar Chande, indicates if a price is trending or in
range trading. It can also reveal the beginning of a new trend, its strength and also
allows you to anticipate changes from trading ranges to trends. AroonDown and the
AroonUp indicators are used together and combined are called the Aroon indicator.

AroonUp measures how long it has been since prices have recorded a new high within
the specified period. If the current price is higher then the user defined number of
periods before it, then the AroonUp value is %100. In other words, it's a new high for
that period. If a new low occurred during the period then AroonDown will be zero.
Otherwise it returns a percent valve indicating the time since the new high occurred.

AroonDown measures how long it has been since prices have recorded a new low
within the specified period. If the current price is lower then the user defined number
of periods before it, then the AroonDown value is %100. In other words, it's a new low
for that period. If a new high occurred during the period then AroonDown will be zero.
Otherwise it returns a percent valve indicating the time since the new low occurred.

Another indicator, the Aroon Oscillator, can be constructed by subtracting AroonDown
from AroonUp.

Interpretation

Weakness in the market is indicated when AroonDown remains between 0 and 30 for
an extended period of time. If AroonDown and AroonUp follow similar movement
patterns, this is a sign of consolidation. Finally, AroonDown crossing below AroonUp is
considered a bearish sign.

· When AroonUp is at 100, a new uptrend may have begun. If it remains persistently
between 70 and 100, and the AroonDown remain between 0 and 30, then a new
uptrend is underway. If AroonUp dips below 50 then the trend as lost momentum.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

172

· When AroonDown is at 100, a new downtrend may have begun. If it remains
persistently between 70 and 100, and the AroonUp remain between 0 and 30, then
a new downtrend is underway. If AroonDown dips below 50 then the trend as lost
momentum.

· Trading ranges and consolidation. When AroonUp and AroonDown move in parallel
(horizontal, sloping up or down) with each other at roughly the same level, then
price is range trading or consolidating.

· New Trend, if the AroonUp crosses above the AroonDown, then a new uptrend may
soon start. Conversely, if AroonDown crosses above the AroonUp, then a new
downtrend may soon start.

Calculation

AroonUp:
100 * (n - (Num. of bars since highest high in the last n periods)
)/ n

AroonDown:
100 * (n - (Num. of bars since lowest low in the last n periods))/
n

n = number of periods or bars

Example

{ Flag Bearish Aroon Crossovers }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 if CrossUnder(Bar, AroonDownSeries(#Close, 20),
 AroonUpSeries(#Close, 20)) then
 SetBarColor(Bar, #Red);
end;

16.6 AroonUp

AroonUp(Bar: integer; Series: integer; Period: integer): float;
AroonUpSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

See AroonDown

Example

{ Flag Bullish Aroon Crossovers }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 if CrossOver(Bar, AroonDownSeries(#Close, 20),
 AroonUpSeries(#Close, 20)) then
 SetBarColor(Bar, #Lime);
end;

171

© 2003-2006 WL Systems, Inc.

173 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.7 ATR

ATR(Bar: integer; Period: integer): float;
ATRSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

The Average True Range is the average of the true ranges over the specified Period.
WealthScript uses the moving average as formulated by Welles Wilder, the indicator's
inventor (see WilderMA and TrueRange). The ATR is a measure of volatility and it
takes into account any gaps in the price movement. Typically the ATR calculation is
based on 14 periods, this can be intraday, daily, weekly or monthly. To measure
recent volatility use a shorter average, 2 to 10 periods. For longer term volatility use
20 to 50 periods.

Interpretation

• An expanding ATR indicates increased volatility in the market. The range of each
bar is getting larger. ATR often peaks at major tops and bottoms. High ATR values
usually result from a sharp advance or decline and are unlikely to be sustained for
extended periods.

• A low average true range value indicates a series of periods with small ranges
(quiet days). These low ATR values are often found during extended sideways price
action, thus lower volatility. A prolonged period of low ATR values may indicate a
consolidation area and the beginning of a continuation move or reversal.

• ATR is very useful for stops or entry triggers, as it allows for changes in volatility.
Whereas fixed dollar, points or percentage stops will not allow for volatility. The
ATR stop will adapt to sharp price moves or consolidation areas, and trigger on an
abnormal price movement in either area. Use a multiple of ATR, such as 1.5 x
ATR(5 period) to catch these abnormal price moves.

Calculation

Average True Range is calculated by applying Wilder's Moving Average to True Range
over the period specified , see WilderMA indicator for more information:

ATR = (Previous ATR * (n - 1) + TR) / n

where,

ATR = Average True Range
n = number of periods or bars
TR = True Range, (see TrueRange indicator)

Example

{ Plot ATRs in decreasing length if increasing blue intensity }
var i, ATRPane: integer;
ATRPane := CreatePane(100, TRUE, TRUE);
for i := 1 to 9 do
 PlotSeries(ATRSeries(i * 2), ATRPane, 10 - i, #Thin);
DrawText('ATR from 2 to 18', ATRPane, 4, 4, 006, 8);

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

174

16.8 ATRP

ATRP(Bar: integer; Period: integer): float;
ATRPSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

ATRP expresses the Average True Range, or ATR, as a percentage of the closing price
of the specified Bar. ATRP provides a good picture of current volatility.

Calculation

ATRP(Bar, Period) = 100 * ATR(Bar, Period) / PriceClose(Bar)

where,

ATR = Average True Range (see indicator)

Example

{ Short when price hits the High of the previous bar * (1 + ATRP/100)
 Cover on trailing stop of the same series }
var Bar, hATRP, hATRP_H, p: integer;

{ Convert to fractional percentage, e.g., 3.5% -> 0.035 }
hATRP := DivideSeriesValue(ATRPSeries(5), 100);
hATRP := AddSeriesValue(hATRP, 1.0);
hATRP_H := MultiplySeries(#High, hATRP);

{ Delay indicator plot by 1 bar to observe crossovers }
PlotSeriesLabel(OffsetSeries(hATRP_H, -1), 0, #Blue, #Dotted, 'ATRP_H
+ 2%');
PlotStops;

for Bar := 5 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 p := LastPosition;
 CoverAtTrailingStop(Bar + 1, @hATRP_H[Bar], p, '')
 end
 else
 ShortAtLimit(Bar + 1, @hATRP_H[Bar], '');
end;

16.9 BBandLower

BBandLower(Bar: integer; Series: integer; Period: integer; StdDev: float): float;
BBandLowerSeries(Series: integer; Period: integer; StdDev: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Bollinger Bands are a type of price envelope developed by John Bollinger. Bollinger
Bands are envelopes that are plotted at a standard deviation level above and below a
simple moving average of the price. Because the distance of the bands is based on
standard deviation, they adjust to volatility swings in the underlying price.

Bollinger Bands accept 2 parameters, Period and Standard Deviations, StdDev. The
recommended values are 20 for period, and 2 for standard deviations, although other
combinations offer effective results as well.

© 2003-2006 WL Systems, Inc.

175 WealthScript Function Reference, Wealth-Lab Developer 4.0

Bollinger bands help determine whether prices are high or low on a relative basis.
They are used in pairs, both upper and lower bands and in conjunction with a moving
average. Further, the pair of bands are not intended to be used on their own. Use
them to confirm signals given with other indicators. For example, RSI and Bollinger
bands are a good combination.

Interpretation

• When the bands tighten as volatility decreases, expect a sharp move in price. This
may begin a trending move. Watch out for a false move in opposite direction which
reverses before the proper trend begins.

• When the bands separated by an unusual large amount, volatility increases and any
trend that may be in place may be ending.

• Prices normally have a tendency to bounce within the bands envelope, touching one
band then moving to the other band. You can use this for profit targets. For
example, if prices bounces of the lower band then cross above the moving average
the upper band then becomes the profit target.

• Price can exceed or hug a band envelope for prolonged periods during strong
trends. On divergence with a momentum oscillator you should consider taking
profits.

• A strong trend continuation can be expected when the price moves out of the
bands. However if prices move immediately back inside the band, then the
suggested strength is negated.

Calculation

First calculate and plot a simple moving average. Calculate the standard deviation
using the same data used in the simple moving average. For the upper band, add the
standard deviation to the moving average, for lower band, subtract the standard
deviation from the moving average.

Typical values used:

Short term: 10 day moving average, bands at 1.5 standard deviations.
Medium term: 20 day moving average, bands at 2 standard deviations.
Long term: 50 day moving average, bands at 2.5 standard deviations.

Example

{ Flag bars that have penetrated the lower BBand }
var Bar: integer;
PlotSeries(BBandLowerSeries(#Close, 10, 1.50), 0, 205, #Thick);
for Bar := 10 to BarCount - 1 do
 if PriceLow(Bar) < BBandLower(Bar, #Close, 10, 1.50) then
 SetBarColor(Bar, #Red);

16.10 BBandUpper

BBandUpper(Bar: integer; Series: integer; Period: integer; StdDev: float): float;
BBandUpperSeries(Series: integer; Period: integer; StdDev: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

See BBandLower 174

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

176

Example

{ Flag bars that have penetrated the upper BBand }
var Bar: integer;
PlotSeries(BBandUpperSeries(#Close, 10, 1.50), 0, 205, #Thick);
for Bar := 10 to BarCount - 1 do
 if PriceHigh(Bar) > BBandUpper(Bar, #Close, 10, 1.50) then
 SetBarColor(Bar, 050);

16.11 BOP

BOP(Bar: integer): float;
BOPSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Balance of Power, created by Igor Livshin, is an indicator that captures the struggles
of bulls vs. bears throughout the trading day. It assigns scores to both bulls and bears
based on how much they were able to move prices throughout the trading day.

Interpretation

· Balance of Power is normally smoothed with a moving average. Livshin
recommends a 14 bar simple moving average, but different periods and moving
average types can be used for different markets.

· During Bull markets, the indicator's tops usually cluster around the upper level of
the range. This is reversed during Bear markets.

· You can look for divergences between the indicator and the underlying price to
spot potential trend reversals.

Calculation

Balance of Power is the result of the following simple formula:

BOP = (C - O)/(H - L)

where,

C = Close, O = Open, H = High and L = Low

Example

{ Plot a smoothed Balance of Power below Volume }
var BOPSmoothed, BOPPane: integer;
BOPSmoothed := SMASeries(BOPSeries, 20);
BOPPane := CreatePane(80, false, true);
PlotSeries(BOPSmoothed, BOPPane, 642, #Thick);

16.12 CADO

CADO(Bar: integer): float;
CADOSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

© 2003-2006 WL Systems, Inc.

177 WealthScript Function Reference, Wealth-Lab Developer 4.0

The Chaikin Oscillator allows us to analyze accumulation and distribution in the
convenient form of an oscillator. The principle behind this oscillator is the nearer the
close is to the high, the more accumulation taken place. Conversely the nearer the
close is to the low, the more distribution is taken place. Further, healthy rallies and
declines are accompanied by increasing volume levels, conversely price tends to
decline as volume dries up. The Chaikin Oscillator allows you to compare price action
to volume flow, to help determine market tops and bottoms.

Interpretation

• The best Chaikin Oscillator sell signal is when price action develops a higher high
into overbought zones and the Chaikin Oscillator diverges with a lower high and
begins to fall. Price may remain in overbought zones during strong trends.

• The best Chaikin Oscillator buy signal is when price action develops a lower low into
oversold zones and the Chaikin Oscillator diverges with a higher low and begins to
rise. Price may remain in oversold zones during strong trends.

• You can also use the Chaikin Oscillator to assist entry into existing trends. In this
case you look for a change of direction of the oscillator for buy or sell signal. For
example, if you have confirmed strong uptrend and the Chaikin Oscillator turns up
from a negative value, then buy the dip in price action.

Calculation

The Chaikin Oscillator is created by subtracting a 10-period EMA of
Accumulation/Distribution from a 3-period EMA of Accumulation/Distribution.

CADO = 3 period EMA(AccumDist()) - 10 period EMA (AccumDist())

where,

CADO = Chaikin Oscillator
EMA = Exponential Moving Average
AccumDist = Accumulation/Distribution indicator

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
CADO at runtime. Choose the default method for calculating the EMA
exponent in the Indicator Calculations section of the Options dialog.

Example

{ Use RSI to look for divergences between price and CADO }
var Bar, Diff, CADOPANE, RSIPANE, RSIPRICE, RSICADO, DiffPane: integer;

CADOPane := CreatePane(80, true, true);
PlotSeries(CADOSeries, CADOPane, 520, #ThickHist);
DrawLabel('CADO', CADOPane);

RSIPane := CreatePane(100, true, true);
RSIPrice := RSISeries(#Close, 10);
RSICado := RSISeries(CADOSeries, 10);
PlotSeries(RSIPrice, RSIPane, #Teal, #Thin);
PlotSeries(RSICado, RSIPane, 520, #Thin);
DrawLabel('RSI of Price and CADO', RSIPane);

Diff := SubtractSeries(RSIPrice, RSICado);
DiffPane := CreatePane(100, true, true);
PlotSeries(Diff, DiffPane, #Gray, #Histogram);

for Bar := 10 to BarCount - 1 do
begin

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

178

 if GetSeriesValue(Bar, Diff) > 30 then
 SetBarColor(Bar, #Red)
 else if GetSeriesValue(Bar, Diff) < -30 then
 SetBarColor(Bar, 050);
end;

16.13 CCI

CCI(Bar: integer; Period: integer): float;
CCISeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

The Commodity Channel Index (CCI) developed by Lambert, is designed to identify
and trade cyclical turns in commodities. It assumes the commodity or stock moves in
cycles. Lambert recommends using 1/3 of the cycle as the calculation period. The
cycle is considered an interval of low-to-low or high-to-high. Commodities can cycle
around 60 days, thus the period would be 20 days. Signals are given when CCI moves
into the +100 or -100 regions.

Interpretation

• When the CCI moves above +100, then a new strong uptrend is beginning, buy
here, close the position on CCI falling below +100. Use trending indicators or other
technical analysis methods to confirm.

• When the CCI moves below -100, then a new strong downtrend is beginning, sell
here, close the position on CCI rising above -100. Use trending indicators or other
technical analysis methods to confirm.

• If underlying prices make a new high or low that isn't confirmed by the CCI, this
divergence can signal a price reversal. CSI divergences from price indicates very
strong buy or sell signal.

• Look for oversold levels below -100 and overbought levels above +100. These
normally occur before the underlying price chart forms a top or a bottom.

Calculation

The Commodity Channel Index (CCI) is calculated by determining the difference
between the mean price of a security and the average of the means over the period
chosen. This difference is compared to the average difference over the time period.
Comparing the differences of the averages allows for the commodities volatility. The
result is multiplied by a constant to ensure that most values fall within the standard
range of +/- 100.

CCI = (AveP - SMA_of_AveP) / (0.015 * Mean Deviation)

where,

CCI = Commodity Channel Index
AveP = Average Price = (High + Low + Close) / 3

The 0.015 constant ensures 70 to 80 percent of CCI values fall within the +100 to -
100 range.

Example

{ Color bars oversold/overbought based on CCI level }
var Bar, CCIPane: integer;

© 2003-2006 WL Systems, Inc.

179 WealthScript Function Reference, Wealth-Lab Developer 4.0

CCIPane := CreatePane(80, true, true);
PlotSeries(CCISeries(10), CCIPane, 505, #Histogram);
DrawLabel('CCI(10)', CCIPane);
for Bar := 10 to BarCount - 1 do
begin
 if CCI(Bar, 10) > 100 then
 SetBarColor(Bar, #Red)
 else if CCI(Bar, 10) < -100 then
 SetBarColor(Bar, #Green);
end;

16.14 CMF

CMF(Bar, Period: integer): float;
CMFSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Chaikin Money Flow (CMF) is a volume weighted average of Accumulation/Distribution
over the specified period. The standard CMF period is 21 days. The principle behind
the Chaikin Money Flow, is the nearer the close is to the high, the more accumulation
has taken place. Conversely the nearer the close is to the low, the more distribution
has taken place. If the price action consistently closes above the bar's midpoint on
increasing volume then the Chaikin Money Flow will be positive. Conversely, if the
price action consistently closes below the bar's midpoint on increasing volume, then
the Chaikin Money Flow will be a negative value.

Interpretation

• A CMF sell signal occurs when price action develops a higher high into overbought
zones and the CMF diverges with a lower high and begins to fall.

• A CMF buy signal occurs when price action develops a lower low into oversold zones
and the CMF diverges with a higher low and begins to rise.

• A CMF value above the zero line is a sign of strength in the market, and a value
below the zero line is a sign of weakness in the market.

• The Chaikin Money Flow provides excellent breakout confirmation. Wait for the CMF
to confirm the breakout direction of price action through trendlines or support and
resistance lines. For example, if price breaks upwards through resistance then wait
for the CMF to have a positive value, thus confirming the break out direction.

Calculation

CMF = n-day Sum of ((((C - L) - (H - C)) / (H - L)) x Vol) / n-
day Sum of Vol

where,

n = number of periods, typically 21
H = high
L = low
C = close
Vol = volume

Example

{ Use strength of CMF above zero to color bars }
var Bar, CMFPane: integer;

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

180

var x: float;
CMFPane := CreatePane(80, true, true);
PlotSeries(CMFSeries(20), CMFPane, 509, #Histogram);
DrawLabel('CMF(20)', CMFPane);
for Bar := 20 to BarCount - 1 do
begin
 x := CMF(Bar, 20) * 20;
 if x > 0 then
 SetBarColor(Bar, Round(x));
end;

16.15 CMO

CMO(Bar: integer; Series: integer; Period: integer): float;
CMOSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Chande Momentum Oscillator is similar to RSI or Stochastics. It is calculated by
dividing the sum of up day and down day activity into the difference of up day and
down day activity. The result is then multiplied by 100 to arrive at an indicator that
oscillates between -100 and 100. A typical value for number of periods, Period, for
the CMO is 20.

Interpretation

• CMO reaches extreme levels at 50 for overbought and -50 for oversold. You can
also look for signals based on the CMO crossing above and below a signal line
composed of a 9 period moving average of the 20 period CMO.

• CMO measures the trend strength, the higher the CMO value the stronger the
trend, whereas low CMO values indicate sideways trading ranges.

• If underlying prices make a new high or low that isn't confirmed by the CMO this
divergence can signal a price reversal.

• CMO often forms chart patterns which may not show on the underlying price chart,
such as double tops and bottoms and trendlines. Also look for support or resistance
on the CMO.

Calculation

CMO = 100 * ((Su - Sd)/(Su + Sd))

where,

Su = Sum of prices on up days for the specified Period
Sd = Sum of prices on down days for the specified Period

Example

{ This simple system buys when CMO is oversold,
 and sells when CMO is overbought }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CMO(Bar, #Close, 20) < -55 then
 BuyAtMarket(Bar + 1, 'CMO');
 end

© 2003-2006 WL Systems, Inc.

181 WealthScript Function Reference, Wealth-Lab Developer 4.0

 else
 begin
 if CMO(Bar, #Close, 20) > 45 then
 SellAtMarket(Bar + 1, LastPosition, 'CMO');
 end;
end;

16.16 CumDown

CumDown(Bar: integer; Series: integer; Period: integer): float;
CumDownSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

CumDown lets you test whether a specific number of consecutive bars have elapsed
where the prices are less than their value a certain number of bars ago. It was created
to make it easier to implement systems such as TD Sequential (by Thomas Demark).
The TD Sequential setup requires 9 consecutive bars where the closing price is lower
than the closing price 4 bars ago.

The complete TD system encompasses both entry and exit strategies and an extensive
number of TD indicators. The CumUp and CumDown indicators are use to find setup
conditions indicating overbought and oversold market conditions. They are designed
to anticipate trend reversals. The CumUp looks for a number new high periods with
only few low periods. The CumDown looks for a number of new low periods with only a
few high periods.

In Candles sticks a new high or low is called Record Sessions. Candle theory, suggest
if you have 8 to 10 near record sessions then the proceeding trend is due for a
reversal. Record sessions count the bars slightly different to CumDown and CumUp.

Interpretation

There are three stages to a TD Sequential system, the Setup, the Intersection, and
the Count down. After each stage is triggered move onto the next stage. The following
for is for oversold markets.

• The buy Setup consist of a series of at least nine consecutive closes less than the
close four trading bars earlier. This indicates a possible oversold market.

• The buy Intersection, look for the high of bar 8 of the buy setup to be greater than
or equal to the low of bars 5, 4, 3, 2 or 1 of the buy setup. If this is not fulfilled,
then each successive price bar is compared until its high is greater than or equal to
the low of the price bar three or more price bars earlier back to bar 1 of the buy
setup. Protects against run away price action.

• The buy Countdown consists of a series of 13 successive closes less than or equal to
the low two price bars earlier. Once that has been accomplished, the market
generally is in a low-risk buy entry zone. Good time to go long.

In a similar manner, use CumUp to detect overbought conditions.

Calculation

CumDown is a running count of the number of bars whose Series value is below its
delayed Series; in other words, Series offset forward by the Period. The count is reset
to zero when the Series is above its offset series. Run the following ChartScript for a
visual clarification:

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

182

{ CumDown calculation demo }
const L = 5;
var Bar, n: integer;

DrawLabel('CumDown(#Low,' + IntToStr(L) + ')', 0);
PlotSeriesLabel(OffsetSeries(#Low, -L), 0, #Blue, #Dotted,
 'Offset(#Low, -' + IntToStr(L) + ')');
for Bar := L to BarCount - 1 do
begin
 n := Trunc(CumDown(Bar, #Low, L));
 AnnotateBar(IntToStr(n), Bar, false, 0, 8);
end;

Notice that as long as the Series, #Low, is below its CumDown-period offset series,
CumDown is incremented. It is reset to 0 as soon as the Series rises above its offset.

Example

{ Highlight extreme moves down }
var Bar, n: integer;
for Bar := 0 to BarCount - 1 do
begin
 n := Trunc(CumDown(Bar, #Close, 3));
 if n > 9 then
 n := 9;
 SetBarColor(Bar, n * 100);
end;

16.17 CumUp

CumUp(Bar: integer; Series: integer; Period: integer): float;
CumUpSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

CumUp lets you test whether a specific number of consecutive bars have elapsed
where the prices are greater than their value a certain number of bars ago. Refer to
CumDown for additional information.

Calculation

CumUp is a running count of the number of bars whose Series value is above its
delayed Series; in other words, Series offset forward by the Period. The count is reset
to zero when the Series is below its offset series. Run the following ChartScript for a
visual clarification:

{ CumUp calculation demo }
const L = 5;
var Bar, n: integer;

DrawLabel('CumUp(#High,' + IntToStr(L) + ')', 0);
PlotSeriesLabel(OffsetSeries(#High, -L), 0, #Blue, #Dotted,
 'Offset(#High, -' + IntToStr(L) + ')');
for Bar := L to BarCount - 1 do
begin
 n := Trunc(CumUp(Bar, #High, L));
 AnnotateBar(IntToStr(n), Bar, true, 0, 8);
end;

Notice that as long as the Series, #High, is above its CumUp-period offset series,

181

© 2003-2006 WL Systems, Inc.

183 WealthScript Function Reference, Wealth-Lab Developer 4.0

CumUp is incremented. It is reset to 0 as soon as the Series falls below its offset.

Example

{ Highlight extreme moves up }
var Bar, n: integer;
for Bar := 0 to BarCount - 1 do
begin
 n := Trunc(CumUp(Bar, #Close, 3));
 if n > 9 then
 n := 9;
 SetBarColor(Bar, n * 10);
end;

16.18 DIMinus

DIMinus(Bar: integer; Period: integer): float;
DIMinusSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

DIMinus is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative directions, as well as the overall strength of the trend. DIPlus is normally
used with the DIMinus, DX and ADX indicators and typically uses 14 periods.

The DIMinus value represents downward price movement as a percentage of true
range. The more each down bar's price is equal to the true range, the larger the value
of the DIMinus. The DIPlus and the DIMinus are not mirror images.

Interpretation

• DIMinus measures a market's negative directional movement. If DIMinus is greater
then DIPlus, prices have a stronger negative directional movement.

• If prices fall for the number of periods specified then the DIMinus would be a high
value and the DIPlus value would be near zero.

• If prices rise for the number of periods specified then the DIMinus value would be
near zero and DIPlus would have a high value.

• If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values.

• The greater the difference between the DIPlus and DIMinus the stronger the trend.
The DX indicator takes advantage of this.

Calculation

-DI = Round((-DM / TR)* 100)

where,

-DI = DIMinus
TR = True Range of current bar

The -DI is then smoothed over the Period specified, the same way as a simple moving
average, and, -DM is calculated as follows:

(i) For up trending days, -DM = zero
(ii) For down trending days, -DM = yesterday's low - today's low

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

184

(iii) For inside days, -DM = zero
(iv) For outside days, if yesterday's low - today's low, is greater than today's high-

yesterday's high, then -MD = yesterday's low - today's low, otherwise -DM =
zero

(v) For upwards gap days, -DM = zero
(vi) For downwards gap days, -DM = yesterday's low - today's low

Example

{ Color bars green when DI+ > DI-, otherwise color them red }
var Bar: integer;
var ADXPane: integer;
ADXPane := CreatePane(100, true, true);
PlotSeries(DIMinusSeries(14), ADXPane, 900, #Thick);
DrawLabel('DIMinus(14)', ADXPane);
PlotSeries(DIPlusSeries(14), ADXPane, 050, #Thick);
DrawLabel('DIPlus(14)', ADXPane);
for Bar := 14 to BarCount - 1 do
begin
 if DIPlus(Bar, 14) > DIMinus(Bar, 14) then
 SetBarColor(Bar, #Green)
 else
 SetBarColor(Bar, #Red);
end;

16.19 DIPlus

DIPlus(Bar: integer; Period: integer): float;
DIPlusSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

DIPlus is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative directions, as well as the overall strength of the trend. DIPlus is normally
used with the DIMinus, DX and ADX indicators and typically uses 14 periods.

The DIPlus value represents upward price movement as a percentage of true range.
The more each up bar's price is equal to the true range, the larger the value of the
DIPlus. The DIPlus and the DIMinus are not mirror images.

Interpretation

• DIPlus measures a market's positive directional movement. If DIPlus is greater then
DIMinus, prices have a stronger positive directional movement.

• If prices rise for the number of periods specified then the DIPlus would be a high
value and the DIMinus value would be near zero.

• If prices fall for the number of periods specified then the DIPlus value would be
near zero and DIMinus would have a high value.

• If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values.

• The greater the difference between the DIPlus and DIMinus the stronger the trend.
The DX indicator takes advantage of this.

Calculation

© 2003-2006 WL Systems, Inc.

185 WealthScript Function Reference, Wealth-Lab Developer 4.0

+DI = Round((+DM / TR) * 100)

where,

DI+ = DIPlus
TR = True Range of current bar

The +DI is then smoothed over the period specified, the same way as a simple moving
average, and +DM is calculated as follows:

(i) For up trending days, +DM = today's high - yesterday's high
(ii) For down trending days, +DM = zero
(iii) For inside days, +DM = zero
(iv) For outside days, if today's high - yesterday's high, is greater than yesterday's

low- today's low, then +MD = today's high - yesterday's high, otherwise +DM
= zero

(v) For upwards gap days, +DM = today's high - yesterday's high
(vi) For downwards gap days, +DM = zero

Example

{ Flag bars with dotted lines when DI+ is above 40 }
var Bar: integer;
var ADXPane: integer;
ADXPane := CreatePane(100, true, true);
PlotSeries(DIPlusSeries(14), ADXPane, 050, #Thick);
DrawLabel('DIPlus(14)', ADXPane);
for Bar := 14 to BarCount - 1 do
begin
 if DIPlus(Bar, 14) > 40 then
 DrawLine(Bar, PriceLow(Bar), Bar, 0, 0, #Green, #Dotted);
end;

16.20 DSS

DSS(Bar: integer; Period1: integer; Period2: integer; StochPeriod: integer): float;
DSSSeries(Period1: integer; Period2: integer; StochPeriod: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

The Double Smoothed Stochastic indicator was created by William Blau. It applies
Exponential Moving Averages (EMAs) of two different periods to a standard Stochastic
% K (StochK). The components that construct the Stochastic Oscillator are first
smoothed with the two EMAs. Then, the smoothed components are plugged into the
standard Stochastic formula to calculate the indicator.

Interpretation

DSS ranges from 0 to 100, like the standard Stochastic Oscillator. The same rules of
interpretation that you use for Stochastics can be applied to DSS, although DSS offers
a much smoother curve than the raw Stochastic.

Calculation

HH = Highest High in Look back Period
LL = Lowest Low in Look back Period
C-L = Close minus LL
H-L = HH minus LL
C-L(2) = EMA(C-L, Period2)
H-L(2) = EMA(H-L, Period2)

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

186

C-L(1) = EMA(C-L(2), Period1)
H-L(1) + EMA(H-L(2), Period1)

DSS = (C-L(1) / H-L(1)) * 100

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as DSS.

Example

{ Buy when DSS turns up from an oversold level }
var Bar, DSSPane: integer;
DSSPane := CreatePane(100, true, true);
PlotSeries(DSSSeries(10, 20, 5), DSSPane, 905, #Thick);
DrawLabel('DSS(10, 20, 5)', DSSPane);
for Bar := 20 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if TurnUp(Bar, DSSSeries(10, 20, 5)) then
 if DSS(Bar - 1, 10, 20, 5) < 24 then
 BuyAtMarket(Bar + 1, 'DSS');
 end
 else
 begin
 if TurnDown(Bar, DSSSeries(10, 20, 5)) then
 SellAtMarket(Bar + 1, LastPosition, 'DSS');
 end;
end;

16.21 DX

DX(Bar: integer; Period: integer): float;
DXSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

DX is a component of the Directional Movement System developed by Welles Wilder.
This system attempts to measure the strength of price movement in positive and
negative directions, as well as the overall strength of the trend. The DX is used in
calculating the ADX indicator which is normally used with the DIPlus and DIMinus
indicators. Typically it uses 14 periods in its calculations. Normally you would not use
the DX indicator as it whipsaws, use the ADX or ADXR.

Interpretation

• DX measures the trendiness of a market, and ranges from 0 to 100. If the Trend is
strong then the spread between the two smoothed directional lines, (DIPlus and
DIMinus) increases and the DX value increases. The higher the DX, the more
directional movement present in the market.

• If prices rise for the number of periods specified then the DIMinus value would be
near zero and DIPlus would have a high value. This very directional upwards price
movement results in a high DX value.

• If prices fall for the number of periods specified then the DIMinus would be a high
value and the DIPlus value would be near zero. This very directional downwards
price movement result in a high DX value.

• If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values. This non-directional sideways price
movements results in a low DX value.

© 2003-2006 WL Systems, Inc.

187 WealthScript Function Reference, Wealth-Lab Developer 4.0

Calculation

DX = Round(100 * |DIPlus - DIMinus| / |DIPlus + DIMinus|)

Example

{ Show how Average Directional Movement (ADX) relates to DX on the
chart }
var ADXPane: integer;
ADXPane := CreatePane(100, true, true);
PlotSeries(DXSeries(20), ADXPane, 555, #ThickHist);
DrawLabel('DX(20)', ADXPane);
PlotSeries(ADXSeries(20), ADXPane, 009, #Thick);
DrawLabel('ADX(20)', ADXPane);

16.22 EMA

EMA(Bar: integer; Series: integer; Period: integer): float;
EMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

EMA returns the Exponential Moving Average of the specified Period. EMA is similar to
Simple Moving Average (SMA), in that it averages the data over a period of time.
However, whereas SMA just calculates a straight average of the data, EMA applies
more weight to the data that is more current. The most weight is placed on the most
recent data point. Because of the way it's calculated, EMA will follow prices more
closely than a corresponding SMA.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
CADO, EMA, TRIX, etc.

Interpretation

• Use the same rules that we apply to SMA when interpreting EMA. Keep in mind,
though, that EMA is generally more sensitive to price movement. This can be a
double-edged sword. On the one hand, it can get you into trends a bit earlier than
an SMA would. On the other hand, the EMA will probably experience more
whipsaws than a corresponding SMA.

• Use the EMA to determine trend direction, and trade in that direction. When the
EMA rises then buy when prices dip near or a bit below the EMA. When the EMA
falls then sell when prices rally towards or a bit above the EMA.

• Moving averages can also indicate support and resistance areas. A rising EMA
tends to support the price action and a falling EMA tends to provide resistance to
price action. This reinforces the idea of buying when price is near the rising EMA or
selling when price is near the falling EMA.

• All Moving Averages, including the EMA are not designed to get you into a trade at
the exact bottom and out again at the exact top. They tend to ensure your trading
in the general direction of the trend, but with a delay at the entry and exit. The
EMA has a shorter delay than the SMA with the same period.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

188

Calculation

You should notice how the EMA use the previous value of the EMA in its calculation,
this means the EMA includes all the price data within its current value. The newest
price data has the most impact on the Moving Average and the oldest prices data has
only a minimal impact.

EMA = (K x (C - P)) + P

where,

C = Current Price
P = Previous periods EMA (A SMA is used for the first periods calculations)
K = Exponential smoothing constant

The smoothing constant K, applies appropriate weight to the most recent price. It uses
the number of periods specified in the moving average. With wealth Lab you have a
choice of two methods for calculating the smoothing constant.

Two similar but not equivalent formulas are available for calculating the exponent;
Wealth-Lab's original method (from Pring's Technical Analysis Explained):

K = (1 / Periods) * 2

and perhaps a more common method, which is referred to as the "Updated Method":

K = 2 / (1 + Periods)

You can choose which is the default method in the Indicator Calculations section of the
Options dialog. Additionally, by passing true or false to the UseUpdatedEMA
function you can control which method is used at runtime. Note that the formula in
effect also affects native indicators that are based on EMA, such as CADO, TRIX, etc.

Example

{ Dual EMA CrossOver System }
var BAR, P: integer;
{ UseUpdatedEMA(true); } {Alternate smoothing exponent}
PlotSeries(EMASeries(#Close, 60), 0, 002, #Thick);
DrawLabel('EMA(Close, 60)', 0);
PlotSeries(EMASeries(#Close, 120), 0, 202, #Thin);
DrawLabel('EMA(Close, 120)', 0);
for Bar := 120 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossOver(Bar, EMASeries(#Close, 60), EMASeries(#Close, 120
)) then
 BuyAtMarket(Bar + 1, '');
 end
 else
 begin
 if CrossUnder(Bar, EMASeries(#Close, 60), EMASeries(#Close, 120
)) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

© 2003-2006 WL Systems, Inc.

189 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.23 EMMinus

EMMinus(Bar: integer; Series: integer; Period: integer): float;
EMMinusSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Markets that are experiencing rising trends frequently make new highs, and those in
falling trends new lows. The Extreme Motion Index is a way of measuring a market's
trend strength by counting the frequency of new highs and lows in a given period.
EM- is the percentage of bars that have made new lows within the specified Period.

Interpretation

• When EM- rises from zero this is an indication that a worthwhile downtrend may be
in the making. You can take a trend-following position at this point and exit once
the indicator reaches a predetermined overbought level.

• Once EM- crosses 20 prices tend to follow through and a profit target or trailing
stop (for short orders) often works well to capture gains.

• The crossover of EM+ and EM- can also be used as trend confirmation indicators.

Calculation

EMMinus is simply the percentage of bars that have achieved new lows within the
specified lookback period. Consider, for example, the EMMinus with a period of 40.
Within the past 40 bars there have been 10 bars that have reached a 40 bar low. The
EMMinus indicator value for this bar would be 25, because 25% of the bars have
reached new lows in the period.

Example

{ Enter short when EMMinus turns up and start a trailing
 stop when it crosses 19 }
var Bar, EMPane, hEMMinus: integer;
var TStopOn: boolean;
EMPane := CreatePane(75, true, true);
hEMMinus := EMMinusSeries(#Close,40);
PlotSeriesLabel(hEMMinus, EMPane, 900, #Thin, 'EMMinus(#Close,40)');

InstallStopLoss(8);
InstallBreakEvenStop(5);
PlotStops;
for Bar := 40 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);

 if LastPositionActive then
 begin
 if CrossOverValue(Bar, hEMMinus, 19) then
 TStopOn := true;

 if TStopOn then
 CoverAtTrailingStop(Bar, PriceHigh(Bar - 3) + 0.1,
 LastPosition, 'TStop');
 end
 else
 if (@hEMMinus[Bar - 1] < 0.01) and TurnUp(Bar, hEMMinus) then
 begin
 ShortAtMarket(Bar + 1, 'Bear');
 TStopOn := false;

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

190

 end;
 { Looks like a bear trend has formed }
end;

16.24 EMPlus

EMPlus(Bar: integer; Series: integer; Period: integer): float;
EMPlusSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

EM+ is the percentage of bars that have made new highs within the specified Period.
See EMMinus for additional information.

Interpretation

• When EM+ rises from zero this is an indication that a worthwhile uptrend may be in
the making. You can take a trend-following position at this point and exit once the
indicator reaches a predetermined oversold level.

• Once EM+ crosses 20 prices tend to follow through and a profit target or trailing
stop often works well to capture gains.

• The crossover of EM+ and EM- can also be used as trend confirmation indicators.

Calculation

EMPlus is simply the percentage of bars that have achieved new highs within the
specified lookback period. Consider, for example, the EMPlus with a period of 40.
Within the past 40 bars there have been 20 bars that have reached a 40 bar high.
The EMPlus indicator value for this bar would be 50, because 50% of the bars have
reached new highs in the period.

Example

var Bar, EMPane, EMPlus1: integer;
EMPane := CreatePane(75, true, true);
EMPlus1 := EMPlusSeries(#Close,40);
PlotSeriesLabel(EMPlus1, EMPane, 009, #Thin,
'EMPlus1=EMPlus(#Close,40)');

InstallTrailingStop(2, 25);
InstallStopLoss(6);
PlotStops;
for Bar := 40 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 { Looks like a bull trend has formed }
 if CrossOverValue(Bar, EMPlus1, 20) then
 BuyAtMarket(Bar + 1, 'Bull');
end;

16.25 FAMA

FAMA(Bar: integer; Series: integer; FastLimit: float; SlowLimit: float): float;
FAMASeries(Series: integer; FastLimit: float; SlowLimit: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

189

© 2003-2006 WL Systems, Inc.

191 WealthScript Function Reference, Wealth-Lab Developer 4.0

FAMA stands for Following Adaptive Moving Average. It was developed by John Ehlers
of Mesa Software, and presented in the September 2001 issue of Stocks &
Commodities magazine. FAMA is a complimentary indicator to MAMA (see MAMA
indicator for more details).

The FAMA indicator uses an alpha (a) value that is half of its corresponding MAMA
indicator. This results in an indicator that is synchronized to MAMA, but with vertical
movement that is not as great. Consequently, MAMA and FAMA do not cross unless
there has been a major change in market direction.

In addition to Price Series, FAMA accepts two additional parameters, FastLimit and
SlowLimit. These control the maximum and minimum alpha (a) value that should be
applied to the most recent bar of data when calculating FAMA.

You can learn more about the Mesa Adaptive Moving Average at the
www.mesasoftware.com web site.

Interpretation

FAMA is used in conjunction with its complimentary MAMA indicator. Long signals
occur when MAMA crosses above FAMA, and short signals when MAMA crosses below
FAMA.

Calculation

FAMA = 0.5 * alpha * MAMA + (1 - 0.5 * alpha) * Previous FAMA

Example

var Bar: integer;
PlotSeries(MAMASeries(#Close, 0.5, 0.05), 0, #Red, #Thin);
PlotSeries(FAMASeries(#Close, 0.5, 0.05), 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do
begin
 if CrossOver(Bar, MAMASeries(#Close, 0.5, 0.05),
 FAMASeries(#Close, 0.5, 0.05)) then
 BuyAtMarket(Bar + 1, '')
 else if CrossOver(Bar, FAMASeries(#Close, 0.5, 0.05),
 MAMASeries(#Close, 0.5, 0.05)) then
 SellAtMarket(Bar + 1, LastPosition, '');
end;

16.26 FIR

FIR(Bar: integer; Series: integer; Filter: string): float;
FIRSeries(Series: integer; Filter: string): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

FIR stands for Finite Impulse Response Filter. This is a type of smoothing filter that
assigns different weights to price data a number of bars in the past. Pass the Price
Series you want to apply the filter to in the first parameter. The second parameter of
the FIR is a string that describes the weights that will be applied to the bars of data
that compose the filter. The string is formatted as a series of numbers separated by
commas.

Interpretation

FIR filters are nothing more than another type of weighted moving average, with

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

192

different weight levels applied to the various components of the average. As such,
you can apply any of the various interpretations of moving averages to FIR.

Calculation

A simple example will make this concept easier to explain. Assume we pass the string
value of '4,3,2,1' as the second parameter to FIR, and apply it to closing prices. The
function will perform the following calculation:

((4 x current Closing Price) + (3 * Closing Price 1 bar back) + (
2 * Closing Price 2 bars back) + (1 * Closing Price 3 bars back)) /
10

As you can see, each successive weight value is applied to the previous bar back in
the price history. The final sum of the weighted price values is divided by the sum of
the weights.

Example

{ A FIR is used as a signal line for a 200 day moving average }
var SMASer: integer;
SMASer := SMASeries(#Close, 200);
PlotSeries(SMASer, 0, #Olive, #Thick);
PlotSeries(FIRSeries(SMASer, '1,2,2,1'), 0, #Black, #Thin);

16.27 Highest

Highest(Bar: integer; Series: integer; Period: integer): float;
HighestSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the highest value of a Price Series within the specified look back Period.

Highs and lows are found in all markets, and, they are fundamentally important to
technical analysis. Uptrends are defined by a succession of higher highs and higher
lows, whereas downtrends are characterized by a succession of lower highs and lower
lows. Support and resistance is often defined at significant high and low points.
Pattern formations are shaped by highs and lows such as double tops and bottoms,
head and shoulder formations, rectangles, triangles, flags, consolidations and other
formations. Use Wealth-Lab functions: Highest, Lowest, HighestBar and
LowestBar, for finding and analyzing these market opportunities.

Interpretation

• Uptrends are formed by a succession of higher highs and higher lows, failure to
make a new higher high or higher low means the trend has ended.

• Downtrends are formed by a succession of lower highs and lower lows failure to
make a new lower high or lower low means the trend has ended.

• Divergence occurs when price action and indicators move in different directions and
commonly occur before a stock or a market changes direction. During an uptrend, if
a new high appears in the price action and a lower high develops in the indicator,
then the trend maybe ending. See RSI for more information on divergence.

• Useful for stops loss calculations such as when taking short positions, or buy order
triggers. Add an amount to the last highest value, this can be a fixed amount like a
percentage of current closing price. A better method is to allow for volatility, use a
multiple of ATR for this. For example, Highest high plus, half times ATR of last 20

© 2003-2006 WL Systems, Inc.

193 WealthScript Function Reference, Wealth-Lab Developer 4.0

bars.

• Entry filters, buy if today prices is higher than high for past two days. This can be
useful to ensure you start your trade in the right direction.

• Past highs can represents significant resistance to price action. Look for single or
multiple highs forming at both technical and psychological levels. (Gann, Fibonacci,
whole numbers, and the like).

• Many chart patterns are defined by recent high and lows.

Calculation

Looks back the specified number of periods from the specified Bar and returns the
highest price within that Period.

Example

{ Have we made a 100 bar high? }
var BAR: integer;
for Bar := 100 to BarCount - 1 do
 if PriceHigh(Bar) = Highest(Bar, #High, 100) then
 AnnotateBar('NH', Bar, true, #Black, 8);

16.28 HighestBar

HighestBar(Bar: integer; Series: integer; Period: integer): integer;
HighestBarSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar in which highest value of the Price Series for the specified Period was
recorded. Refer to Highest for more information.

Interpretation

(See Highest)

Remarks

• If more than one bar has precisely the same Highest value, then HighestBar
returns the most recent bar, i.e., the bar with the latest date/time.

Calculation

Looks back the specified number of periods from the specified Bar and returns the Bar
number with the highest price within that period.

Example

{ Has the 200 day high ocurred within the past 20 bars? }
var N: float;
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 n := HighestBar(Bar, #High, 200);
 if Bar - n <= 20 then
 SetBackgroundColor(Bar, 888);
end;

192

192

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

194

16.29 HTDCPhase

HTDCPhase(Bar: integer; Series: integer): float;
HTDCPhaseSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Hilbert Transform is a technique used to generate Inphase and Quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. It is
meaningful only during a cyclic period of the analytic signal waveform (price series)
being measured. Its transition from 360 degrees to 0 degrees can be used to
designate the start of a new cycle. It can also be utilized to signal the start or end of
trending or cyclic periods. Departure from a constant rate change of phase is a
sensitive way to detect the end of a cycle mode. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Phase as part of the computation of the Dominant Cycle is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Compute the Period of the Dominant Cycle
 {Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta

phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous

period.}

{Resolve Instantaneous Period errors and smooth}

Compute Dominant Cycle Phase
Return the Dominant Cycle Phase at the current bar of the Hilbert Transform Period
measured at that bar

Example

{ Example - Make bars more solid as the dominant cycle phase approaches
360 }
var DCPHASEPANE, htDCP, BAR, N: integer;

DCPhasePane := CreatePane(100, true, true);
htDCP := HTDCPhaseSeries(#Average);
PlotSeries(htDCP, DCPhasePane, 520, #Thick);
for Bar := 0 to BarCount - 1 do
begin
 n := 9 - (Round(@htDCP[Bar] / 360 * 9));

© 2003-2006 WL Systems, Inc.

195 WealthScript Function Reference, Wealth-Lab Developer 4.0

 SetBarColor(Bar, n * 100 + n * 10 + n);
end;

{ Also see ChartScript 'RocketScience v1' }

16.30 HTInPhase

HTInPhase(Bar: integer; Series: integer): float;
HTInPhaseSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTInPhase
returns the Hilbert Transform generated InPhase component of the input Price Series.

Interpretation

The InPhase component is used in conjunction with the Quadrature component to
generate the phase of the analytic signal (using the ArcTan function) at a specific bar
or for the entire Price Series.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow for the computation for the InPhase component is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Return the InPhase component at the current bar of the Hilbert Transform computed
at that bar

Example

{ Color bars based on relative positions of Quadrature and In-Phase }
var HTQUADPANE, BAR: integer;
HTQuadPane := CreatePane(100, true, true);
PlotSeries(HTInPhaseSeries(#Average), HTQuadPane, 025, #Thick);
PlotSeries(HTQuadratureSeries(#Average), HTQuadPane, 559, #Thick);
for Bar := 0 to BarCount - 1 do
begin
 if HTQuadrature(Bar, #Average) > HTInPhase(Bar, #Average) then
 SetBarColor(Bar, 559)
 else
 SetBarColor(Bar, 025);
end;

16.31 HTLeadSin

HTLeadSin(Bar: integer; Series: integer): float;
HTLeadSinSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

196

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees. The Hilbert Transform Lead Sine is just
the sine of the DC Phase advanced by 45 degrees.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. The
HTLeadSin is the sine of the DC Phase at a specific bar. It is most often used in
conjunction with the HTSin indicator to identify cyclic turning points. Quoting from
Market Mode Strategies.doc by John Ehlers from MESA Software, "A clear, unequivocal
cycle mode indicator can be generated by plotting the Sine of the measured phase
angle advanced by 45 degrees. This leading signal crosses the sinewave 1/8th of a
cycle BEFORE the peaks and valleys of the cyclic turning points, enabling you to make
your trading decision in time to profit from the entire amplitude swing of the cycle. A
significant additional advantage is that the two indicator lines don't cross except at
cyclic turning points, avoiding the false whipsaw signals of most "oscillators" when the
market is in a Trend Mode. The two lines don't cross because the phase rate of
change is nearly zero in a trend mode. Since the phase is not changing, the two lines

separated by 45 degrees in phase never get the opportunity to cross." See the

examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow and simplified pseudo code for the computation for the HTLeadSin is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Compute the Period of the Dominant Cycle
 {Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta

phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous

period.}

{Resolve Instantaneous Period errors and smooth}

Compute Dominant Cycle Phase
Compute the Sine of the Dominant Cycle Phase
Advance the Sine by 45 degrees to compute the HT Lead Sine
Return the Lead Sine of the Dominant Cycle Phase at the current bar of the Hilbert
Transform Period measured at that bar

Example

{ Flag bars where Hilbert Transform Sin/Lead Sin cross }
var HTSINPANE, BAR, HTLead, HT: integer;
HT := HTSinSeries(#Average);
HTLead := HTLeadSinSeries(#Average);
HTSinPane := CreatePane(100, false, true);
PlotSeries(HTLead, HTSinPane, 009, #Thin);
PlotSeries(HT, HTSinPane, 900, #Thin);

© 2003-2006 WL Systems, Inc.

197 WealthScript Function Reference, Wealth-Lab Developer 4.0

for Bar := 2 to BarCount - 1 do
begin
 if CrossOver(Bar, HT, HTLead) then
 SetBarColor(Bar, #Red)
 else if CrossUnder(Bar, HT, HTLead) then
 SetBarColor(Bar, #Blue);
end;

16.32 HTPeriod

HTPeriod(Bar: integer; Series: integer): float;
HTPeriodSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Hilbert Transform is a technique used to generate Inphase and Quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTPeriod (or
MESA Instantaneous Period) returns the period of the Dominant Cycle of the analytic
signal as generated by the Hilbert Transform. The Dominant Cycle can be thought of
as being the "most likely" period (in the range of 10 to 40) of a sine function of the
Price Series.

Interpretation

The HTPeriod at a specific bar gives the current Hilbert Transform Period as
instantaneously measured at that bar in the range of 10 to 40. It is meaningful only
during a cyclic period of the analytic signal waveform (price series) being measured.
The HTPeriod, or one of its sub-periods, is often used to adjust other indicators; for
example, Stochastics and RSIs work best when using a half cycle period to peak their
performance. Similarly other indicators can be made to be adaptive by using the
HTPeriod, or one of its sub-periods, as the period of the indicator. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Period is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Compute the Period of the Dominant Cycle
 {Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta

phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous

period.}

{Resolve Instantaneous Period errors and smooth}

Return the Hilbert Transform Period measured at the current bar

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

198

Example

{ This code creates an adaptive moving average.
 The period of the MA is based on the HTPeriod for the bar }
var HTPERIODPANE, DYNSMA, BAR, N: integer;
HTPeriodPane := CreatePane(50, true, true);
PlotSeries(HTPeriodSeries(#Average), HTPeriodPane, 161, #Thick);
DrawLabel('HTPeriod(Average)', HTPeriodPane);
DynSMA := CreateSeries;
for Bar := 40 to BarCount - 1 do
begin
 n := Round(HTPeriod(Bar, #Average));
 if n < 2 then
 n := 2;
 SetSeriesValue(Bar, DynSMA, SMA(Bar, #Average, n));
end;
PlotSeries(DynSMA, 0, #Navy, #Thick);

{ Example - An alternative method of computing the HT Period using a
Homodyne Discriminator can be used which demonstrates different
sensitivity than the Phase Accumulation approach. See ChartScript -
MesaPeriodCheck V2, http://www.wealth-lab.com/cgi-
bin/WealthLab.DLL/editsystem?id=4805) by ttcrep for a comparison of the
two waveforms}

{ Example - Here the HTPeriod is used to make the acceleration of a
Parabolic SAR adaptive. From Parabolic SAR CyclePeriod,
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/editsystem?id=2815, by
Willibald. Adapted and declarations and most of script omitted.}

16.33 HTQuadrature

HTQuadrature(Bar: integer; Series: integer): float;
HTQuadratureSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.
HTQuadrature returns the Hilbert Transform generated Quadrature component of the
input Price Series.

Interpretation

The Quadrature component is used in conjunction with the InPhase component to
generate the phase of the analytic signal (using the ArcTan function) at a specific bar
or for the entire Price Series.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow for the computation for the InPhase component is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Return the Quadrature component at the current bar of the Hilbert Transform

© 2003-2006 WL Systems, Inc.

199 WealthScript Function Reference, Wealth-Lab Developer 4.0

computed at that bar

Example

{ Example - Use HTInPhase and HTQuadrature to compute
 the Signal-to-Noise Ratio (SNR) for a Price Series }
var X1, X2, X4, X3, X5: float;
var RANGE, TEMP1, TEMP2, AMPLITUDE, BAR, NPANE: integer;
Range := CreateSeries();
Temp1 := CreateSeries();
Temp2 := CreateSeries();
Amplitude := CreateSeries();

FOR Bar := 2 to BarCount - 1 do
BEGIN
 x1 := HTInPhase(Bar, #Average);
 x2 := HTQuadrature(Bar, #Average);
{Compute "Noise" as average range. x4 = Current Bar range}
 x4 := 0.1 * (PriceHigh(Bar) - PriceLow(Bar)) + (0.9 *
GetSeriesValue(Bar - 1, Range));
 SetSeriesValue(Bar, Range, x4);
{Compute smoothed signal amplitude - x3 = Current Bar Temp1}
 x3 := (0.2 * ((x1 * x1) + (x2 * x2))) + (0.8 * GetSeriesValue(Bar -
1, Temp1));
 IF x3 < 0.001 THEN
 x3 := 0.001;
 SetSeriesValue(Bar, Temp1, x3);
{Compute smoothed SNR in dB guarding against divide by zero}
 IF x4 > 0.0 THEN
 x5 := 0.25 * (10.0 * Log10(x3 / (x4 * x4)) + 1.9) + 0.75 *
GetSeriesValue(Bar - 1, Temp2);
 SetSeriesValue(Bar, Temp2, x5);
 SetSeriesValue(Bar, Amplitude, x5);
END;

{Plot SNR in dB}
nPane := CreatePane(150, true, true);
PlotSeries(Amplitude, nPane, #Red, 0);

16.34 HTSin

HTSin(Bar: integer; Series: integer): float;
HTSinSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees. The Hilbert Transform Sine is just the
sine of the DC Phase.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. The HTSin
is the sine of the DC Phase at a specific bar. It is most often used in conjunction with
the HTLeadSin indicator to identify cyclic turning points. Quoting from Market Mode
Strategies.doc by John Ehlers from MESA Software, "A clear, unequivocal cycle mode

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

200

indicator can be generated by plotting the Sine of the measured phase angle
advanced by 45 degrees. This leading signal crosses the sinewave 1/8th of a cycle
BEFORE the peaks and valleys of the cyclic turning points, enabling you to make your
trading decision in time to profit from the entire amplitude swing of the cycle. A
significant additional advantage is that the two indicator lines don't cross except at
cyclic turning points, avoiding the false whipsaw signals of most "oscillators" when the
market is in a Trend Mode. The two lines don't cross because the phase rate of
change is nearly zero in a trend mode. Since the phase is not changing, the two lines

separated by 45 degrees in phase never get the opportunity to cross." See the

examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Phase as part of the computation of the Dominant Cycle is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Compute the Period of the Dominant Cycle
 {Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta

phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous

period.}

{Resolve Instantaneous Period errors and smooth}

Compute Dominant Cycle Phase
Compute the Sine of the Dominant Cycle Phase
Return the Sine of the Dominant Cycle Phase at the current bar of the Hilbert
Transform Period measured at that bar

Example

{ Flag bars where Hilbert Transform Sin/Lead Sin cross }
var HTSINPANE, HTSINSer, BAR: integer;
HTSINSer := HTSinSeries(#Average);
HTSinPane := CreatePane(100, false, true);
PlotSeries(HTSINSer, HTSinPane, 009, #Thin);
PlotSeries(HTLeadSinSeries(#Average), HTSinPane, 900, #Thin);
for Bar := 2 to BarCount - 1 do
begin
 if CrossOver(Bar, HTSINSer, HTLeadSinSeries(#Average)) then
 SetBarColor(Bar, #Red)
 else if CrossUnder(Bar, HTSINSer, HTLeadSinSeries(#Average)) then
 SetBarColor(Bar, #Blue);
end;

16.35 HTTrendLine

HTTrendLine(Bar: integer; Series: integer): float;
HTTrendLineSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

201 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTTrendline
(or MESA Instantaneous Trendline) returns the Price Series value after the Dominant
Cycle of the analytic signal as generated by the Hilbert Transform has been removed.
The Dominant Cycle can be thought of as being the "most likely" period (in the range
of 10 to 40) of a sine function of the Price Series.

Interpretation

The HTTrendline at a specific bar gives the current Hilbert Transform Trendline as
instantaneously measured at that bar. In its Series form, the Instantaneous Trendline
appears much like a Moving Average, but with minimal lag compared with the lag
normally associated with such averages for equivalent periods. The HTTrendline is
formed by removing the Dominant Cycle from the Price Series. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe. Quoting from MarketMode
Strategies.doc, "A simple average taken over the period of the dominant cycle has as
many sample points above the average as below it, with the result that the dominant
cycle component is removed at the output of the filter. The filtered residual is the

Instantaneous Trendline." The basic flow and simplified pseudo code for the

computation for the Dominant Cycle Period is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}

Compute the Period of the Dominant Cycle
 {Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta

phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous

period.}

{Resolve Instantaneous Period errors and smooth}

Compute the Instantaneous Trendline
{Average over the period of the Dominant Cycle at each bar}

Return the Hilbert Transform Trendline measured at the current bar

Example

{ We focus here on the relationship between the Instantaneous Trendline
and a Zero Lag Kalman Filter. Quoting from Tutorial.doc by John Ehlers
of MESA Software: "If we use a Zero Lag Kalman Filter, this filter
line will cross the Instantaneous Trendline every half cycle when the
market is in a Cycle Mode. If the Zero Lag Kalman filter fails to
cross the Instantaneous Trendline within the last half cycle period,
then this is another way of declaring a Trend Mode is in force. The
Trend Mode ends when the Zero Lag Kalman Filter line again crosses the
Instantaneous Trendline." }
var PERIODPANE: integer;
PlotSeries(HTTrendLineSeries(#Average), 0, 732, #Thick);
PlotSeries(KalmanSeries(#Average), 0, 000, #Dotted);
PeriodPane := CreatePane(80, true, true);

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

202

PlotSeries(HTPeriodSeries(#Average), PeriodPane, #Red, #Thick);

16.36 HV

HV(Bar: integer; Series: integer; Period: integer; Span: integer): float;
HVSeries(Series: integer; Period: integer; Span: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Historical Volatility of the selected Price Series. Historical Volatility is the
standard deviation of the logarithm of the price ratio, i.e.

HV = Standard Deviation (ln(Price(Bar) / Price(Bar-1)))

Series Specifies which Price Series to use, for example #Close, #Average, etc.
Series can also be a technical indicator series, or a Price Series created
within the script.

Period e.g. 20, specifies how many bars HV shall use. The real number of
periods that HV will use is Period - 1, because if for example you use 20
price bars, there are 19 periods in between and 19 returns.

Span Used to convert the historical volatility to a different time scale. If the
Chart has weekly bars and annualized historical volatility is required, use
52 for Span because there are 52 weeks in a year.

Interpretation

A sharp increase in HV will alert you to unusual volatility in the markets. This is often
an ideal time to monitor the market for entry in the opposite direction of the panic.

Calculation

HV = Sqrt(SSD / (Period - 1)) * Sqrt(Span)

where,

SSD = Sum[(LOGSi - ALOGS)²] over Period bars

LOGSi = Logarithm of Price - Previous Price
ALOGS = Sum(Logarithms of Price Change over Span) / Span

Example

var Bar: integer;
var HVPane: integer;
HVPane := CreatePane(75, true, true);
var HV1: integer;
HV1 := HVSeries(#Average, 20, 262);
PlotSeriesLabel(HV1, HVPane, 905, #Thick, 'HV1=HV(#Average,20,262)');
InstallProfitTarget(15);
InstallStopLoss(40);
for Bar := 262 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if @HV1[Bar] > 100 then
 begin
 if ROC(Bar, #Close, 30) > 0 then
 ShortAtMarket(Bar + 1, '')

© 2003-2006 WL Systems, Inc.

203 WealthScript Function Reference, Wealth-Lab Developer 4.0

 else
 BuyAtMarket(Bar + 1, '');
 end;
 end
 else
 ApplyAutoStops(Bar);
end;

16.37 Kalman

Kalman(Bar: integer; Series: integer): float;
KalmanSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The Kalman Filter is based on the concept of optimum estimation, first introduced by
Dr. R. E. Kalman in 1960. It has generally been used in terrestrial and space-based
navigation and tracking systems. In general, it can be thought of as generating an
optimal (in a linear, white noise, mean-square-error sense) estimate of a future
position based on the current position of a target and an estimate of its velocity and
acceleration and their uncertainties.

Interpretation

Where Price Series are involved as in trading systems the mathematics can be
simplified considerably and a (nearly) zero lag filter produced very straightforwardly.
For further information see: Optimal Tracking Filters.doc by John Ehlers of MESA
Software, here: http://www.mesasoftware.com/pub/TRACKINGFILTERS.EXE. Note
that Kalman filters can be applied to any Price Series, not just ticker prices. See
Examples.

Calculation

The basic pseudo computation for the Kalman Filter value at a specific bar for a Price
Series is:

ZeroLagValue at Bar = Weight1 * PriceSeriesValue at Bar + Weight2
(PriceSeriesValue at Bar - PriceSeriesValue at
Bar - 3)

ZeroLagValue at Bar = ZeroLagValue at Bar + Weight3 * LastZeroLagValue

LastZeroLagValue = ZeroLagValue at Bar

Save KalmanSeriesValue at Bar = ZeroLagValue at Bar

Return KalmanSeriesValue at Bar

Example

{ This system uses the Kalman Filter as a signal line for the
 CMO Oscillator to time position entries }
var CMOPANE, BAR, hCMO: integer;
hCMO := CMOSeries(#Average, 14);
CMOPane := CreatePane(80, true, true);
PlotSeries(hCMO, CMOPane, 009, #Thick);
PlotSeries(KalmanSeries(hCMO), CMOPane, #Black, #Thin);
for Bar := 14 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if CrossOverValue(Bar, hCMO, 0) then

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

204

 SellAtMarket(Bar + 1, LastPosition, 'CMO 0');
 end
 else
 begin
 if CMO(Bar - 1, #Average, 14) < -50 then
 if CrossOver(Bar, hCMO, KalmanSeries(hCMO)) then
 BuyAtMarket(Bar + 1, 'CMO Kalman');
 end;
end;

16.38 KAMA

KAMA(Bar: integer; Series: integer; Period: integer): float;
KAMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns Kaufman's Adaptive Moving Average for the Price Series specified in the
Series parameter. KAMA is an adaptive moving average, and uses the noise level of
the market to determine the length of the trend required to calculate the average.
The more noise in the market, the slower the trend used to calculate the average.
The Period parameter control how much data is used by KAMA to calculate its
efficiency ratio (signal/noise). A value of 8 to 10 is recommended.

Interpretation

· You can base trading signals on whether KAMA turns down or up, indicating a
potential trend reversal. Kaufman suggests using a small band around the KAMA
indicator as a way to filter out whipsaws.

· Since KAMA is a type of moving average, you can use the same interpretation
techniques used for Simple Moving Averages (SMA).

Calculation

{ The WealthScript code below duplicates the KAMA indicator
calculation: }
var AMA, SIGNAL, DIFF, NOISE, EFRATIO, SMOOTH: float;
var MYKAMA, BAR, J, Period: integer;

Period := 10;
MyKAMA := CreateSeries;
{ initialize the starting period, ama }
for Bar := 0 to Period do
 @MyKAMA[Bar] := PriceClose(Bar);
ama := PriceClose(Period);

for Bar := Period + 1 to BarCount - 1 do
begin
 signal := Abs(PriceClose(Bar) - PriceClose(Bar - Period));
 noise := 0;
 for j := 0 to Period - 1 do
 begin
 diff := Abs(PriceClose(Bar - j) - PriceClose(Bar - j - 1));
 noise := noise + diff;
 end;
 if noise <> 0 then
 efratio := signal / noise
 else
 efratio := 0;
 smooth := efratio * (2 / 3 - 2 / 31) + 2 / 31;

© 2003-2006 WL Systems, Inc.

205 WealthScript Function Reference, Wealth-Lab Developer 4.0

 smooth := smooth * smooth;
 ama := ama + smooth * (PriceClose(Bar) - ama);
 @MyKAMA[Bar] := ama;
end;
PlotSeries(MyKAMA, 0, #Red, #Histogram);
PlotSeries(KAMASeries(#Close, Period), 0, #Black, #Thin);

Example

var K1, K2, BAR: integer;
K1 := KAMASeries(#Close, 8);
K2 := KAMASeries(#Close, 16);
PlotSeriesLabel(K1, 0, #Red, #Thin, 'KAMA(8)');
PlotSeriesLabel(K2, 0, #Maroon, #Thin, 'KAMA(16)');
for Bar := 18 to BarCount - 1 do
begin
 if LastPositionActive and CrossUnder(Bar, K1, K2) then
 SellAtMarket(Bar + 1, LastPosition, '')
 else if CrossOver(Bar, K1, K2) then
 BuyAtMarket(Bar + 1, '');
end;

16.39 KeltnerLower

KeltnerLower(Bar: integer; Period1: integer; Period2: integer): float;
KeltnerLowerSeries(Period1: integer; Period2: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Keltner Bands are a type of price channel first described by Chester W. Keltner in his
book How to Make Money in Commodities. They are fixed bands that are plotted
above and below a simple moving average of average price.

The Keltner indicators in Wealth-Lab take two parameters. Period1 specifies the
period to smooth highs - lows, and Period2 specifies the period to use to smooth
Average Price in the calculation (see below). Note that because Keltner Bands are
defined to use average price, and highs minus lows, the indicator does not take a Price
Series parameter like many other indicator functions.

Interpretation

· The classic interpretation of Keltner band is to go long when the upper band is
penetrated, and reverse position and enter short when the lower band is
penetrated.

· Keltner Bands can also be used to define "normal" trading ranges for markets.
Price movement outside of the bands can be considered an anomaly, and therefore
a trading opportunity.

Calculation

Average Price (AP) = (Close + High + Low) / 3

Band Moving Average = Period1 bar Simple Moving Average (SMA) of (High - Low)

Center Line = Period2 bar SMA of AP

Upper Band = Center Line + Band MA

Lower Band = Center Line - Band MA

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

206

Example

var BAR: integer;
PlotSeries(KeltnerLowerSeries(10, 10), 0, 151, #Thick);
PlotSeries(KeltnerUpperSeries(10, 10), 0, 151, #Thick);
for Bar := 30 to BarCount - 1 do
begin
 if CrossOver(Bar, #Close, KeltnerUpperSeries(10, 10)) then
 begin
 if not PositionLong(LastPosition) then
 begin
 CoverAtMarket(Bar + 1, LastPosition, '');
 BuyAtMarket(Bar + 1, '');
 end;
 end
 else if CrossUnder(Bar, #Close, KeltnerLowerSeries(10, 10)) then
 begin
 if PositionLong(LastPosition) then
 begin
 SellAtMarket(Bar + 1, LastPosition, '');
 ShortAtMarket(Bar + 1, '');
 end;
 end;
end;

16.40 KeltnerUpper

KeltnerUpper(Bar: integer; Period1: integer; Period2: integer): float;
KeltnerUpperSeries(Period1: integer; Period2: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

See KeltnerLower

16.41 LinearReg

LinearReg(Bar: integer; Series: integer; Period: integer): float;
LinearRegSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Linear Regression value for the specified Series and Period. LinearReg
gathers the prices for the number of specified periods and finds a straight line (see
LinearRegLine) which best fits all the prices using a linear regression model. The
procedure is reinitialized and repeated for each bar in the Price Series. Since a new
value is calculated at each Bar, the result is not a straight linear regression trendline;
rather, it is an indicator which loosely tracks the price action.

LinearReg is a statistical indicator. Other indicators in the same class are
LinearRegSlope, StdErr, RSquared and StdDev.

Interpretation

· Since the Linear Regression indicator displays the statistically-predicted price value,
you can look for cases where price veers sharply from the predicted value. Use
RSquared to determine significant weakness in the trend and if due for a return to
the predicted value.

205

© 2003-2006 WL Systems, Inc.

207 WealthScript Function Reference, Wealth-Lab Developer 4.0

Calculation

Linear Regression is a rather complex statistical calculation. It uses the least square
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. LinearReg returns the final value of the
LinearRegLine, recalculated for each bar over the regression Period to complete
indicator.

Example

{ Report on how far closing prices are away from predicted value }
var S: string;
var DIFF: float;
var BAR: integer;
PlotSeries(LinearRegSeries(#Close, 20), 0, 002, #Thick);
Bar := BarCount - 1;
Diff := PriceClose(Bar) - LinearReg(Bar, #Close, 20);
Diff := Diff / PriceClose(Bar) * 100;
if Diff > 0 then
 s := 'Price closed above '
else
 s := 'Price closed below ';
Diff := Abs(Diff);
s := s + 'the Regression Line by ' + FormatFloat('#0.00%', Diff);
DrawLabel(s, 0);

16.42 LinearRegPredict

LinearRegPredict(Bar: integer; Series: integer): float;
LinearRegPredictSeries(Series: integer): integer;

XChartScripts XSimuScripts RPerfScripts XCMScripts

Description

Calculates a linear regression on a complete Price Series and returns the predicted
value at a specific Bar.

Remarks:

• LinearRegPredict is designed for use in scriptable Performance Reports.

• Do not use the result of LinearRegPredict in a ChartScript for trading system
rules.

Example

var h: integer;

h := LinearRegPredictSeries(#Close);
PlotSeries(h, 0, #Blue, #Thick);

16.43 LinearRegSlope

LinearRegSlope(Bar: integer; Series: integer; Period: integer): float;
LinearRegSlopeSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Linear Regression Slope returns the slope of the Linear Regression line (see

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

208

LinearRegLine) of the specified period. It looks at the prices for the number of
specified periods and finds a straight line which best fits all the prices. The slope of
this straight line is returned. Use the slope to determine if the trend is up (positive
value) or down (negative value), as well as the general strength of the trend. It shows
how much the prices are expected to change over time.

Linear Regression Slope indicator is a statistical indicator. Other indicators in the
same class are LinearReg, StdErr, RSquared and StdDev.

Interpretation

· An up-sloping Linear Regression line (LinearRegSlope > 0) indicates that prices
have been rising within the regression period, you could open a long position if the
rising trend is significant. Use RSquared to determine trend significances.

· A down-sloping line (LinearRegSlope < 0) indicates prices have been falling within
the regression period, you could open a short position if the decline is significant.
Use RSquared to determine trend significances.

· You can open a contrary short-term position to the prevailing trend when the Linear
Regression Slope begins to round off at extreme levels.

Calculation

Linear Regression is a rather complex statistical calculation. It uses the least square
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. The slope of this Linear Regression trendline (given
by LinearRegLine) is the value return by the LinearRegSlope indicator.

Example

{ Minor up and down trends highlighted by confirmation of 2 linear
regression lines }
var Bar: integer;
var LinRegSlopePane: integer;
LinRegSlopePane := CreatePane(100, true, true);
PlotSeries(LinearRegSlopeSeries(#Close, 20), LinRegSlopePane, 205,
#Thin);
DrawLabel('LinearRegSlope(Close, 20)', LinRegSlopePane);
PlotSeries(LinearRegSlopeSeries(#Close, 10), LinRegSlopePane, 509,
#Thin);
DrawLabel('LinearRegSlope(Close, 10)', LinRegSlopePane);
for Bar := 20 to BarCount - 1 do
begin
 if LinearRegSlope(Bar, #Close, 20) > 0 then
 if LinearRegSlope(Bar, #Close, 10) > 0 then
 SetBarColor(Bar, #Blue);
 if LinearRegSlope(Bar, #Close, 20) < 0 then
 if LinearRegSlope(Bar, #Close, 10) < 0 then
 SetBarColor(Bar, #Red);
end;

16.44 Lowest

Lowest(Bar: integer; Series: integer; Period: integer): float;
LowestSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the lowest value of a Price Series within the specified look back Period.

© 2003-2006 WL Systems, Inc.

209 WealthScript Function Reference, Wealth-Lab Developer 4.0

See Highest for more information.

Calculation

Looks back the specified number of periods from the specified Bar and returns the
lowest price within that Period.

Example

{ Plot the most recent 40 bar low as dots on the chart }
PlotSeries(LowestSeries(#Low, 40), 0, #Maroon, #Dots);
DrawLabel('Lowest(Low, 40)', 0);

16.45 LowestBar

LowestBar(Bar: integer; Series: integer; Period: integer): integer;
LowestBarSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar in which lowest value of the Price Series for the specified Period was
recorded.

See Highest for more information.

Remarks

• If more than one bar has precisely the same Lowest value, then LowestBar
returns the most recent bar, i.e., the bar with the latest date/time.

Calculation

Looks back the specified number of periods from the specified Bar and returns the Bar
number with lowest price within that Period.

Example

{ Color areas of the chart where the 200 day low has occurred within
the past 20 bars }
var N: float;
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 n := LowestBar(Bar, #Low, 200);
 if Bar - n <= 20 then
 SetBackgroundColor(Bar, #RedBkg);
end;

16.46 MACD

MACD(Bar: integer; Series: integer): float;
MACDSeries(Series: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

MACD returns the Moving Average Convergence Divergence indicator. MACD is a
momentum oscillator, yet its primary use is to trade trends. Although it is an
oscillator is not used as an over brought or oversold indicator. It appears on the chart

192

192

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

210

as two lines which oscillates without boundaries. The crossover of the two lines give
trading signals similar to a two moving average system.

The two lines are called, MACD Line or fast line and MACD Signal or slow line. The
MACD line is displayed as a solid line on the chart, and the MACD signal line is
displayed as a dashed line on the chart.

Interpretation

• MACD crossing above zero is considered bullish, and crossing below zero bearish.
Secondly, when MACD turns up from below zero it is considered bullish. When it
turns down from above zero this is considered bearish.

• Enter a long position and close any short positions when the MACD fast line crosses
from below to above the signal line. The further below the zero line the stronger
the signal.

• Enter a short position and close any long positions when the MACD fast line crosses
from above to below the signal line. The further above the zero line the stronger
the signal.

• Divergence between the MACD and the price action is a strong signal when it
confirms the crossover signals.

• During trading ranges the MACD will whipsaw, the fast line crosses back and forth
across the signal line. Avoid trading or cut your losses very quickly.

Calculation

An approximated MACD can be constructed by subtracting the value of a 26 day
Exponential Moving Average (EMA) from a 12 period EMA. The shorter EMA is
constantly converging toward, and diverging away from, the longer EMA. This causes
MACD to oscillate around the zero level.

MACD line = EMA(12, close) - EMA(26, close), and
MACD Signal = EMA(9, MACD Line)

where,

EMA= Exponential Moving Average
MACD line = MACD fast line, displayed as a solid line on the chart
MACD Signal = MACD signal line or slow line, displayed as a dashed line on the
chart

The classical MACD calculation, Wealth-Lab's MACD indicator, is based on 2 EMAs with
exponents 0.075 and 0.15. A 26 period EMA has an exponent of 0.074074 and the 12
has 0.153846. If you want to use approximate MACD instead of the classical indicator
you can use MACDEx, a custom indicator that lets you provide 2 periods for EMA.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
MACD. Choose the default method for calculating the EMA exponent in the
Indicator Calculations section of the Options dialog.

Example

{ This system buys a new position whenever MACD crosses the signal line
from below 0.
 It sells all open positions when MACD crosses below the signal line
from above 0.
 The trading loop starts at Bar 60 in order to give the 26-period EMA
used in the MACD calculation time to stabilize.
}
var MACDPANE, MACDSIGNAL, BAR, P: integer;

© 2003-2006 WL Systems, Inc.

211 WealthScript Function Reference, Wealth-Lab Developer 4.0

MACDPane := CreatePane(100, true, true);
PlotSeries(MACDSeries(#Close), MACDPane, 500, #Histogram);
MACDSignal := EMASeries(MACDSeries(#Close), 9);
PlotSeries(MACDSignal, MACDPane, #Black, #Thin);
for Bar := 60 to BarCount - 1 do
begin
 if CrossOver(Bar, MACDSeries(#Close), MACDSignal) then
 if MACD(Bar, #Close) < 0 then
 BuyAtMarket(Bar + 1, '');
 if CrossUnder(Bar, MACDSeries(#Close), MACDSignal) then
 if MACD(Bar, #Close) > 0 then
 SellAtMarket(Bar + 1, #All, 'MACD');
end;

16.47 MAMA

MAMA(Bar: integer; Series: integer; FastLimit: float; SlowLimit: float): float;
MAMASeries(Series: integer; FastLimit: float; SlowLimit: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

MAMA stands for MESA Adaptive Moving Average. It was developed by John Ehlers of
Mesa Software, and presented in the September 2001 issue of Stocks & Commodities
magazine. MAMA is an adaptive exponential moving average. The EMA's alpha (a) is
related to the phase rate of change (the degree to which the phase of the market
cycle changes from bar to bar).

In addition to Price Series, MAMA accepts two additional parameters, FastLimit and
SlowLimit. These control the maximum and minimum alpha (a) value that should be
applied to the most recent bar of data when calculating MAMA.

You can learn more about the Mesa Adaptive Moving Average at the
www.mesasoftware.com web site.

Interpretation

• MAMA is a type of moving average. You can use the it in place of any other moving
average, and apply the same interpretations, such as price crossovers, crossovers
of short and long period averages, etc. MAMA crossovers typically exhibit fewer
whipsaws than traditionally moving averages.

• MAMA is also used in conjunction with its complimentary FAMA indicator. Trading
signals occur when MAMA crosses over and under FAMA.

Calculation

MAMA = alpha * Price + (1 - alpha) * Previous MAMA value

This is a typical exponential moving average calculation. The difference is that the
alpha value changes bar by bar, and is based on the following formula:

Alpha = FastLimit / DeltaPhase

DeltaPhase is the rate of change of the Hilbert Transform homodyne discriminator.
The alpha value is kept within the range of FastLimit and SlowLimit.

Example

var Bar, hMA, hFA: integer;
hMA := MAMASeries(#Close, 0.5, 0.05);

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

212

hFA := FAMASeries(#Close, 0.5, 0.05);
PlotSeries(hMA, 0, #Red, #Thin);
PlotSeries(hFA, 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do
begin
 if CrossOver(Bar, hMA, hFA) then
 BuyAtMarket(Bar + 1, '')
 else if CrossOver(Bar, hFA, hMA) then
 SellAtMarket(Bar + 1, LastPosition, '');
end;

16.48 Median

Median(Bar: integer; Series: integer; Period: integer): float;
MedianSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Median returns the Median value of a Series based on the specified Period. Median
sorts the values and returns the value occupying the "middle" slot of the group. When
there is an odd number of values, the median is simply the middle value. For
example, the median of 2, 4, and 7 is 4. When there is an even number of values, the
median is the average of the two middle numbers. Thus, the median of the numbers
2, 4, 7, 12 is (4+7)/2 = 5.5.

Example

var Bar, hMedFast, hMedSlow: integer;
hMedFast := MedianSeries(#Close, 13);
hMedSlow := MedianSeries(#Close, 25);
PlotSeries(hMedFast, 0, 520, #Thick);
DrawLabel('Median(Close,13)', 0);
PlotSeries(hMedSlow, 0, 200, #Thick);
DrawLabel('Median(Close,25)', 0);
for Bar := 25 to BarCount - 1 do
begin
 if CrossOver(Bar, hMedFast, hMedSlow) then
 BuyAtMarket(Bar + 1, '')
 else if CrossUnder(Bar, hMedFast, hMedSlow) then
 SellAtMarket(Bar + 1, LastPosition, '');
end;

16.49 MFI

MFI(Bar: integer; Period: integer): float;
MFISeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Money Flow Index measures the flow of money into and out of a security over the
specified Period. Its calculation is similar to that of the Relative Strength Index (RSI),
but takes volume into account in its calculation. The indicator is calculated by
accumulating positive and negative Money Flow values (see Money Flow indicator),
then creating a Money Ratio. The Money Ratio is then normalized into the MFI
oscillator form.

Interpretation

© 2003-2006 WL Systems, Inc.

213 WealthScript Function Reference, Wealth-Lab Developer 4.0

• Look for oversold levels below 20 and overbought levels above 80. These normally
occur before the underlying price chart forms a top or a bottom. Levels may change
depending on market conditions. Ensure that the level lines cut across the highest
peaks and the lowest troughs. During strong trends the MFI may remain in
overbought or oversold for extended periods.

• If underlying price makes a new high or low that isn't confirmed by the MFI, this
divergence can signal a price reversal. MFI divergences from price indicates very
strong buy or sell signal.

• The mid point level of 50 will often act as support or resistance if the FMI bounce
off the 50 level. Crosses of the 50 level can be used as a buying or selling signal.
When MFI cross above then buy, when FMI crosses below then sell.

Calculation

The follow steps are used to calculate Money Flow Index. See MoneyFlow Indicator
for an excellent example script showing the construction of the MFI.

Average Price = #AverageC = (High + Low + Close) / 3
Money Flow = Volume x Average Price

Money Flow direction: if today's average price is greater than yesterday's, then it is
considered positive money flow, otherwise it is negative money flow.

Positive Money Flow = Sum all the Positive Money Flows day over specified periods.
Negative Money Flow = Sum all the Negative Money Flows day over specified periods.
Money Ratio = Sum of Positive Money Flow / Sum of Negative Money Flow

Money Flow Index (MFI) = 100 - (100 / (1 + Money Ratio))

Example

{ The trading system below buys a position whenever MFI
 crosses below 20. It sells all open positions as soon
 as MFI crosses above 80. The ChartScript also colors
 MFI bars red and green to show oversold/overbought levels. }

var MFIPANE, MFISer, BAR, P: integer;
MFISer := MFISeries(14);
MFIPane := CreatePane(100, true, true);
PlotSeries(MFISer, MFIPane, #Black, #Thick);
DrawLabel('MFISer = MFI(14)', MFIPane);
for Bar := 14 to BarCount - 1 do
begin
 if CrossUnderValue(Bar, MFISer, 20) then
 BuyAtMarket(Bar + 1, '');
 if CrossOverValue(Bar, MFISer, 80) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 SellAtMarket(Bar + 1, P, 'MFI');
 if MFI(Bar, 14) < 20 then
 SetSeriesBarColor(Bar, MFISer, #Red);
 if MFI(Bar, 14) > 80 then
 SetSeriesBarColor(Bar, MFISer, #Green);
end;

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

214

16.50 Momentum

Momentum(Bar: integer; Series: integer; Period: integer): float;
MomentumSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Momentum is the difference between current price and the price a specified number of
bars ago, Period. The momentum indicators shows the speed at which price changes
from one period to another. It give a excellent indication of the market participants
commitment to the current trend. When the momentum begins to slow or turn, it
indicates diminishing commitment and a loss of momentum. This indicator is a leading
or coincidental indicator. A momentum value above zero indicates that prices are
moving up, and below zero moving down.

The momentum indicator has overbought and oversold zones. These zones are defined
by lines that are placed so the Momentum indicator spends about 5% of its time
within the zones. The lines should be adjust according to market conditions.

Interpretation

• In ranging markets, go long when the indicator falls below the oversold line then
rises back above the oversold line.

• In ranging markets, go short when indicator rises above the overbought line the
falls back below the overbought line.

• In ranging markets, go long on bullish divergences, if the indicator's first trough is
in the oversold zone.

• In ranging markets, go short on bearish divergences, if the indicator's first peak is
in the overbought zone.

• An uptrend can be confirmed using a trend following indicator. Go long when the
momentum indicator turns up from below the center line. Exit using the trend
following indicator. Divergences of the momentum and price in during the trend can
be misleading.

• A downtrend can be confirmed using a trend following indicator. Go short when the
indicator turns down from above the center line. Exit using the trend following
indicator. Divergences of the momentum and price in during the trend can be
misleading.

Calculation

Momentum = (Price today) - (Price n periods ago)

Typically, the closing Price Series, #Close, is used.

Example

{ This ChartScript plots absolute momentum, and calculates momentum as
a percentage of current price. }
var MOMPANE, MOMPCTPANE, MOMPCT: integer;
MomPane := CreatePane(100, true, true);
MomPctPane := CreatePane(100, true, true);
PlotSeries(MomentumSeries(#Close, 30), MomPane, 202, #ThickHist);
DrawLabel('Standard Momentum', MomPane);
MomPct := DivideSeries(MomentumSeries(#Close, 30), #Close);
MomPct := MultiplySeriesValue(MomPct, 100);
PlotSeries(MomPct, MomPctPane, 022, #ThickHist);
DrawLabel('Percentage Momentum', MomPctPane);

© 2003-2006 WL Systems, Inc.

215 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.51 MomentumPct

MomentumPct(Bar: integer; Series: integer; Period: integer): float;
MomentumPctSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

MomentumPct is the current price divided by the price of a previous Period. Further,
the quotient is multiplied by 100. The result is an indicator that oscillates around 100.
Values less than 100 indicate negative momentum, or decreasing price, and vice
versa.

Interpretation

• MomentumPct can be interpreted in a similar way as the standard Momentum
indicator. However, MomentumPct has the additional advantage of indicating the
amount of commitment to the current trend in a consistent manner over a broad
range of prices. For example, assume that ABC is priced at 60 and XYZ is quoted at
20. After X Periods, ABC is now 62 and XYZ is 22. Though Momentum is the
same (2.0) for both issues, MomentumPct is 103.33 and 110.0, respectively,
indicating that the price movement is more significant for the lower-priced security,
i.e., 10% vs. 3.33%.

• Subtract a constant 100 from MomentumPct to yield the absolute percentage
change over the specified Period to yield the same result as the ROC indicator.

Calculation

MomentumPct = 100 * (Current Price) / (Price n periods ago)

Example

{ Duplicate the MomentumPctSeries calculation }
var Bar, Period, hTmp, hMomPct, MomPctPane: integer;
Period := 20;
MomPctPane := CreatePane(100, true, true);
hTmp := OffsetSeries(#Close, -Period);
hMomPct := MultiplySeriesValue(DivideSeries(#Close, hTmp), 100);
PlotSeries(hMomPct, MomPctPane, #Red, #Thick);
PlotSeries(MomentumPctSeries(#Close, Period), MomPctPane, #Black,
#Thin);

16.52 MoneyFlow

MoneyFlow(Bar: integer): float;
MoneyFlowSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Money Flow returns the average price multiplied by volume. Money Flow is the core
component of the Money Flow Index (MFI) indicator. This is not really an indicator, but
a mathematical function used to construct other indicators.

Interpretation

See the Money Flow Index (MFI) indicator and the example script application below.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

216

Calculation

Money Flow is the average price multiplied by Volume.

Average Price = #AverageC = (High + Low + Close) / 3
Money Flow = Volume x Average Price

Example

{ The example below duplicates the calculation of the MFI }
var TODAY, YESTERDAY, X: float;
var MFPOSITIVE, MFNEGATIVE, MYMFI, BAR, MFPOSSUM, MFNEGSUM, MONEYRATIO,
MFPANE, MFIPane: integer;
MFPositive := CreateSeries;
MFNegative := CreateSeries;
MyMFI := CreateSeries;

for Bar := 1 to BarCount - 1 do
begin
 today := PriceAverageC(Bar);
 yesterday := PriceAverageC(Bar - 1);
 if today > yesterday then
 SetSeriesValue(Bar, MFPositive, MoneyFlow(Bar))
 else if today < yesterday then
 SetSeriesValue(Bar, MFNegative, MoneyFlow(Bar));
end;

MFPosSum := SumSeries(MFPositive, 14);
MFNegSum := SumSeries(MFNegative, 14);
MoneyRatio := DivideSeries(MFPosSum, MFNegSum);

for Bar := 14 to BarCount - 1 do
begin
 x := 100 - (100 / (1 + GetSeriesValue(Bar, MoneyRatio)));
 SetSeriesValue(Bar, MyMFI, x);
end;

MFPane := CreatePane(100, true, true);
PlotSeries(MyMFI, MFPane, #Navy, #Thick);
MFIPane := CreatePane(100, true, true);
PlotSeries(MFISeries(14), MFIPane, 950, #Thick);
DrawLabel('MFI(14)', MFIPane);

16.53 NVI

NVI(Bar: integer): float;
NVISeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

The Negative Volume Index was created by Norman Fosback, and its purpose is to
expose where "smart money" investment action is occurring. The assumption is that
smart money, mostly floor traders, will produce moves in price with less volume than
the rest of the crowd.

Interpretation

Fosback compared the NVI with its one year (255 bar) moving average. When NVI is
above the moving average, he calculated that there is a 96% chance that a bull
market is in progress, and when it is below the average a 53% chance of a bear
market.

© 2003-2006 WL Systems, Inc.

217 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

var Bar: integer;
var NVIPane, PVIPane: integer;
NVIPane := CreatePane(75, true, true);
PVIPane := CreatePane(75, true, true);
var NVI1, PVI1, SMA1, SMA2: integer;
NVI1 := NVISeries;
PVI1 := PVISeries;
SMA1 := SMASeries(PVI1, 255);
SMA2 := SMASeries(NVI1, 255);
PlotSeriesLabel(NVI1, NVIPane, 900, #Thick, 'NVI1=NVI()');
PlotSeriesLabel(PVI1, PVIPane, 050, #Thick, 'PVI1=PVI()');
PlotSeriesLabel(SMA1, PVIPane, 020, #Thin, 'SMA1=SMA(PVI1,255)');
PlotSeriesLabel(SMA2, NVIPane, 200, #Thin, 'SMA2=SMA(NVI1,255)');
Bar := BarCount - 1;
if PVI(Bar) > @SMA1[Bar] then
 DrawLabel('PVI says 79% chance Bull Market is in progress', 0)
else
 DrawLabel('PVI says 67% chance a Bear Market is in progress', 0);
if NVI(Bar) > @SMA2[Bar] then
 DrawLabel('NVI says 96% chance Bull Market is in progress', 0)
else
 DrawLabel('NVI says 53% chance a Bear Market is in progress', 0);

16.54 OBV

OBV(Bar: integer): float;
OBVSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

On Balance Volume developed by Joseph Granville and described in his "New Key to
Stock Market Profits", uses volume to gauge the strength of a market. If prices close
up, the current bar's volume is added to OBV, and if prices close down, it is
subtracted. The result is an indicator that depicts the flow of volume into and out of a
security. It either confirms the quality of the current trend or warn of an impending
reversals.

You can often spot divergences between price action and the OBV indicator. For
example, if prices make a new high but the move is not accompanied by sufficient
volume, OBV will fail to make a new high. Such divergences can be a sign that a trend
is nearing completion.

Interpretation

The actual value of the OBV is unimportant, concentrate on its direction.

• When both price and OBV are making higher peaks and higher troughs, the up
trend is likely to continue.

• When both price and OBV are making lower peaks and lower troughs, the down
trend is likely to continue.

• When price continues to make higher peaks and OBV fails to make higher peak, the
up trend is likely to stall or fail.

• When price continues to make lower troughs and OBV fails to make lower troughs,
the down trend is likely to stall or fail.

• If during a trading range, the OBV is rising then accumulation may be taking place

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

218

and is a warning of an upward break out.

• If during a trading range, the OBV is falling then distribution may be taking place
and is a warning of an downward break out.

Calculation

On Balance Volume is calculated as follows:

". . . the total daily volume is added to a cumulative total whenever the price of a
stock closes higher than the day before and it is subtracted whenever the price of the
stock closes lower than the day before. On days when the stock closes unchanged in
price, the running cumulative volume remains unchanged." (Granville, p. 144)

Example

{ This simple systems buys and sells based
 on a moving average crossover of OBV }
var OBVPANE, OBV1, OBV2, BAR: integer;
OBVPane := CreatePane(80, false, true);
PlotSeries(OBVSeries, OBVPane, 700, #Thick);
OBV1 := EMASeries(OBVSeries, 24);
OBV2 := EMASeries(OBVSeries, 48);
PlotSeries(OBV1, OBVPane, #Black, #Dotted);
PlotSeries(OBV2, OBVPane, #Red, #Dotted);
for Bar := 48 to BarCount - 1 do
begin
 if CrossOver(Bar, OBV1, OBV2) then
 BuyAtMarket(Bar + 1, '')
 else if CrossUnder(Bar, OBV1, OBV2) then
 SelLAtMarket(Bar + 1, LastPosition, 'OBV');
end;

16.55 Parabolic

Parabolic(Bar: integer; AccelUp: float; AccelDown: float; AccelMax: float): float;
ParabolicSeries(AccelUp: float; AccelDown: float; AccelMax: float): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Welles Wilder's Parabolic SAR is actually a type of trailing stop-based system, but it's
often used as an indicator. The SAR (Stop And Reverse) uses a trailing stop level that
follows prices as they move up or down. The stop level increases speed based on an
"Acceleration Factor". When plotted on the chart, this stop level resembles a parabolic
curve, thus the indicator's name. The Parabolic function accepts 3 parameters. The
first two control the Acceleration during up and down moves, respectively. The last
parameter determines the maximum Acceleration.

The Parabolic assumes that you are trading a trend and therefore expects price to
change over time. If you are long the Parabolic SAR will move the stop up every
period, regardless of whether the price has moved. It moves down if you are short.

© 2003-2006 WL Systems, Inc.

219 WealthScript Function Reference, Wealth-Lab Developer 4.0

Interpretation

• The Parabolic SAR trading system uses the Parabolic level as a Stop and Reverse
point. This stop is calculated for the next period. When the stop is hit, this signals
to close the trade and take a new trade in the opposite direction. The system is
typically always in the market.

• When price movement trades in a narrow trading range, the Parabolic SAR will
whipsaw. The Parabolic is trend following indicator, it is useless in the absence of a
trend. Use another indicator, such as ADXR, to determine trend strength.

• The Parabolic excels in fast moving trends that accelerate as they progress. The
stops are also calculated to accelerate, hence you need to have the correct
"Acceleration Factor" to match the market you are trading. Up and down
accelerations parameters maybe different.

• The indicator is usually shown as a series of dots above or below the price bars.
The dots are the stop levels. You should be short when the stops are above the bars
and long when the stops are below the bars. When a stop is hit then trade in
opposite direction.

Calculation

SARt = SARc + AF * (EP - SARc), where

SARt = the stop for the next bar
SARc = the stop for the current bar
AF = Acceleration Factor
EP = Extreme Point for current trade

The AF used by Wilder is 0.02. This means move the stop 2 percent of distance
between EP and the original stop. Each time the EP changes, the AF increases by 0.02
up to the maximum acceleration, 0.2 in Wilders' case. Practical values are: AF range
0.01 to 0.025, and AFmax range of 0.1 to 0.25.

If long then EP is the highest high since going long, if short then EP is the lowest low
since going short.

Example

var Bar: integer;
var x: float;
for Bar := 20 to BarCount - 1 do
begin
 x := Parabolic(Bar, 0.02, 0.02, 0.2);
 if not LastPositionActive then
 begin
 if PriceLow(Bar) < Parabolic(Bar, 0.02, 0.02, 0.2) then
 BuyAtStop(Bar + 1, x, '')
 else
 ShortAtStop(Bar + 1, x, '');
 end
 else
 begin
 if PositionLong(LastPosition) then
 begin
 SellAtStop(Bar + 1, x, LastPosition, '');
 ShortAtStop(Bar + 1, x, '');
 end
 else
 begin
 CoverAtStop(Bar + 1, x, LastPosition, '');

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

220

 BuyAtStop(Bar + 1, x, '');
 end;
 end;
end;
PlotSeries(ParabolicSeries(0.02, 0.02, 0.2), 0, 905, #Dots);
DrawLabel('Parabolic(0.02, 0.02, 0.2)', 0);

16.56 Peak

Peak(Bar: integer; Series: integer; Reversal: float): float;
PeakSeries(Series: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the value of the last Peak that was identified for the specified Price Series as
of the specified Bar. The Reversal parameter determines how much of a percentage
(default) or point decline is required to trigger a new Peak. It typically requires a few
bars of downward price movement to reach the Reversal level and qualify a new Peak.
The Peak function never "looks ahead" in time, but always returns the Peak value as it
would have been determined as of the specified bar. For this reason, the return value
of the Peak function will lag, and report peaks a few bars later than they actually
occurred in hindsight. This is intentional, and allows peak/trough detection to be used
when back-testing trading systems.

Interpretation

· Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

· Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Peaks are detected by looking for a percentage (default) or point reversal in the Price
Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
high of $100, a peak will be triggered at that bar as soon as prices move down to $90
(provided they do not continue above $100). The move down to $90 may take
several bars. During these bars the Peak function will not return $100, but will
instead return the value of the previous peak. This is because you would not have
known that that $100 was an actual peak yet because the reversal level has not been
met. The new Peak value of $100 will be returned only after prices have reached the
$90 level, and the reversal level is reached.

© 2003-2006 WL Systems, Inc.

221 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Draw the level of 7% Peaks on the chart }
var PS: integer;
PS := PeakSeries(#High, 7);
PlotSeries(PS, 0, #Red, #Dots);

16.57 PeakBar

PeakBar(Bar: integer; Series: integer; Reversal: float): integer;
PeakBarSeries(Series: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar number at which the last Peak that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) decline is required to trigger a new Peak. It typically requires a
few bars of downward price movement to reach the Reversal level and qualify a new
Peak. The Peak function never "looks ahead" in time, but always returns the Peak
value as it would have been determined as of the specified bar. For this reason, the
return value of the Peak function will lag, and report peaks a few bars later than they
actually occurred in hindsight. This is intentional, and allows peak/trough detection to
be used when back-testing trading systems.

Interpretation

· Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

· Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

· PeakBar is particularly useful with working with chart patterns. You can store the
bar number of the most recent peak, then use this as an anchor bar to retrieve the
bar number for the previous peak, and so on.

Remarks

· PeakBar returns -1 if a peak has not yet been detected at the beginning of the
chart.

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

(See Peak)

Example

{ Draw a trendline from the 2 most recent 10% Peaks }
var p1, p2, Bar: integer;
var Detected2Peaks: boolean = false;

Bar := BarCount - 1;

220

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

222

p1 := PeakBar(Bar, #Close, 10);
if p1 > -1 then
begin
 p2 := PeakBar(p1, #Close, 10);
 if p2 > -1 then
 begin
 DrawLine(p1, PriceClose(p1), p2, PriceClose(p2), 0, #Red,
#Thick);
 Detected2Peaks := true;
 end;
end;
if not Detected2Peaks then
 DrawText('2 peaks not detected. Try another symbol or load more
data.', 0, 5, 50, #Red, 10);

16.58 PeakNum

PeakNum(Bar: integer; Series: integer; Number: integer; Reversal: float): float;
PeakNumSeries(Series: integer; Number: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the value of the "Nth" most recent Peak that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) decline is required to trigger a new Peak. It typically requires a
few bars of downward price movement to reach the Reversal level and qualify a new
Peak. The Peak function never "looks ahead" in time, but always returns the Peak
value as it would have been determined as of the specified bar. For this reason, the
return value of the Peak function will lag, and report peaks a few bars later than they
actually occurred in hindsight. This is intentional, and allows peak/trough detection to
be used when back-testing trading systems.

Use the Number parameter to specify which Peak to identify. To obtain the most
recent Peak, pass 0 (although this is the same as using the Peak function). Number =
1 returns the previous Peak, 2 returns the second most previous, etc.

Interpretation

· Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

· Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Peaks are detected by looking for a percentage (default) or point reversal in the Price
Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new

© 2003-2006 WL Systems, Inc.

223 WealthScript Function Reference, Wealth-Lab Developer 4.0

high of $100, a peak will be triggered at that bar as soon as prices move down to $90
(provided they do not continue above $100). The move down to $90 may take
several bars. During these bars the Peak function will not return $100, but will
instead return the value of the previous peak. This is because you would not have
known that that $100 was an actual peak yet because the reversal level has not been
met. The new Peak value of $100 will be returned only after prices have reached the
$90 level, and the reversal level is reached.

Example

{ Flags bars as red when a potential Head & Shoulders top is forming.
Note, this script does not check for penetration of the neckline. }
var P1, P2, P3, LASTHEAD: float;
var BAR, pb1, pb2, pb3: integer;
for Bar := 120 to BarCount - 1 do
begin
 p1 := Peak(Bar, #High, 7);
 p2 := PeakNum(Bar, #High, 1, 7);
 p3 := PeakNum(Bar, #High, 2, 7);
 if ROC(Bar, #Close, 120) > 20 then
 if p1 < p2 then
 if p2 > p3 then
 begin
 if LastHead <> p2 then
 begin
 LastHead := p2;
 pb1 := PeakBar(Bar, #High, 7);
 pb2 := PeakBar(pb1, #High, 7);
 pb3 := PeakBar(pb2, #High, 7);
 AnnotateBar('S1', pb3, true, #Black, 8);
 AnnotateBar('H', pb2, true, #Black, 8);
 AnnotateBar('S2', pb1, true, #Black, 8);
 end;
 if PriceHigh(Bar) < LastHead then
 SetBarColor(Bar, #Red);
 end;
end;

16.59 PVI

PVI(Bar: integer): float;
PVISeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

The Positive Volume Index was created by Norman Fosback, and its purpose is to
expose where "smart money" investment action is occurring. The assumption is that
smart money, mostly floor traders, will produce moves in price with less volume than
the rest of the crowd.

Interpretation

Fosback compared the PVI with its one year (255 bar) moving average. When PVI is
above the moving average, he calculated that there is a 79% chance that there is a
bull market in progress, and when it is below the average a 67% chance of a bear
market.

Example

var Bar: integer;

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

224

var NVIPane, PVIPane: integer;
NVIPane := CreatePane(75, true, true);
PVIPane := CreatePane(75, true, true);
var NVI1, PVI1, SMA1, SMA2: integer;
NVI1 := NVISeries;
PVI1 := PVISeries;
SMA1 := SMASeries(PVI1, 255);
SMA2 := SMASeries(NVI1, 255);
PlotSeriesLabel(NVI1, NVIPane, 900, #Thick, 'NVI1=NVI()');
PlotSeriesLabel(PVI1, PVIPane, 050, #Thick, 'PVI1=PVI()');
PlotSeriesLabel(SMA1, PVIPane, 020, #Thin, 'SMA1=SMA(PVI1,255)');
PlotSeriesLabel(SMA2, NVIPane, 200, #Thin, 'SMA2=SMA(NVI1,255)');
Bar := BarCount - 1;
if PVI(Bar) > @SMA1[Bar] then
 DrawLabel('PVI says 79% chance Bull Market is in progress', 0)
else
 DrawLabel('PVI says 67% chance a Bear Market is in progress', 0);
if NVI(Bar) > @SMA2[Bar] then
 DrawLabel('NVI says 96% chance Bull Market is in progress', 0)
else
 DrawLabel('NVI says 53% chance a Bear Market is in progress', 0);

16.60 QStick

QStick(Bar: integer; Period: integer): float;
QStickSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

QStick provides a way to quantify candlestick values. The QStick indicator is
calculated by taking a moving average of the difference between open and closing
prices.

Interpretation

When QStick crosses above zero, this is considered bullish, and below zero bearish.
You can also look for extreme QStick levels to determine overbought and oversold
levels, or look for divergences between QStick and price to signal trend reversals.

Example

{ See how good the QStick zero line entry rule really is }
var QSTICKPANE, BAR: integer;
QStickPane := CreatePane(100, true, true);
PlotSeries(QStickSeries(24), QStickPane, 050, #Thick);
DrawLabel('QStick(24)', QStickPane);
InstallProfitTarget(10);
InstallStopLoss(20);
for Bar := 24 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if CrossOverValue(Bar, QStickSeries(24), 0) then
 BuyAtMarket(Bar + 1, '');
 if CrossUnderValue(Bar, QStickSeries(24), 0) then
 ShortAtMarket(Bar + 1, '');
end;

© 2003-2006 WL Systems, Inc.

225 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.61 RelSlope

RelSlope(Bar: integer; Series: integer; Period: integer; Smooth: integer): float;
RelSlopeSeries(Series: integer; Period: integer; Smooth: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

RelSlope stands for the "Relative Slope" Indicator, created by Dimitris Tsokakis.
RelSlope takes 3 parameters. The Series parameter specifies what you wish to apply
Relative Slope to, average price weighted with closing price is recommended
(#AverageC).

Note: Series should be a Price Series that contains positive values only. Calculating
RelSlope on a Price Series that contains negative values is meaningless.

The Period parameter determines the period of an initial EMA that is taken of the
Series. A Period of 10 is recommended. The final parameter, Smooth, determines a
final smoothing of the indicator, and a value of 3 is recommended.

Interpretation

As an independent indicator, RelSlope is a fast trend follower and its divergences often
anticipate big price movements.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as RelSlope.

Choose the default method for calculating the EMA exponent in the Indicator
Calculations section of the Options dialog.

Calculation
Example

{ This ChartScript demonstrates the calculation of RelSlope }
var Period, Smooth, RSPane: integer;
var K, KPLUS, KMINUS, S1, MyRelSlopeSeries: integer;
UseUpdatedEMA(true);
Period := 10;
Smooth := 3;

K := EMASeries(#Close, Period);
KPlus := AddSeries(K, OffsetSeries(K, -1));
KMinus := SubtractSeries(K, OffsetSeries(K, -1));
S1 := MultiplySeriesValue(DivideSeries(KMinus, KPlus), 2);
MyRelSlopeSeries := MultiplySeriesValue(EMASeries(S1, Smooth), 1000
);

RSPane := CreatePane(75, true, true);
PlotSeriesLabel(MyRelSlopeSeries, RSPane, #Blue, #Histogram,
'RelSlope(calculated)');
PlotSeriesLabel(RelSlopeSeries(#Close, Period, Smooth), RSPane,
#Red, #Thin, 'RelSlope');

16.62 ROC

ROC(Bar: integer; Series: integer; Period: integer): float;
ROCSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

226

The Rate of Change (ROC) indicator provides a percentage that the security's price
has changed over the specified Period. The Rate of Change shows the speed at which
price changes from one period to another. Sometimes this is referred to as
momentum. It gives a excellent indication of the market participants' commitment to
the current trend. When the ROC begins to reverse or turn, it indicates diminishing
commitment and a loss of momentum. ROC is a leading or coincidental indicator.

Like other momentum indicators, ROC has overbought and oversold zones. These
zones are defined by lines that are placed so that ROC spends about 5% of its time
within the zones. The lines should be adjusted according to market conditions.

Interpretation

• In ranging markets, go long after ROC falls below the oversold line then rises back
above it.

• In ranging markets, go short after ROC rises above the overbought line the falls
back below it.

• In ranging markets, go long on bullish divergences if ROC's first trough is in the
oversold zone.

• In ranging markets, go short on bearish divergences if ROC's first peak is in the
overbought zone.

• In an up trend confirmed by a trend-following indicator, go long when ROC turns up
from below the center line. Exit using the trend following indicator. Divergences of
ROC and price during a trend can be misleading.

• In a down trend, confirmed by a trend-following indicator, go short when the ROC
turns down from above the center line. Exit using the trend following indicator.
Divergences of ROC and price during trend can be misleading.

Calculation

ROC is the percentage change between the current price with respect to an earlier
price. Typically, the closing Price Series (#Close) is used.

ROC(Bar) = 100 * ((Price(Bar) / Price(Bar - Period)) - 1),

where Bar is the current Bar. For example, if the current price is 77 and the previous
price were 70, ROC = 100 * ((77 / 70) - 1) = 10.0, which is the percentage

change from 70.

Example

{ This system is based on a smoothed Rate of Change. Entry occurs when
smoothed ROC rises above zero. The long Position is closed when the
smoothed ROC turns down. }
var ROCPANE, SMAROC, BAR: integer;
ROCPane := CreatePane(75, true, true);
PlotSeries(ROCSeries(#Close, 40), ROCPane, 005, #ThickHist);
SMARoc := SMASeries(ROCSeries(#Close, 40), 14);
PlotSeries(SMARoc, ROCPane, #Black, #Dotted);
for Bar := 54 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossOverValue(Bar, SMARoc, 0) then
 BuyAtMarket(Bar + 1, '');
 end
 else
 begin

© 2003-2006 WL Systems, Inc.

227 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if TurnDown(Bar, SMARoc) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

16.63 RSI

RSI(Bar: integer; Series: integer; Period: integer): float;
RSISeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

The RSI function returns the Relative Strength Index indicator. RSI is one of the
classic momentum indicators and was developed by Wells Wilder. RSI measures a
market's internal strength by dividing the average of the sum of the up day closing
prices by the the average of the sum of the down day closing prices over a specific
period of time. It returns a value within the range of 0 to 100. The RSI is a leading or
a coincidental indicator. Popular averaging periods for the RSI are 9, 14 and 25.
Wilder used 14 periods. Use the Period that works best for you. The indicator
becomes more volatile and amplitude widens with fewer periods used.

Interpretation

• The classic way to interpret RSI is to look for oversold levels below 30 and
overbought levels above 70. These normally occur before the underlying price chart
forms a top or a bottom. Note you should change the levels depending on market
conditions. Ensure the level lines cut across the highest peaks and the lowest
troughs. During strong trends the RSI may remain in overbought or oversold for
extended periods.

• RSI also often forms chart patterns which may not show on the underlying price
chart, such as double tops and bottoms and trendlines. Also look for support or
resistance on the RSI.

• If underlying prices make a new high or low that isn't confirmed by the RSI this
divergence can signal a price reversal. RSI divergences from price indicates very
strong buy or sell signal.

• Swing Failures. If the RSI makes a lower high followed buy a downside move below
a previous low, then a Top Swing Failure has occurred. If the RSI makes a higher
low followed buy a upside move above a previous high, then a Bottom Swing
Failure has occurred.

• The mid point level of 50 will often act as support or resistance if the RSI bounce
off the 50 level. Crosses of the 50 level can be used as a buying or selling signal.
When RSI cross above then buy, when RSI crosses below then sell.

• RSI can be use to find dips in strong trends. Use trend indicator to determine a
strong up trend then if the RSI is below 50, you have a dip in the up trend. In
strong down trends use RSI above 50 to detect small rallies. Buy the dip and sell
the small rally.

Remarks

• As a rule of thumb, allow RSI to stabilize for 2.5 to 3 times the specified Period.
For example, start the trading loop at Bar Number 42 for a 14-period RSI.

Calculation

RSI = 100 - (100 / (1 + RS))

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

228

where,

RSI relative strength index
RS = (average of n bars' up closes) / (average of n bars' down closes)
n = number of bars or period, typically 14

Note in calculating the RS values for the total of closes up, add all price changes
where the close is greater then previous close. For closes down, add all price changes
where the close is less then previous close.

Finally, the RSI formula may be found in some technical references as the following
equivalent expression:

RSI = 100 * UpDaysAvg / (UpDaysAvg + DownDaysAvg)

Example

{ This script colors each bar based on the RSI oversold/overbought
level }
var X: float;
var RSIPANE, BAR, COL: integer;
RSIPane := CreatePane(75, true, true);
SetPaneMinMax(RSIPane, 0, 100);
PlotSeries(RSISeries(#Close, 14), RSIPane, 005, #Thin);
DrawLabel('RSI(Close, 14)', RSIPane);
for Bar := 42 to BarCount - 1 do
begin
 x := RSI(Bar, #Close, 14);
 if x > 50 then
 begin
 x := x - 50;
 x := x * 2;
 x := x / 9;
 col := Trunc(x) * 100;
 end
 else
 begin
 x := 50 - x;
 x := x * 2;
 x := x / 9;
 col := Trunc(x) * 10;
 end;
 SetBarColor(Bar, col);
end;

16.64 RSquared

RSquared(Bar: integer; Series: integer; Period: integer): float;
RSquaredSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

RSquared is the Correlation Coefficient squared from Linear Regression. It is used to
determine how much of the price action over the specified period can be explained by
the regression line, and how much should be attributes to random noise. RSquared
ranges from 0 to 1.

RSquared is a statistical indicator. Other indicators in the same class are
LinearReg, LinearRegSlope, StdErr, and StdDev.

© 2003-2006 WL Systems, Inc.

229 WealthScript Function Reference, Wealth-Lab Developer 4.0

Interpretation

• The closer RSquared is to one, the closer prices have fitted to the linear regression
line. See the table below. During strong trends, RSquared will remain above 0.5
for an extended period of time. Use the RSquared indicator with LinearRegSlope
to determine if a significant trend is in place.

• Use RSquared for confirmation of the trend. When RSI, Stochastics, CCI and other
momentum indicators are in overbought or oversold regions, look for RSquared to
show that no statistical trend is in place before taking a contrary trading position.

• If trading a trend-following system, such as moving average crossover, you can use
RSquared to confirm that the trend is statistically significant.

Table

The following table show the RSquared values for a given number of periods for a
statistically significant trend to be in place. A 95% confidence means that 95% of the
prices can be explained by Linear Regression and 5% by unexplained random noise.

RSquared values for
Number of periods 95% confidence

5 0.77
10 0.40
14 0.27
20 0.20
25 0.16
30 0.13
50 0.08
60 0.06
120 0.03

Calculation

RSquared is a rather complex statistical calculation. It uses the least square method
to fit a trendline to the data by minimizing the distance between the price and the
Linear Regression trendline and returns a percentage of price movement that is
explained by the regression line.

Example

{ Plot RSquared in order to examine how prices react when they reach
different levels. }
var RSquaredPane: integer;
RSquaredPane := CreatePane(75, true, true);
PlotSeries(RSquaredSeries(#Close, 30), RSquaredPane, 905, #Thin);
DrawLabel('RSquared(Close, 30)', RSquaredPane);
var LinRegSlopePane: integer;
PlotSeries(LinearRegSlopeSeries(#Close, 30), RSquaredPane, 509,
#Thin);
DrawLabel('LinearRegSlope(Close, 30)', RSquaredPane);

16.65 RVI

RVI(Bar: integer; Period: integer): float;
RVISeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

230

RVI returns the Relative Vigor Index, and indicator created by John Ehlers of Mesa
Software (http://www.mesasoftware.com). RVI measures the average difference
between closing and opening price, normalized to the average daily trading range. It
applies a normalization filter to smooth the index with minimal lag.

Interpretation

RVI reaches extreme high and low levels near the peaks of uptrends and downtrends.
You can trigger signals based on these extreme levels, or wait until RVI crosses above
or below a signal line.

The RVI indicator accepts a parameter that determines the Period to use in its
calculation. You can create a dynamic RVI that is based on half of the dominant cycle
period as described by Ehlers. Below we create a custom Price Series and populate
with the RVI values based on half of the cycle period as determined by the HTPeriod
indicator.

Example

var RVIPANE, DYNRVI, BAR, N, P: integer;
RVIPane := CreatePane(100, true, true);
DynRVI := CreateSeries;
for Bar := 40 to BarCount - 1 do
begin
 n := Round(HTPeriod(Bar, #Average)) div 2;
 SetSeriesValue(Bar, DynRVI, RVI(Bar, n));
end;
PlotSeries(DynRVI, RVIPane, 009, #Thick);
DrawLabel('DynRVI', RVIPane);
for Bar := 20 to BarCount - 1 do
begin
 if TurnUp(Bar, DynRVI) then
 if GetSeriesValue(Bar - 1, DynRVI) < -0.35 then
 BuyAtMarket(Bar + 1, '');
 if CrossOverValue(Bar, DynRVI, 0.35) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 SellAtMarket(Bar + 1, P, '');
end;
var HTPeriodPane: integer;
HTPeriodPane := CreatePane(100, true, true);
PlotSeries(HTPeriodSeries(#Average), HTPeriodPane, 055, #Thick);
DrawLabel('HTPeriod(Average)', HTPeriodPane);

16.66 SMA

SMA(Bar: integer; Series: integer; Period: integer): float;
SMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

SMA returns the Simple Moving Average indicator. Moving averages are one of the
core indicators in technical analysis, and there are a variety of different versions. SMA
is the easiest moving average to construct. It is simply the average price over the
specified Period. The average is called "Moving" because it is plotted on the chart bar
by bar, forming a line that moves along the chart as the average value changes.

Interpretation

© 2003-2006 WL Systems, Inc.

231 WealthScript Function Reference, Wealth-Lab Developer 4.0

· SMAs are often used to determine Trend Direction. If the SMA is moving up, the
trend is up, moving down and the trend is down. A 200 bar SMA is common proxy
for the long term trend. 60 bar SMAs are typically used to gauge the intermediate
trend. Shorter period SMAs can be used to determine shorter term trends.

· SMAs are commonly used to smooth price data and technical indicators. Applying
an SMA smoothes out choppy data. The longer the period of the SMA, the
smoother the result, but the more lag that is introduced between the SMA and the
source.

· SMA Crossing Price is often used to trigger trading signals. When prices cross
above the SMA go long, when they cross below the SMA go short.

· SMA Crossing SMA is another common trading signal. When a short period SMA
crosses above a long period SMA, go long. Go short when the short term SMA
crosses back below the long term.

Calculation

SMA is simply the mean, or average, of the values in a Series over the specified
Period.

Example

{ An SMA Crossover system }
var BAR, hSlow, hFast, SlowPer, FastPer: integer;
SlowPer := 100;
FastPer := 40;
hSlow := SMASeries(#Close, SlowPer);
hFast := SMASeries(#Close, FastPer);
PlotSeries(hSlow, 0, 000, #Thick);
PlotSeries(hFast, 0, 502, #Thick);

for Bar := SlowPer to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossOver(Bar, hFast, hSlow) then
 BuyAtMarket(Bar + 1, '');
 end
 else
 begin
 if CrossUnder(Bar, hFast, hSlow) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

16.67 StdDev

StdDev(Bar: integer; Series: integer; Period: integer): float;
StdDevSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Standard Deviation is the statistical measure of market volatility. If prices trade in a
tight narrow trading range then StdDev will return a low value indicating volatility is
low. Conversely if prices swing wildly up and down then StdDev returns a high value
indicating volatility is high. What it does is measure how widely prices are dispersed
from the average or mean price.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

232

Interpretation

· Standard deviation rises as prices become more volatile. As price action calms,
standard deviation heads lower.

· Market tops accompanied by increase volatility over short periods of time, indicate
nervous and indecisive traders. Or market tops with decreasing volatility over long
time frames, indicate maturing bull markets.

· Market bottoms accompanied by decreased volatility over long periods of time,
indicate bored and disinterested traders. Or market bottoms with increasing
volatility over relatively sort time periods, indicate panic sell off.

Calculation

You can choose between standard deviation of a sample (compatible with Excel
STDEV) or of a population (compatible with Excel STDEVP) in the Indicator
Calculations section of the Options dialog. See the User Guide for details.

Example

{ Divide Standard Deviation by Average Price to arrive
 at a normalized Volatility indicator }
var MYVOLATILITY, VOLPANE: integer;
MyVolatility := DivideSeries(StdDevSeries(#Close, 30),
 SMASeries(#Close, 30));
VolPane := CreatePane(100, true, true);
PlotSeries(MyVolatility, VolPane, #Purple, #ThickHist);

16.68 StdError

StdError(Bar: integer; Series: integer; Period: integer): float;
StdErrorSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the Standard Error of the estimate for a Linear Regression line of the specified
Period. Standard Error measures the difference between actual price and the
estimated price of the Linear Regression line at every point along the line. The lower
the standard error, the closer actual prices have met the estimate. If all the closing
prices matched the Linear Regression values for the specified period, then the
Standard Error would be Zero.

Interpretation

· The larger the error the less reliable the trend as the price has greater variance
around the Linear Regression line, prices are volatile. This can be caused by the
changes in the prevailing trend within the specified number of periods.

· The smaller the error then more reliable the trend as the prices are congregating
around the Linear Regression Linear line.

· If RSquared and Standard Error are at extreme levels and then they begin to
converge then expect a change in the trend.

Calculation

Standard Error is a fairly complex statistical calculation. It uses the least square fit
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. This is used to find an estimated of the next periods
price. The Standard Error indicator returns the statistical difference between the
estimate and the actual price.

© 2003-2006 WL Systems, Inc.

233 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Display the most recent Linear Regression value, and the Standard
Error }
var BAR: integer;
Bar := BarCount - 1;
DrawLabel('Linear Reg = ' + FormatFloat('#,##0.00', LinearReg(Bar,
#Close, 30)), 0);
DrawLabel('Std Error = ' + FormatFloat('#,##0.00', StdError(Bar,
#Close, 30)), 0);

16.69 StochD

StochD(Bar: integer; Period: integer; Smooth: integer): float;
StochDSeries(Period: integer; Smooth: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

StochD returns the Stochastic %D indicator. StochD is a smoothed version of the
Stochastic %K (see StochK). Specify the length of smoothing desired in the Smooth
parameter. The indicator can range from 0 to 100. Values near 0 indicate that most of
the recent price action closed near the days lows, and readings near 100 indicate that
prices are closing near the upper range.

The Stochastic is a momentum indicator. The closing price tends to close near the
high in an uptrend and near the low in a downtrend. If the closing price then slips
away form the high or the low, then momentum is slowing. Stochastics are most
effective in broad trading ranges or slow moving trends.

The %K and %D combination is called the fast stochastic. You can use the StochD
indicator as the basis for creating a "Slow Stochastic" %K. To create a Slow Stochastic
signal line, just take a moving average of the StochD.

Remarks

• StochD is not valid until Bar Number Period + Smooth - 1.

Interpretation

• StochD is used as a signal line for StochK. A buy is triggered when StochK crosses
above StochD from a level typically below 30. A sell is triggered when StochK
crosses below StochD from typically above 70.

• Ranging markets, go long on bullish divergences, especially where the first trough
is below 30.

• Ranging markets, go short on bearish divergences, especially where the first peak
is above 70.

• Trending market, when either Stochastic line crosses below 30 (signal day), place a
stop order to go long if prices rise above the high of the signal day or any
subsequent day with a lower low. Place stop order below the low of the same day.

• Trending markets, when either Stochastic line crosses above 70 (signal day), place
a stop order to go short if prices falls below the low of the signal day or any
subsequent day with a higher high. Place a stop loss order above the high of the
same day.

• Trending markets, Use trend following indicators to exit. Can take profits on
divergences, if confirmed by the trend following indicator.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

234

Calculation

n = Number of periods, normally 5
S = Number of smoothing intervals, normally 3
%D = Slow Stochastic K, smoothed over S periods (not SMA smoothing)

HH(Bar-j) = Highest High at Bar-j over n periods
LL(Bar-j) = Lowest Low at Bar-j over n periods
C(Bar-j) = PriceClose at Bar-j

S = Summation from j = 0 to S - 1 periods

Sum1 = S (C(Bar-j) - LL(Bar-j))

Sum2 = S (HH(Bar-j) - LL(Bar-j))
%D = 100 * Sum1 / Sum2

Example

{ Simple system based on Slow Stochastic }
var STOCHPANE, SLOWK, SLOWD, BAR: integer;
StochPane := CreatePane(120, true, true);
SlowK := StochDSeries(10, 3);
SlowD := SMASeries(SlowK, 3);
PlotSeries(SlowK, StochPane, #Purple, #Thick);
PlotSeries(SlowD, StochPane, #Black, #Thin);
for Bar := 20 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CrossOver(Bar, SlowK, SlowD) then
 if GetSeriesValue(Bar - 1, SlowK) < 20 then
 BuyAtMarket(Bar + 1, '');
 end
 else
 begin
 if CrossOverValue(Bar, SlowK, 80) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

16.70 StochK

StochK(Bar: integer; Period: integer): float;
StochKSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

StochK returns the Stochastic Oscillator %K. The Stochastic Oscillator measures how
much price tends to close in the upper or lower areas of its trading range. The
indicator can range from 0 to 100. Values near 0 indicate that most of the recent price
action closed near the days lows, and readings near 100 indicate that prices are
closing near the upper range.

The Stochastic is a momentum indicator. The closing price tends to close near the
high in an uptrend and near the low in a downtrend. If the closing price then slips
away form the high or the low, then momentum is slowing. Stochastics are most
effective in broad trading ranges or slow moving trends.

Interpretation

The classic way to interpret the Stochastic is to wait for %K to reach an extreme level.
A level above 70 typically indicates an overbought condition, while below 30 indicates

© 2003-2006 WL Systems, Inc.

235 WealthScript Function Reference, Wealth-Lab Developer 4.0

an oversold level. While these penetrations of extreme levels indicate a warning, the
actual buy/sell signals occur when %K crosses %D (see StochD).

• Ranging markets, go long on bullish divergences, especially where the first trough
is below 30.

• Ranging markets, go short on bearish divergences, especially where the first peak
is above 70.

• Trending market, when either Stochastic line crosses below 30 (signal day), place a
stop order to go long if prices rise above the high of the signal day or any
subsequent day with a lower low. Place stop order below the low of the same day.

• Trending markets, when either Stochastic line crosses above 70 (signal day), place
a stop order to go short if prices falls below the low of the signal day or any
subsequent day with a higher high. Place a stop loss order above the high of the
same day.

• Trending markets, use trend following indicators to exit. Can take profits on
divergences, if confirmed by the trend following indicator.

Calculation

n = Number of periods, normally 5
HHn = Highest High over n periods
LLn = Lowest Low over n periods
C = PriceClose today
%K = Stochastic K = 100 * (C - LLn) / (HHn - LLn)

Example

{ A system based on Fast Stochastic Extreme Levels }
var STOCHPANE, BAR, P: integer;
StochPane := CreatePane(100, true, true);
PlotSeries(StochKSeries(14), StochPane, 505, #Thick);
DrawLabel('StochK(14)', StochPane);
for Bar := 14 to BarCount - 1 do
begin
 if CrossUnderValue(Bar, StochKSeries(14), 20) then
 BuyAtMarket(Bar + 1, '');
 if CrossOverValue(Bar, StochKSeries(14), 20) then
 for P := 0 to PositionCount - 1 do
 if PositionActive(P) then
 SellAtMarket(Bar + 1, P, '');
end;

16.71 StochRSI

StochRSI(Bar: integer; Series: integer; Period: integer): float;
StochRSISeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

StochRSI is an indicator created by Tushar Chande that combines Stochastics with the
Relative Strength Index. Like RSI, StochRSI cycles between overbought levels below
30 and oversold levels above 70. The StochRSI reaches these levels much more
frequently than RSI, resulting in an oscillator that offers more trading opportunities.
StochRSI moves within the range of 0 to 100. Unlike RSI, StochRSI frequently reaches
the extreme 0 and 100 levels.

Interpretation

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

236

• Look for oversold levels below 30 and overbought levels above 70. These normally
occur before the underlying price chart forms a top or a bottom. Note, you should
change the levels depending on market conditions. Ensure the level lines cut across
the highest peaks and the lowest troughs. During strong trends the StochRSI may
remain in overbought or oversold for extended periods.

• If underlying prices make a new high or low that isn't confirmed by the StochRSI,
this divergence can signal a price reversal. StochRSI divergences from price
indicates very strong buy or sell signal.

• Swing Failures. If the StochRSI makes a lower high followed buy a downside move
below a previous low, then a Top Swing Failure has occurred, sell signal. If the
StochRSI makes a higher low followed buy a upside move above a previous high,
then a Bottom Swing Failure has occurred, buy signal.

• The mid point level of 50 will often act as support or resistance if the StochRSI
bounce off the 50 level. Crosses of the 50 level can be used as a buying or selling
signal. When StochRSI cross above then buy, when StochRSI crosses below then
sell.

Calculation

StochRSI is essentially a StochK of the RSI. See both StochK and RSI for more
information.

StochRSI = (RSI(n) - RSI lowest low(n)) / (RSI highest high(n) - RSI
lowest low(n))

where, n = number of periods

Example

var STOCHRSIPANE, BAR: integer;
StochRSIPane := CreatePane(75, TRUE, TRUE);
PlotSeries(StochRSISeries(#Close, 14), StochRSIPane, 411, 2);

InstallBreakEvenStop(10);
for Bar := 31 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if LastPositionActive then
 begin
 if StochRSI(Bar, #Close, 14) = 100 then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 if EMA(Bar, #Close, 30) > EMA(Bar - 1, #Close, 30) then
 if StochRSI(Bar, #Close, 14) = 0 then
 BuyAtMarket(Bar + 1, '');
 end;
end;

16.72 Sum

Sum(Bar: integer; Series: integer; Period: integer): float;
SumSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

© 2003-2006 WL Systems, Inc.

237 WealthScript Function Reference, Wealth-Lab Developer 4.0

Returns the sum of values from the specified Price Series over the desired period. This
is not really an indicator per se, but a mathematical function used to summate values
in a price series. You can use this function to build your own custom indicators, like
the example shown below.

In this example, we add all the highs for twenty bars, then add all the lows for twenty
bars, producing two floating point values, xUp and xDown. The two floats are
subtracted and the result used to build a new series called UpMinusDown. This new
indicator series behaves similar to the ATR indicator.

Interpretation

Sum is most useful when making your own custom indicators to integrate over a
specified number of Periods.

Calculation

Simply the addition of price over the period specified.

Sum = (P1 + P2 + ... + Pn)

where,

Sum = summation of price values
P = price series to be summated, #Open, #Close, TrueRangeSeries, SMASeries, etc
. . .
n = number of periods or Bars

Example

{ Plot 20 bar sum of Highs minus Lows }
var XUP, XDOWN: float;
var UPMINUSDOWN, BAR, UDPANE: integer;
UpMinusDown := CreateSeries;
for Bar := 20 to BarCount - 1 do
begin
 xUp := Sum(Bar, #High, 20);
 xDown := Sum(Bar, #Low, 20);
 SetSeriesValue(Bar, UpMinusDown, xUp - xDown);
end;
UDPane := CreatePane(70, false, true);
PlotSeries(UpMinusDown, UDPane, #Olive, #Thick);

16.73 TII

TII(Bar: integer; Series: integer; Period: integer; MAPeriod: integer): float;
TIISeries(Series: integer; Period, MAPeriod): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

TII is the Trend Intensity Index. It measures the strength of a trend by tabulating the
deviation of price and its moving average. Specify the number of bars to use when
calculating the indicator in the Period parameter, and the length of the moving
average to use in the MAPeriod parameter.

TII compares the price to its MAPeriod moving average, recording the deviation at
each bar. If price is above the moving average, a positive deviation is recorded, and if
price is below the moving average a negative deviation. The deviation is simply the
distance between price and the moving average.

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

238

Once the deviations are calculated, TII is calculated as:

(Sum of Positive Dev) / ((Sum of Positive Dev) + (Sum of Negative
Dev)) * 100

Interpretation

TII moves between 0 and 100. A strong uptrend is indicated when TII is above 80. A
strong downtrend is indicated when TII is below 20.

Example

var TIIPane, TIISer, Per, MAPer: integer;
Per := 30;
MAPer := 60;
TIISer := TIISeries(#Close,Per,MAPer);
TIIPane := CreatePane(75, true, true);
PlotSeriesLabel(TIISer, TIIPane, 009, #Thin,
 'TIISer=TII(#Close,' + IntToStr(Per) + ',' + IntToStr(MAPer) + ')');

16.74 TRIX

TRIX(Bar: integer; Series: integer; Period: integer): float;
TRIXSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

TRIX displays the percentage Rate of Change (see ROC) of a triple exponentially-
smoothed moving average (EMA) over the specified Period. TRIX oscillates above and
below the zero value. The indicator applies triple smoothing in an attempt to
eliminate insignificant price movements within the trend that you're trying to isolate.

Interpretation

TRIX generates a signal when it changes direction (turns up or down). Alternately,
you can create a signal line using a moving average and wait until TRIX crosses this
signal line.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
TRIX at runtime. Choose the default method for calculating the EMA
exponent in the Indicator Calculations section of the Options dialog.

Example

{ Buy when TRIX turns up from below zero. Sell when TRIX crosses above
zero. }
var TRIXPANE, BAR, Per: integer;
Per := 24;
TRIXPane := CreatePane(50, true, true);
PlotSeries(TRIXSeries(#Close, Per), TRIXPane, 520, #Thick);
DrawLabel('TRIX(Close, 24)', TRIXPane);
for Bar := 60 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if TurnUp(Bar, TRIXSeries(#Close, Per)) then
 if TRIX(Bar, #Close, 24) < 0 then
 BuyAtMarket(Bar + 1, '');
 end
 else

© 2003-2006 WL Systems, Inc.

239 WealthScript Function Reference, Wealth-Lab Developer 4.0

 begin
 if CrossOverValue(Bar, TRIXSeries(#Close, Per), 0) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end;
end;

16.75 Trough

Trough(Bar: integer; Series: integer; Reversal: float): float;
TroughSeries(Series: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the value of the last Trough that was identified for the specified Price Series
as of the specified Bar. The Reversal parameter determines how much of a
percentage (default) or point advance is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified Bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Interpretation

(See Peak)

Remarks

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Troughs are detected by looking for a percentage (default) or point reversal in the
Price Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
low of $20, a trough will be triggered at that bar as soon as prices move up to $22
(provided they do not continue below $20). The move up to $22 may take several
bars. During these bars the Trough function will not return $20, but will instead
return the value of the previous trough. This is because you would not have known
that that $20 was an actual trough yet because the Reversal level has not been met.
The new Trough value of $20 will be returned only after prices have reached the $22
level, and the reversal level is reached.

Example

{ Draw the level of 7% Troughs on the chart }
var PS: integer;
PS := TroughSeries(#Low, 7);
PlotSeries(PS, 0, #Green, #Dots);

220

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

240

16.76 TroughBar

TroughBar(Bar: integer; Series: integer; Reversal: float): integer;
TroughBarSeries(Series: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the bar number at which the last Trough that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) or point decline is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Interpretation

(See Peak Bar)

Remarks

· TroughBar returns -1 if a trough has not yet been detected at the beginning of the
chart.

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

(See Trough)

Example

{ Flag bars that are 5% Troughs }
var Bar, n, nPrev: integer;
for Bar := 0 to BarCount - 1 do
begin
 n := TroughBar(Bar, #Low, 5);
 if (n <> nPrev) and (n > -1) then
 begin
 DrawCircle(6, 0, n, PriceLow(n), #Green, #Thick);
 nPrev := n;
 end;
end;

16.77 TroughNum

TroughNum(Bar: integer; Series: integer; Number: integer; Reversal: float): float;
TroughNumSeries(Series: integer; Number: integer; Reversal: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns the value of the "Nth" most recent Trough that was identified for the specified

221

239

© 2003-2006 WL Systems, Inc.

241 WealthScript Function Reference, Wealth-Lab Developer 4.0

Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) or point decline is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Use the Number parameter to specify which Trough to identify. To obtain the most
recent Trough, pass 0 (although this is the same as using the Trough function).
Number = 1 returns the previous Trough, 2 returns the second most previous, etc.

Interpretation

· Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

· Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

· To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

· Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Troughs are detected by looking for a percentage (default) or point reversal in the
Price Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
low of $20, a trough will be triggered at that bar as soon as prices move up to $22
(provided they do not continue below $20). The move up to $22 may take several
bars. During these bars the Trough function will not return $20, but will instead
return the value of the previous trough. This is because you would not have known
that that $20 was an actual trough yet because the reversal level has not been met.
The new Trough value of $20 will be returned only after prices have reached the $22
level, and the reversal level is reached.

Example

{ Draw resistance necklines for potential Double Bottoms }
var T1, T2, DIFF, DIFFPCT, P1: float;
var LASTPEAK: float;
var BAR: integer;
for Bar := 120 to BarCount - 1 do
begin
 if ROC(Bar, #Close, 120) < -20 then
 begin
 t1 := TroughNum(Bar, #Low, 0, 5);
 t2 := TroughNum(Bar, #Low, 1, 5);
 Diff := Abs(t1 - t2);
 DiffPct := (Diff / PriceClose(Bar)) * 100;
 if DiffPct < 5 then
 begin

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

242

 p1 := Peak(Bar, #High, 5);
 if p1 <> LastPeak then
 begin
 LastPeak := p1;
 DrawLine(Bar, p1, Bar + 60, p1, 0, #Blue, #Thin);
 end;
 end;
 end
end;

16.78 TrueRange

TrueRange(Bar): float;
TrueRangeSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

True Range is apart of the Welles Wilder indicator collection. It is the actual range,
high to low, of a bar. It includes any gap, between today's High or Low and
yesterday's Close. As it can use the previous day in its calculation, the first periods
true range may be undefined. The True Range is the maximum price movement over
a period. True Range is the basis of the Average True Range (see ATR) indicator.

Interpretation

· True Range is a way to express a daily range without ignoring gaps that can occur
between the previous close and the open.

· The True Range is not intended to be used as an indicator.

· The True Range is useful if used as a Price Series Parameter for another indicator as
in the EMA volatility example show below.

· Especially useful in volatility indicators, where the high and low prices may not
include the full volatility of price action.

· Can be incorporated in entry or exit triggers.

Calculation

True Range is always a positive number and is defined by Welles Wilder to be the
greatest of the following for each period:

The distance from today's high to today's low.
The distance from yesterday's close to today's high.
The distance from yesterday's close to today's low.

Example

{ Example 1, Show how the ATR indicator is created }
var MYATR, ATRPANE: integer;
MyATR := WilderMASeries(TrueRangeSeries, 14);
ATRPane := CreatePane(100, true, true);
PlotSeries(MyATR, ATRPane, #Maroon, #Thick);
PlotSeries(ATRSeries(14), ATRPane, #Red, #Thin);
DrawLabel('Ex 1: WilderMASeries(TrueRangeSeries,14)', ATRPane);

{ Example 2, Show how True Range is used in EMA volatility }
var TRPane: integer;
var range_s: integer; // Series
// EMA(True Range)
range_s := EMASeries(TrueRangeSeries, 21);

© 2003-2006 WL Systems, Inc.

243 WealthScript Function Reference, Wealth-Lab Developer 4.0

// Plot True Range
TRPane := CreatePane(100, true, true);
PlotSeries(range_s, TRPane, #Maroon, #Thick);
DrawLabel('Ex 2: EMA(TrueRangeSeries)', TRPane);

16.79 UltimateOsc

UltimateOsc(Bar: integer): float;
UltimateOscSeries: integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Williams' Ultimate Oscillator uses weighted sums of three oscillators, each using a
different time period (7, 14, and 28), which represent short, medium, and long term
market trends. The Ultimate Oscillator moves within the range of 0 to 100.

Interpretation

Williams recommended method of interpreting the Ultimate Oscillator is to look for
divergences between the indicator value and price. For example, a bullish divergence
occurs when prices make a lower low, but the Ultimate Oscillator fails to make a lower
low.

Example

{ Look for bullish divergences between Ultimate Oscillator and Price }
var T1, T2: float;
var UUP, PUP: boolean;
var ULTOSCPANE, UTROUGH, PTROUGH, BAR: integer;

UltOscPane := CreatePane(80, true, true);
PlotSeries(UltimateOscSeries, UltOscPane, 022, #Thick);
DrawLabel('UltimateOsc', UltOscPane);

SetPeakTroughMode(#AsPoint);
UTrough := TroughSeries(UltimateOscSeries, 10);
PlotSeries(UTrough, UltOscPane, #Green, #Dots);
PTrough := TroughSeries(#Close, 10);
PlotSeries(PTrough, 0, #Green, #Dots);
for Bar := 100 to BarCount - 1 do
begin
 t1 := Trough(Bar, UltimateOscSeries, 10);
 t2 := TroughNum(Bar, UltimateOscSeries, 1, 10);
 UUp := t1 > t2;
 t1 := Trough(Bar, #Close, 10);
 t2 := TroughNum(Bar, #Close, 1, 10);
 PUp := t1 > t2;
 if UUp and not PUp then
 SetBarColor(Bar, #Green);
end;

16.80 VHF

VHF(Bar: integer; Series: integer; Period: integer): float;
VHFSeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

244

The Vertical Horizontal Filter is used to determine if prices are trending or are in a
congestion stage. It is calculated by dividing the difference in the sums of highest and
lowest values by the sum of the absolute values of daily price differences. Typically a
period of 28 is used for VHF.

Interpretation

VHF describes how strongly prices are trending. The higher the VHF value, the
stronger the trend.

Example

{ Color chart background when prices are trending according to VHF }
var VHFPANE, BAR: integer;
VHFPane := CreatePane(70, true, true);
PlotSeries(VHFSeries(#Close, 28), VHFPane, 952, #Thin);
DrawLabel('VHF(28)', VHFPane);
for Bar := 28 to BarCount - 1 do
 if VHF(Bar, #Close, 28) > 0.4 then
 SetBackgroundColor(Bar, 789);

16.81 Vidya

Vidya(Bar: integer; Series: integer; VolatilityIndex: integer; Alpha: float): float;
VidyaSeries(Series: integer; VolatilityIndex: integer; Alpha: float): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Vidya returns Tushar Chande's Variable Index Dynamic Average. Vidya is similar to
an Exponential Moving Average, but uses a different period for each bar of calculation.
The period to use is determined by the bar's volatility. Bars with a high volatility will
use a shorter period, and those with a low volatility a longer period. This results in an
indicator that is very responsive to abrupt market moves, but becomes less responsive
during consolidation periods.

Vidya requires a "Volatility Index", which should be some indicator that tracks market
volatility. Specify the Volatility Index as a Price Series in the VolatilityIndex
parameter. The resulting Vidya will have lower effective periods on bars where the
Index indicates high volatility.

Vidya also requires a floating point Alpha parameter. The values of the Volatility
Index are multiplied by Alpha to modulate the sensitivity of the Vidya. You should
arrive at a value of Alpha such that (1 - Alpha * Volatility Index) never becomes
negative.

Interpretation

You can interpret Vidya as you would another moving average. Additionally, Vidya
tends to respond more quickly and go flat during consolidation periods.

Example

{ Vidya using Standard Deviation as Volatility Index }
var STD, SMASTD, VOLIDX, VIDYASTDDEV: integer;

{ Obtain Current Std Dev as a ratio of Historic Std Dev }
Std := StdDevSeries(#Close, 10);
SmaStd := SMASeries(Std, 50);
VolIDX := DivideSeries(Std, SmaStd);

© 2003-2006 WL Systems, Inc.

245 WealthScript Function Reference, Wealth-Lab Developer 4.0

{ Create the Vidya }
VidyaStdDev := VidyaSeries(#Close, VolIDX, 0.1);
PlotSeries(VidyaStdDev, 0, #Red, 2);

16.82 VMA

VMA(Bar: integer; Series: integer; Period: integer): float;
VMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

VMA returns the Volume-Weighted Moving Average for the specified Price Series and
Period. VMA is similar to a Simple Moving Average (SMA), but each bar of data is
weighted by the bar's volume.

VMA places more significance on bars with the largest volume and less for bars with
lowest volume for the Period specified. The VMA value attempts to represent the
average purchase price of the past number of periods, as it assumes that all prices
were traded at selected time (usually the closing value). Using VMA, you can judge if
you are buying at a low value or selling at a high value compared to the averaged
price paid by all market participants.

Because important breakouts are often accompanied by a large increase in volume,
VMA will track aggressive moves more closely than other types of moving averages.
During consolidation periods, where volume is light, VMA will act like a normal Simple
Moving Average.

Interpretation

· Use the same rules that we apply to SMA when interpreting VMA. Keep in mind,
though, that VMA is generally more sensitive to price movement on high volume
days.

· VMA's are used to determine trend direction. If the VMA is moving up, the trend is
up, if moving down then the trend is down. A 200-bar VMA is common proxy for the
long term trend. 60-bar VMA's are typically used to gauge the intermediate trend.
Shorter-period VMA's can be used to determine short-term trends.

· VMA's are commonly used to smooth price data and technical indicators. Applying a
VMA smooths out choppy data. The longer the period of the VMA, the smoother the
result, but more lag is introduced between the VMA and the source series.

· VMA crossing price is often used to trigger trading signals. For example, when
prices cross above the VMA go long, and when they cross below the VMA go short.

· Look for differences between the SMA and the VMA with the same number of
periods. When the WMA is above the SMA then buyers are active and are
accumulating stock, go long. When the WMA is below the SMA then seller are
active, and stock is being sold, go short.

Calculation

VMA = (V1 * P1 + V2 * P2 + ... + Vn * Pn) / (V1 + V2 + ... + Vn)

where,

P1 = current price
P2 = price one bar ago, etc . .
V1 = current volume
V2 = volume one bar ago

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

246

n = number of periods/bars

Example

{ Compare a Volume Weighted Moving Average with a standard MA }
PlotSeries(SMASeries(#Close, 60), 0, 005, #Thin);
PlotSeries(VMASeries(#Close, 60), 0, 005, #Thick);

16.83 Volatility

Volatility(Bar: integer; Period: integer; ROCPeriod: integer): float;
VolatilitySeries(Period: integer; ROCPeriod: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Return's Chaikin's Volatility indicator of the specified Moving Average and ROC
periods. Chaikin's Volatility first calculates an Exponential Moving Average (EMA) of
the difference between the High and Low price. The Volatility indicator is then created
by taking the Rate of Change (ROC) of this value over a period specified by
ROCPeriod. The period of the EMA is specified in the Period parameter.

Interpretation

· High values indicate that intraday prices have a wide high to low range. Low values
indicate that intraday prices have relatively constant high to low range.

· Market tops accompanied by increase volatility over short periods of time, indicate
nervous and indecisive traders. Or market tops with decreasing volatility over long
time frames, indicate maturing bull markets.

· Market bottoms accompanied by decreased volatility over long periods of time,
indicate bored and disinterested traders. Or market bottoms with increasing
volatility over relatively sort time periods, indicate panic sell off.

Calculation

First calculate an Exponential Moving Average (EMA) of the difference between High
and Low price.

HLAve = 10-day EMA(High - Low)

Then take the Rate of Change (ROC) of this value over a period specified by
ROCPeriod.

CV = (HLAve) / (HLAve n days ago)

where,

CV = Chaikin's Volatility value
n = number of ROC periods

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
Volatility. Choose the default method for calculating the EMA exponent in
the Indicator Calculations section of the Options dialog.

Example

{ Colors bars with higher intensity red as volatility increases }
var V: float;
var VOLPANE, BAR, N: integer;
VolPane := CreatePane(100, true, true);
PlotSeries(VolatilitySeries(14, 10), VolPane, 062, #ThickHist);

© 2003-2006 WL Systems, Inc.

247 WealthScript Function Reference, Wealth-Lab Developer 4.0

DrawLabel('Volatility(14, 10)', VolPane);
for Bar := 0 to BarCount - 1 do
begin
 v := Volatility(Bar, 14, 10);
 n := Round(v) div 10;
 if n < 0 then
 n := 0;
 if n > 9 then
 n := 0;
 SetBarColor(Bar, n * 100);
end;

16.84 WilderMA

WilderMA(Bar: integer; Series: integer; Period: integer): float;
WilderMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

WilderMA is sometimes call Wilder's Smoothing, and it returns the Moving Average as
calculated by Welles Wilder in his book New Concepts in Technical Trading. This
indicator is similar to the Exponential Moving Average. Compared to other moving
averages, WildersMA responds slowly to price changes. A n-period WildersMA gives
similar values to a 2n period EMA. For example, a 14-period EMA has almost the
same values as a 7-period WilderMA.

Interpretation

· WilderMA can be interpreted in the same way as other moving averages. The
WilderMA is like a EMA with half number of periods. See the EMA indicator for more
information.

· You should use a WilderMA when calculating other Wilder's indicators to ensure
consistent results with other systems and users.

· If you are after a smoothing indicator for general use, it is best to use the SMA or
EMA.

Calculation

WilderMA is calculated for periods "n" as follows:

Wilder MA = (Previous Wilder MA * (n - 1) + Price Series Value) / n

where,

n = number of periods
Price Series Value = data you wish to average

Example

{ Compare a Simple and Exponential Moving Average with Wilder's MA }
var n: integer;
var s, s2: string;
n := 14;
s := '(Close, ' + IntToStr(n) + ')';
s2 := '(Close, ' + IntToStr(2 * n) + ')';
PlotSeriesLabel(WilderMASeries(#Close, n), 0, 090, #Thick,
'WilderMA' + s);
PlotSeriesLabel(SMASeries(#Close, n), 0, 900, #Thin, 'SMA' + s);
PlotSeriesLabel(EMASeries(#Close, 2 * n), 0, 005, #Thin, 'EMA' + s2
);

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

248

16.85 WilliamsR

WilliamsR(Bar: integer; Period: integer): float;
WilliamsRSeries(Period: integer): integer;

RChartScripts RSimuScripts XPerfScripts XCMScripts

Description

Williams %R is a momentum indicator developed by Larry Williams. Like Stochastic
Oscillators (StochK, StochD), WilliamsR is used to gauge overbought and oversold
levels, and ranges between 0 and 100. However, unlike most other momentum
oscillators, the low end of the scale represents an overbought area, and the high end
an oversold condition. For this reason Williams %R is often multiplied by -1 and
plotted on a negative scale.

Williams %R measures the latest closing price relative to high low range within the
past data, thus it reflects buyers and sellers commitment to close the price within that
range. At the peak of the buyer's power the oscillator reaches zero, and at the peak of
the seller's power, it reaches 100. The overbought region is below 10 percent and the
oversold region is over 90 percent.

Interpretation

A reading of above 80 or 90 indicates oversold levels, and below 20 or 10 indicates
overbought. Williams %R has a tendency to peak ahead of price, so it can be a good
tool in identifying trend reversals. During strong trends, the Williams %R can remain
in the oversold or overbought regions for extended periods of time.

· In ranging markets, go long when the indicator falls below the oversold line then
rises back above the oversold line.

· In ranging markets, go short when indicator rises above the overbought line the
falls back below the overbought line.

· In ranging markets, go long on bullish divergences, if the indicator's first trough is
in the oversold zone.

· In ranging markets, go short on bearish divergences, if the indicator's first peak is
in the overbought zone.

· In a up trend or rally, go short if the indicator fails to reach the oversold region and
begins to fall. This is a swing failure, it show the buyers are weakening.

· In a down trend, go long when the indicator fails to reach the overbought region
and begins to rise. This is a swing failure, it show the sellers are weakening.

Calculation

Wm%R = 100 * (Hn - C) / (Hn - Ln)

where,

n = period, such as 7 days
Hn = Highest high in last n periods
Ln = Lowest low in last n period
C = closing price of latest bar

Example

{ Color the chart background for smoothed Williams %R oversold and
overbought levels }
var X: float;
var PCTRPANE, SMOOTHR, BAR: integer;

© 2003-2006 WL Systems, Inc.

249 WealthScript Function Reference, Wealth-Lab Developer 4.0

PctRPane := CreatePane(75, true, true);
PlotSeries(WilliamsRSeries(14), PctRPane, 511, #Thick);
SmoothR := WilderMASeries(WilliamsRSeries(14), 4);
DrawLabel('WilliamsR(14)', PctRPane);
PlotSeries(SmoothR, PctRPane, #Black, #Thin);
for Bar := 20 to BarCount - 1 do
begin
 x := GetSeriesValue(Bar, SmoothR);
 if x < 20 then
 SetBackgroundColor(Bar, #RedBkg)
 else if x > 80 then
 SetBackgroundColor(Bar, #BlueBkg);
end;

16.86 WMA

WMA(Bar: integer; Series: integer; Period: integer): float;
WMASeries(Series: integer; Period: integer): integer;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

WMA returns a linearly-Weighted Moving Average of the Price Series over the specified
Period.

Whereas a Simple Moving Average (SMA) calculates a straight average of the data,
WMA applies more weight to the data that is more current. The most weight is placed
on the most recent data point. Because of the way it's calculated, WMA will follow
prices more closely than a corresponding SMA.

Interpretation

· Use the same rules that we apply to SMA when interpreting WMA. Keep in mind,
though, that WMA is generally more sensitive to price movement. This can be a
double-edged sword. On the one hand, it can get you into trends a bit earlier than
an WMA would. On the other hand, the WMA will probably experience more
whipsaws than a corresponding SMA.

· Use the WMA to determine trend direction, and trade in that direction. When the
WMA rises then buy when prices dip near or a bit below the WMA. When the WMA
falls then sell when prices rally towards or a bit above the WMA.

· Moving averages can also indicate support and resistance areas. A rising WMA
tends to support the price action and a falling WMA tends to provide resistance to
price action. This reinforces the idea of buying when price is near the rising WMA or
selling when price is near the falling WMA.

· All Moving Averages, including the WMA are not designed to get you into a trade at
the exact bottom and out again at the exact top. They tend to ensure that you're
trading in the general direction of the trend, but with a delay at the entry and exit.
The WMA has a shorter delay then the SMA.

Calculation

WMA is a linearly-weighted moving average that is calculated by multiplying the first
data point (oldest in time) by 1, the second by 2, the third by 3, etc. The final result is
then divided by the sum of the weights. More recent data is thus more heavily
weighted, and contributes more to the final WMA value. WMA excludes price data
outside the length of the moving average, Period.

WMA = (P1 * n + P2 * (n-1) + P3 * (n-2) + ...) / (n + (n-1) + (n-2)

Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

250

+ ...)

where,

P1 = Current Price
P2 = price one bar ago, etc….
n = number of periods

Example

{ This sample system acts on crossovers of 60 and 80 period WMAs }
var BAR, WMASlow, WMAFast: integer;
WMASlow := WMASeries(#Close, 80);
WMAFast := WMASeries(#Close, 60);
PlotSeriesLabel(WMAFast, 0, 900, #Thin, 'WMAFast');
PlotSeriesLabel(WMASlow, 0, 009, #Thin, 'WMASlow');

InstallProfitTarget(20);
for Bar := 80 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if LastPositionActive then
 begin
 if CrossUnder(Bar, WMAFast, WMASlow) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 if CrossOver(Bar, WMAFast, WMASlow) then
 BuyAtMarket(Bar + 1, '');
 end;
end;

© 2003-2006 WL Systems, Inc.

251 WealthScript Function Reference, Wealth-Lab Developer 4.0

17 Time Frame Functions

17.1 Overview

The Time Frame functions are probably the most difficult to understand of the
WealthScript functions, yet once you have mastered them, you will see how easy it is
to create complex trading systems based on data and indicators in other time frames.

Two concepts relating to time frames are necessary to understand. The first is that
you can Scale the data in the primary series using the using the Scale toolbar for

ChartScripts (, ,) and the Scale tab controls in the $imulator, Rankings,
and Scans tools. Scaling in this manner re-creates the data into a new base time
frame, which allows you to generate trades in the new scale. Note that the
ChangeScale function serves this same purpose, but it is useful only in the
ChartScript window.

Unlike the aforementioned scaling features of Wealth-Lab, the Time Frame functions
do not change the base time frame and therefore do not allow you to make trades on
resultant Price Series. This group of functions allow you to create indicators in more
compressed time frames that must be restored or projected back to the original base
time frame.

Scaling and Time Frame Notes:

1. Transforming intraday data to multiples of its underlying interval using the Scale
toolbar is currently available only for ChartScript windows. A similar intraday
scaling feature does not exist for the $imulator, Scans, and Rankings.

2. It is not possible to place trades on a Primary Series that has been time-
compressed from within a script using SetScaleCompressed or

SetScaleDaily, for example. These WealthScript Time Frame functions allow

you only to generate indicators and other Price Series in a more compressed
time frame that must be referenced back to the base time frame.

For more information, see the discussion of Understanding Time Frames in the
WealthScript Guide.

Note: The Time Frame category of WealthScript functions are not available for
SimuScripts.

17.2 ChangeScale

ChangeScale(Scale: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Changes the scale of the chart window to the scale specified in the Scale parameter.
You must use the following constants to specify scale:

#Daily, #Weekly, #Monthly

Use this function if you have a system that should always operate on weekly data, for
example, to save you from having to manually change scale from the toolbar.

251

Time Frame Functions

© 2003-2006 WL Systems, Inc.

252

Remarks

• Available from the ChartScript window only.

• ChangeScale works differently than other functions. The parser looks for the
statement in the code and changes scale before executing the script. If you do not
want to change the scale then do not include this statement - even in a comment
block!

• Do not use ChangeScale more than once in the same ChartScript. Only the first
ChangeScale call will be honored.

Example

ChangeScale(#Weekly);
{ System rules for weekly scale only follow }

17.3 DailyFromMonthly

DailyFromMonthly(Series: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns the daily price Series [handle] from a previously accessed monthly series
(using SetScaleMonthly) specified by the parameter Series. The function creates a
new Price Series synched with the current daily chart, and populates it with the
appropriate values from the monthly series. The result will be repeated values
(typically 20 or so) for each month within the series.

Example

{ Plot monthly high/low bands on the daily chart }
var MH, ML, MHP, MLP: integer;
SetScaleMonthly;
mh := #High;
ml := #Low;
RestorePrimarySeries;
mhp := DailyFromMonthly(mh);
mlp := DailyFromMonthly(ml);
PlotSeries(mhp, 0, #Red, #Thin);
PlotSeries(mlp, 0, #Blue, #Thin);

17.4 DailyFromWeekly

DailyFromWeekly(Series: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns a daily price series [handle] from a previously accessed weekly series (using
SetScaleWeekly) specified by the parameter Series. The function creates a new
Price Series synched with the current daily chart, and populates it with the appropriate
values from the weekly series. The result will be repeated values (typically 5) for each
week within the series.

Example

{ Plot 52 week moving average on the daily chart }
var WSMA, WSMAP: integer;
SetScaleWeekly;

© 2003-2006 WL Systems, Inc.

253 WealthScript Function Reference, Wealth-Lab Developer 4.0

wsma := SMASeries(#Close, 52);
RestorePrimarySeries;
wsmap := DailyFromWeekly(wsma);
PlotSeries(wsmap, 0, #Olive, #Thick);

17.5 GetDailyBar

GetDailyBar(Bar: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you access daily data from within an intraday chart. The daily series must have
been obtained after a call to SetScaleDaily. GetDailyBar returns the Bar Number of
the daily series that corresponds to the specified Bar in the intraday series. This
function works only within an intraday chart.

Example

{ Highlight bars on the intraday chart where a
 daily moving average crossover took place }
var Bar, BarDaily, SMA1, SMA2: integer;

{ Get the daily moving averages }
SetScaleDaily;
SMA1 := SMASeries(#Close, 5);
SMA2 := SMASeries(#Close, 10);
RestorePrimarySeries;

{ Now, cycle through our intraday bars }
for Bar := 60 to BarCount - 1 do
begin
{ Get corresponding daily bar value }
 BarDaily := GetDailyBar(Bar);
 if BarDaily > 1 then
 if CrossOver(BarDaily, SMA1, SMA2) then
 SetBarColor(Bar, #Green);
end;

17.6 GetIntraDayBar

GetIntraDayBar(Bar: integer; Interval: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Note: Not applicable to second or tick-based charts.

Description

Lets you access a compressed Price Series in a higher time frame (created with
SetScaleCompressed). This function takes a Bar number and converts it to the
corresponding bar in the compressed series Interval. So you can, for example, get the
correct bar of data in a 15 minute compressed Price Series from a 1 minute chart.

Example

{ Uses 15 minute RSI for buy/sell signals }
var RSIPANE, RSI_20_15, RSI_20_15_S, BAR, BAR15: integer;

RSIPane := CreatePane(100, true, true);
SetScaleCompressed(15);

Time Frame Functions

© 2003-2006 WL Systems, Inc.

254

RSI_20_15 := RSISeries(#Close, 20);
RSI_20_15 := OffsetSeries(RSI_20_15, -1);
RestorePrimarySeries;
RSI_20_15_S := IntradayFromCompressed(RSI_20_15, 15);
PlotSeries(RSI_20_15_S, RSIPane, #Blue, #Thin);

for Bar := 100 to BarCount - 1 do
begin
 Bar15 := GetIntraDayBar(Bar, 15);
 if CrossOverValue(Bar15, RSI_20_15, 30) and not LastPositionActive
then
 BuyAtMarket(Bar + 1, '15 minute RSI')
 else if CrossOverValue(Bar15, RSI_20_15, 50) then
 SellAtMarket(Bar + 1, LastPosition, '15 minute RSI');
end;

17.7 GetMonthlyBar

GetMonthlyBar(Bar: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you access monthly data from within a daily chart. GetMonthlyBar returns the
Bar Number in the monthly series that corresponds to the specified Bar in the daily
series. The monthly series must have been obtained after a call to SetScaleMonthly.
This function only works within a daily chart.

Example

{ Highlight bars on the daily chart where 5 month RSI
 is below 30 }
var BAR, MONTHLYBAR: integer;
for Bar := 30 to BarCount - 1 do
begin
 MonthlyBar := GetMonthlyBar(Bar);
 begin
 SetScaleMonthly;
 if RSI(MonthlyBar, #Close, 5) < 30 then
 SetBarColor(Bar, #Green);
 RestorePrimarySeries;
 end;
end;

17.8 GetWeeklyBar

GetWeeklyBar(Bar: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you access weekly data from within a daily chart. GetWeeklyBar provides the
bar number in the weekly series that corresponds to the specified Bar in the daily
series. The weekly series must have been obtained after a call to SetScaleWeekly.
This function only works within a daily chart.

Example

{ Highlight bars on the daily chart where weekly MACD
 has turned up }

© 2003-2006 WL Systems, Inc.

255 WealthScript Function Reference, Wealth-Lab Developer 4.0

var WEEKLYMACD, BAR, WEEKLYBAR: integer;
SetScaleWeekly;
WeeklyMACD := MACDSeries(#Close);
RestorePrimarySeries;
for Bar := 10 to BarCount - 1 do
begin
 WeeklyBar := GetWeeklyBar(Bar);
 if TurnUp(WeeklyBar, WeeklyMACD) then
 SetBarColor(Bar, #Blue);
end;

17.9 IntraDayFromCompressed

IntraDayFromCompressed(Series: integer; Interval: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Note: Not applicable to second or tick-based charts.

Description

Use this function to take a Price Series that was created in a higher time frame having
the specified Interval (using SetScaleCompressed) and create a corresponding
expanded Price Series that is synchronized with the base time frame.
IntraDayFromCompressed returns the integer Price Series handle for the new
synchronized series.

For example, you might have created a 15 minute compressed time frame Price Series
in a 1-minute chart. The compressed series has 1 bar of data for every 15 bars in the
base chart. This makes plotting the compressed series impossible.
IntraDayFromCompressed will expand the 15-minute Price Series, effectively
duplicating each bar 15 times. You can now safely plot the series on your 1-minute
chart.

Note: If you do not wish to plot the new series, you can use GetIntradayBar
whose advantage is one of memory savings, which may result in faster
$imulations on intraday data. However, it's generally more intuitive to work
with the IntraDayFromCompressed function.

Example

{ Plot the 15 minute RSI on a 1 minute chart }
var RSIPANE, RSI_20_15, RSI_20_15_S: integer;

RSIPane := CreatePane(100, true, true);
SetScaleCompressed(15);
RSI_20_15 := RSISeries(#Close, 20);
RestorePrimarySeries;
RSI_20_15_S := IntradayFromCompressed(RSI_20_15, 15);
PlotSeries(RSI_20_15_S, RSIPane, #Blue, #Thick);

Time Frame Functions

© 2003-2006 WL Systems, Inc.

256

17.10 IntraDayFromDaily

IntraDayFromDaily(Series: integer): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Returns an intraday Price Series [handle] from a previously accessed daily Series
using SetScaleDaily. The function creates a new price series synched with the
current intraday chart, and populates it with the appropriate values from the daily
series. The result will be repeated values (the number depends on the interval of the
intraday chart) for each day within the series.

Note: If you do not wish to plot the new series, you can use GetDailyBar, whose
advantage is one of memory savings, which may be helpful when running
large $imulations on intraday data. However, it's generally more intuitive to
work with the IntraDayFromDaily function.

Example

{ Obtain the daily moving average from the intraday chart }
var dsma: integer;
SetScaleDaily;
dsma := SMASeries(#Close, 10);
RestorePrimarySeries;
dsma := IntraDayFromDaily(dsma);
PlotSeries(dsma, 0, #Blue, #Thick);

17.11 IsDaily

IsDaily: boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the current chart is on daily scale.

Example

{ if not daily, print a message to the debug window and exit }
if not IsDaily then
begin
 Print('Not using daily scale');
 exit;
end;

17.12 IsIntraday

IsIntraday: boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the current chart is on an intraday scale. An intraday scale can be
made of intervals of minutes, seconds, or ticks. Use the BarInterval function to
determine the number of minutes, ticks, or seconds per bar, i.e., the interval.

© 2003-2006 WL Systems, Inc.

257 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ if not intraday, print a message to the debug window and exit }
if not IsIntraday then
begin
 Print('Not an intraday scale');
 exit;
end;

17.13 IsMonthly

IsMonthly: boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the current chart is on monthly scale.

Example

{ if not monthly, print a message to the debug window and exit }
if not IsMonthly then
begin
 Print('Not using a monthly scale');
 exit;
end;

17.14 IsWeekly

IsWeekly: boolean;

RChartScripts RSimuScripts RPerfScripts XCMScripts

Description

Returns true if the current chart is on weekly scale.

Example

{ if not weekly, print a message to the debug window and exit }
if not IsWeekly then
begin
 Print('Not using a weekly scale');
 exit;
end;

17.15 SetScaleCompressed

SetScaleCompressed(Interval: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Note: Not applicable to second or tick-based charts.

Description

Sets the chart's time scale to a more compressed intraday time frame. Future Price
Series that are acquired will be based on the new time frame, which is specified in the
Interval parameter. You should always revert back to the base scale by calling
RestorePrimarySeries after changing time frame.

Time Frame Functions

© 2003-2006 WL Systems, Inc.

258

SetScaleCompressed will work on intraday charts only. You can only change to a
higher time frame that is possible to create from the current time frame. For
example, if you're working in a base 5-minute chart, you can compress to 10, 15 or
20 minutes, but not to 1 or 7 minutes. Base 1-minute charts can be compressed to
any higher time interval.

You can use the higher time frame data series in your charts in 2 ways. To plot an
entire series you must first convert the higher time frame series back to the base time
frame by using IntraDayFromCompressed. To access an individual bar from a
higher time frame series (without the ability to plot the series in the lower time frame)
you should use GetIntraDayBar to obtain the correct bar number to access.

Important Note

When using data from a higher time frame in trading systems, you should be sure to
take an action only on a bar that has complete data for the higher time frame. For
example, if accessing 15-minute bars, only take trades on even 15 minute boundaries.
Alternately, you can shift the higher time frame Price Series 1 bar to the right using
OffsetSeries to safely use the previous value.

Example

{ The chart will depict a 15 minute SMA and RSI from a 1, 3 or 5 minute
chart }
var SMA_20, SMA_20_15, SMA_20_15_S, RSIPANE, RSI_20_15, RSI_20_15_S:
integer;

SMA_20 := SMASeries(#Close, 20);
SetScaleCompressed(15);
SMA_20_15 := SMASeries(#Close, 20);
RestorePrimarySeries;
SMA_20_15_S := IntradayFromCompressed(SMA_20_15, 15);
PlotSeries(SMA_20, 0, #Red, #Thin);
PlotSeries(SMA_20_15_S, 0, #Blue, #Thin);

RSIPane := CreatePane(100, true, true);
PlotSeries(RSISeries(#Close, 20), RSIPane, #Red, #Thin);
SetScaleCompressed(15);
RSI_20_15 := RSISeries(#Close, 20);
RestorePrimarySeries;
RSI_20_15_S := IntradayFromCompressed(RSI_20_15, 15);
PlotSeries(RSI_20_15_S, RSIPane, #Blue, #Thin);

17.16 SetScaleDaily

SetScaleDaily;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the chart's time scale to daily data from an intraday chart. Future Price Series
that are acquired will be daily series. You should always revert back to the intraday
scale by calling RestorePrimarySeries after changing the scale to daily.

You can use the daily data series in your intraday charts in two ways. To plot an
entire series you must first convert the daily series to an intraday one with
IntraDayFromDaily. To access an individual bar from a daily series (without the
need to convert the daily series to an intraday time frame) you should use
GetDailyBar to obtain the correct bar number to access in the daily series as shown
in the example.

© 2003-2006 WL Systems, Inc.

259 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Look for a Daily SMA CrossOver in our intraday chart }
var Bar, db, SMA1, SMA2: integer;
SetScaleDaily;
SMA1 := SMASeries(#Close, 10);
SMA2 := SMASeries(#Close, 40);
RestorePrimarySeries;
for Bar := 200 to BarCount - 1 do
begin
 db := GetDailyBar(Bar);
 if CrossOver(db, SMA1, SMA2) then
 begin
 SetBackgroundColor(Bar, #BlueBkg);
 end;
end;

17.17 SetScaleMonthly

SetScaleMonthly;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the chart's time scale to monthly data from a daily chart. Future price series that
are acquired will be monthly series. You should always revert back to the daily scale
by calling RestorePrimarySeries after changing the scale to monthly.

You can use the monthly data series in your daily charts in two ways. To plot an
entire series you must first convert the monthly series to a daily one with
DailyFromMonthly. Alternatively, to access an individual bar from a monthly series
(without the need to convert the monthly series to a daily time frame) you should use
GetMonthlyBar to obtain the correct bar number to access in the monthly series.

Example

{ Plot the 5 month RSI in our daily chart }
var MonthlyRSI, PlotMonthlyRSI, RSIPane: integer;
SetScaleMonthly;
MonthlyRSI := RSISeries(#Close, 5);
RestorePrimarySeries;
PlotMonthlyRSI := DailyFromMonthly(MonthlyRSI);
RSIPane := CreatePane(100, true, true);
PlotSeries(PlotMonthlyRSI, RSIPane, #Navy, #Thick);

17.18 SetScaleWeekly

SetScaleWeekly;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the chart's time scale to weekly data from a daily chart. Future price series that
are acquired will be weekly series. You should always revert back to the daily scale by
calling RestorePrimarySeries after changing the scale to weekly.

You can use the weekly data series in your daily charts in two ways. To plot an entire
series you must first convert the weekly series to a daily one with DailyFromWeekly.
Alternatively, to access an individual bar from a weekly series (without the need to

Time Frame Functions

© 2003-2006 WL Systems, Inc.

260

convert the weekly series to a daily time frame) you should use GetWeeklyBar to
obtain the correct bar number to access in the weekly series.

Example

{ Plot the weekly MACD in our daily chart }
var WeeklyMACD, PlotWeeklyMACD, MACDPane: integer;
SetScaleWeekly;
WeeklyMACD := MACDSeries(#Close);
RestorePrimarySeries;
PlotWeeklyMACD := DailyFromWeekly(WeeklyMACD);
MACDPane := CreatePane(100, true, true);
PlotSeries(PlotWeeklyMACD, MACDPane, #Maroon, #ThickHist);

© 2003-2006 WL Systems, Inc.

261 WealthScript Function Reference, Wealth-Lab Developer 4.0

18 Trading System Control Functions

18.1 Overview

The Trading System functions encompass those functions that enter, exit, and split
positions. You can also control automatic exits or stops without the need to program
them manually.

Using SetCommission and SetSlippage , you can override the default costs of
commissions and slippage, which are set in the Options Dialog (F12) Trading
Costs/Control tab. Finally, another group of functions allow you to further influence
the sizing of positions from within your ChartScript.

Note: The Trading System category of WealthScript functions are not available for
SimuScripts.

18.2 ApplyAutoStops

ApplyAutoStops(Bar: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Processes all installed AutoStops for the specified Bar number. Generally, when using
AutoStops, you place the ApplyAutoStops statement at the beginning of the main
trading loop, prior to other trading system signals.

Remarks

• AutoStops are global in nature. For example, only a single profit target level exists,
so you cannot establish different levels for multiple positions in the same script.
It's best to code your own exits manually if you want to maintain different target
levels.

• AutoStops are processed for the Bar passed to the function. It is not necessary to
pass Bar + 1 to ApplyAutoStops in order to trigger Alerts, which are generated as
required based on installed AutoStops.

• By design, AutoStops never exit on the same bar as entry in backtesting. For
information about same-bar stops for automated trading, see the Option Dialog's
Automated Execution topic in the User Guide.

Priority of Multiple Installed Stops

In the event that more than one AutoStop is competing to exit a trade on the same
bar, Wealth-Lab takes the earliest/most pessimistic exit. For example, an Installed
stop loss will be processed before all other Installed stops except the time-based exit.
Specifically, the order of priority is as follows:

1. InstallTimeBasedExit
2. InstallStopLoss
3. InstallTrailingStop
4. InstallReverseBreakEvenStop
5. InstallBreakEvenStop
6. InstallProfitTarget

278 281

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

262

Mixing Manual and Installed AutoStops

Manually-coded exits execute in the order that they are coded. However, if you mix
manual exits and AutoStops, manual exits that execute on Bar + 1 will take priority
unless you explicitly change the order of priority by passing Bar + 1 to
ApplyAutoStops. In this case, you must place the statement in the exit logic for
correct operation as shown in the following example that mixes a time-based
AutoStop exit with a manual profit target.

var Bar, p: integer;
PlotStops;
InstallTimeBasedExit(20);
for Bar := 10 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 ApplyAutoStops(Bar + 1); // Note placement within exit logic
 p := LastPosition;
 SellAtLimit(Bar + 1, PositionEntryPrice(p) * 1.05, p, '5%

ProfitTgt');
 end
 else
 BuyAtStop(Bar + 1, Highest(Bar, #High, 8), '');
end;

Precedence discussion: topic?id=6315
Manually-coded exits will exit at whichever bar you specify, and in the order in which

they are coded. For example, to exit with a 5% profit target on the same bar, the
following code could be used instead of InstallProfitTarget(5). Notice that in
this case the stop is plotted on the same bar as the entry bar.

var Bar, p: integer;
PlotStops;
for Bar := 10 to BarCount - 1 do
begin
{ Single entry condition for demo }
 if Bar = BarCount - 20 then
 BuyAtMarket(Bar + 1, '');

 if LastPositionActive then
 begin
 p := LastPosition;
 SellAtLimit(Bar + 1, PositionEntryPrice(p) * 1.05, p, '5%
ProfitTgt');
 end;
end;

Example

{ Install and execute automated stops in our trading system }
var Bar: integer;
InstallStopLoss(8);
InstallProfitTarget(10);
InstallTimeBasedExit(40);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... more trading system rules ... }
end;

© 2003-2006 WL Systems, Inc.

263 WealthScript Function Reference, Wealth-Lab Developer 4.0

18.3 BuyAtClose

BuyAtClose(Bar: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a long Position at market close of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• BuyAtClose will return boolean false if the signal fails to establish a new position.
This can occur, for example, when using 100% equity position sizing without
Leeway.

Note: AtClose orders can be difficult to realize in practice.

Example

{ Buy at close on a 200 bar low }
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if PriceLow(Bar) = Lowest(Bar, #Low, 200) then
 BuyAtClose(Bar, 'Low Hit');
 end
 else
 begin
{ .. Exit Rules ... }
 end
end;

18.4 BuyAtLimit

BuyAtLimit(Bar: integer; LimitPrice: float; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a long Position if prices reach the indicated LimitPrice. The Position will be
opened if prices meet or go below the specified LimitPrice on the specified Bar. If
prices open below the LimitPrice, the Position will be established at open price. If
prices fail to reach the LimitPrice objective, a Position is not established and the
function returns false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

264

• For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Buy the next bar if it hits the previous 10 bar low }
var X: float;
var BAR: integer;
for Bar := 200 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 x := Lowest(Bar, #Low, 10);
 BuyAtLimit(Bar + 1, x, '10 bar low');
 end
 else
 begin
{ .. Exit Rules ... }
 end
end;

18.5 BuyAtMarket

BuyAtMarket(Bar: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a long Position at market open of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• BuyAtMarket will return boolean false if the signal fails to establish a new position.
This can occur, for example, when using 100% equity position sizing without
Leeway.

Example

{ Open a long position on the following bar based on this bar's
indicator values }
var Bar, p: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if PriceClose(Bar) > SMA(Bar, #Close, 40) then
 if BuyAtMarket(Bar + 1, 'SMA') then

 SetPositionPriority(LastPosition, -RSI(Bar, #Close, 14));
 end
 else
 begin
 p := LastPosition;
 if Bar + 1 - PositionEntryBar(p) = 5 then
 SellAtMarket(Bar + 1, p, 'Time-Based');
 end;
end;

© 2003-2006 WL Systems, Inc.

265 WealthScript Function Reference, Wealth-Lab Developer 4.0

18.6 BuyAtStop

BuyAtStop(Bar: integer; StopPrice: float; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a long Position if prices reach the indicated StopPrice. The Position will be
opened if prices meet or exceed the specified StopPrice on the specified Bar. If prices
open above the StopPrice, the Position will be established at open price. If prices fail
to reach the StopPrice objective, a Position is not established and the function returns
false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Try to buy a peak breakout }
var BAR: integer;
var p: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 p := Peak(Bar, #Close, 15);
 BuyAtStop(Bar + 1, p, 'Breakout');
 end
 else
 begin
{ .. Exit Rules ... }
 end;
end;

18.7 CoverAtClose

CoverAtClose(Bar: integer; Position: integer; SignalName: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Covers and closes out an open short Position at closing price of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• CoverAtClose will exit any position, short or long, that is passed to it in the
Position parameter.

• To exit all open short positions pass the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

266

Note: AtClose orders can be difficult to realize in practice.

Example

{ Exit the short after 20 days }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 if Bar = PositionEntryBar(LastPosition) + 20 then
 CoverAtClose(Bar, LastPosition, '20 day exit');
 end;
end;

18.8 CoverAtLimit

CoverAtLimit(Bar: integer; LimitPrice: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Covers and closes out an open short Position if prices meet or exceed the specified
LimitPrice. If prices open below the LimitPrice, the Position is closed at market open
price. If prices fail to reach the LimitPrice objective, the Position remains open and
the function returns false. To exit all open short positions pass the constant #All in
the Position parameter.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• CoverAtLimit can exit any position, short or long, that is passed to it in the
Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Try and exit our short position at a profit }
var BAR: integer;
var x: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 x := Lowest(Bar, #Low, 10);
 CoverAtLimit(Bar + 1, x, LastPosition, '10 day Low Limit');
 end;
end;

© 2003-2006 WL Systems, Inc.

267 WealthScript Function Reference, Wealth-Lab Developer 4.0

18.9 CoverAtMarket

CoverAtMarket(Bar: integer; Position: integer; SignalName: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Used to cover and close out an open short position at the opening price of the
specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• CoverAtMarket will exit any position, short or long, that is passed to it in the
Position parameter.

• To exit all open short positions pass the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Example

{ Cover the short position if CMO becomes slightly overbought }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 if CMO(Bar, #Close, 20) > 30 then
 CoverAtMarket(Bar + 1, LastPosition, '');
 end;
end;

18.10 CoverAtStop

CoverAtStop(Bar: integer; StopPrice: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Used to cover and close out an open short Position if prices meet or go above the
specified StopPrice. If prices open above the StopPrice, the Position is closed at the
market open price. If prices fail to reach the StopPrice, the Position remains open and
the function returns false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• CoverAtStop will exit any position, short or long, that is passed to it in the Position
parameter.

• To enter a CoverAtStop order for all open short positions, pass the constant #All
in the Position parameter.

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

268

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• Use PlotStops to plot the effective stop price for Position.

• For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Cover the short position if prices move against us by 10% }
var BAR: integer;
var x: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 x := PositionEntryPrice(LastPosition) * 1.1;
 CoverAtStop(Bar + 1, x, LastPosition, '10% Stop');
 end;
end;

18.11 CoverAtTrailingStop

CoverAtTrailingStop(Bar: integer; Price: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Implements a trailing stop at the specified Price level. The stop level is adjusted only
if it is above the current stop level. This results in a trailing stop that is always raised,
and never lowered. Otherwise, this function behaves exactly like the corresponding
CoverAtStop function. It returns true if the stop level was reached and the position
was closed.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• CoverAtTrailingStop will exit any position, short or long, that is passed to it in the
Position parameter.

• To enter a CoverAtTrailingStop order for all open short positions, pass the
constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• Use PlotStops to plot the effective stop price for Position.

Example

{ Initiate a trailing stop after a 5% gain }
var Bar, p: integer;

PlotStops;
for Bar := 20 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

269 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if LastPositionActive then
 begin
 p := LastPosition;
 if PositionOpenMFEPct(p, Bar) > 5 then
 CoverAtTrailingStop(Bar + 1, SMA(Bar, #Close, 20), p, 'TStop'
)
 else
 CoverAtStop(Bar + 1, PositionEntryPrice(p) * 1.10, p,
'StopLoss');
 end
 else
 ShortAtStop(Bar + 1, Lowest(Bar, #Low, 20), '');
end;

18.12 InstallBreakEvenStop

InstallBreakEvenStop(Trigger: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Installs an automatic breakeven stop once the Position reaches the specified Trigger
profit level on a closing basis. Call ApplyAutoStops in your Trading System's main
loop to process auto-stops.

Remarks

• Trigger is expressed as a percentage, points, or dollar movement as determined by
the SetAutoStopMode function, where percentage is the default if not used.

• InstallBreakEvenStop is global in nature, therefore the most recent call to
InstallBreakEvenStop will be used for subsequent trades.

• See ApplyAutoStops for information.

Example

{ Install a breakeven stop when we close above 5% profit }
var BAR: integer;
InstallBreakEvenStop(5);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.13 InstallProfitTarget

InstallProfitTarget(TargetLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Installs a profit target at the specified TargetLevel. Open Positions will be
automatically closed if total Position profit reaches the target level. If prices gap up
above the TargetLevel value the Position will be closed at the market open price. Call
ApplyAutoStops in your Trading System's main loop to process AutoStops.

Remarks

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

270

• TargetLevel is expressed as a percentage, points, or dollar movement as
determined by the SetAutoStopMode function, where percentage is the default if
not used.

• InstallProfitTarget is global in nature, therefore the most recent call to
InstallProfitTarget will be used for subsequent trades.

• For real-time automated trading, to exit with a profit on the same bar as entry use
InstallProfitTarget. See "Automated Trading Options" in the User Guide for more
information.

• See ApplyAutoStops for more information.

Example

{ If our trades ever see a 100% profit we'll be sure to cash out }
var BAR: integer;
InstallProfitTarget(100);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.14 InstallReverseBreakEvenStop

InstallReverseBreakEvenStop(LossLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Installs an automatic breakeven stop order once the Position experiences the
percentage loss level specified in the LossLevel parameter on a closing basis. Call
ApplyAutoStops in your Trading System's main loop to process auto-stops.

Remarks

• LossLevel is expressed as a percentage, points, or dollar movement as determined
by the SetAutoStopMode function, where percentage is the default if not used.

• InstallReverseBreakEvenStop is global in nature, therefore the most recent call
will be used for subsequent trades.

• See ApplyAutoStops for more information.

Example

{ Install a BreakEven stop to exit if we sustain losses of at least 10%
}
var BAR: integer;
InstallReverseBreakEvenStop(10);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.15 InstallStopLoss

InstallStopLoss(StopLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

© 2003-2006 WL Systems, Inc.

271 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Installs a stop loss at the specified StopLevel. Open Positions will be automatically
closed if total Position loss reaches the loss value. If prices gap down below the stop
loss value the Position will be closed at the market open price. Call ApplyAutoStops
in your Trading System's main loop to process AutoStops.

Remarks

• StopLevel is expressed as a percentage, points, or dollar movement as determined
by the SetAutoStopMode function, where percentage is the default if not used.

• InstallStopLoss is global in nature, therefore the most recent call will be used for
subsequent trades.

• For real-time automated trading, to activate a stop loss exit on the same bar as
entry, use InstallStopLoss and/or SetRiskStopLevel. See "Automated Trading
Options" in the User Guide for more information.

• See ApplyAutoStops for information.

Example

{ Install a global automated stop loss of 15% }
var BAR: integer;
InstallStopLoss(15);
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.16 InstallTimeBasedExit

InstallTimeBasedExit(Bars: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Installs an automated exit based on the specified number of Bars. Positions will be
automatically closed after a number of bars specified in the Bars parameter. Be sure
to call ApplyAutoStops in your trading system loop to activate the automated exit.

Remarks

• InstallTimeBasedExit is global in nature, therefore the most recent call will be
used for subsequent trades.

• AutoStops are processed on the Bar Number passed to the function, but it is not
required to pass Bar + 1 to ApplyAutoStops unless you wish to shift priority from
manual exits to AutoStops. Changing the order precedence is necessary only when
mixing InstallTimeBasedExit with manual exits that apply AtLimit, AtStop, or
AtClose orders on Bar + 1. If you decide to give AutoStops priority over manual
exits, then we recommend placing the ApplyAutoStops(Bar + 1) function with
the rest of the exit logic as shown in the example.

• Some live feed providers may not include zero-volume bars in a [primarily
intraday] chart. Since InstallTimeBasedExit is bar-based, you may wish to
include manual exit logic using the GetTime function to achieve the desired result
for sparsely-traded issues.

• See also: ApplyAutoStops

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

272

The example shows how to properly mix a manual exit with AutoStops that include an
InstalledTimeBasedExit. Priority must be given to AutoStops in this [single]
instance, otherwise it would allow the SellAtStop manual exit to trigger on the third
day prior to closing the position at the open.

Example

{ Buy on a SMA crossover, and sell on a stop of the slow
 moving average or after 3 Bars, whichever occurs first }
var Bar, p, hSMA_S, hSMA_F, perSlow, perFast: integer;
var fStop: float;

perSlow := 20;
perFast := 10;
hSMA_S := SMASeries(#Close, perSlow);
hSMA_F := SMASeries(#Close, perFast);

InstallTimeBasedExit(3);
PlotStops;
for Bar := perSlow to BarCount - 1 do
begin
 if not LastPositionActive then
 begin { ----------------- Entry Rule }
 if CrossOver(Bar, hSMA_F, hSMA_S) then
 BuyAtMarket(Bar + 1, '');
 end
 else { ----------------- Exit Rules }
 begin
 { Here, installed AutoStops have priority since they are processed
first }
 ApplyAutoStops(Bar + 1);

 p := LastPosition;
 { Round the stop value to 2 digits after the decimal }
 fStop := Trunc(100 * @hSMA_S[Bar]) / 100;
 SellAtStop(Bar + 1, fStop, p, 'ManualStop');
 end;
end;

PlotSeriesLabel(hSMA_S, 0, #Blue, #Thin, 'SMA ' + IntToStr(perSlow));
PlotSeriesLabel(hSMA_F, 0, #Red, #Dotted, 'SMA ' + IntToStr(perFast)
);

18.17 InstallTrailingStop

InstallTrailingStop(Trigger: float; StopLevel: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Installs a trailing stop to protect profits in Positions that are moving in a favorable
direction. The Trigger value is the profit on a closing basis that the trade must show
before the trailing stop is triggered, or activated. Once triggered, the stop is set to
protect against a reversal of the value expressed in the StopLevel parameter. You
must call the ApplyAutoStops function to actually process the stop.

© 2003-2006 WL Systems, Inc.

273 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• Trigger is expressed as a percentage, points, or dollar movement as determined by
the SetAutoStopMode function, where percentage is the default if not used.
StopLevel is always expressed as a percentage reversal and remains unaffected by
SetAutoStopMode.

• InstallTrailingStop is global in nature, therefore the most recent call will be used
for subsequent trades.

• See ApplyAutoStops for information.

Example

{ Protect 70% of profits once we achieve 20% profit }
var BAR: integer;
InstallTrailingStop(20, (100 - 70));
for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.18 PortfolioSynch

PortfolioSynch(Bar: integer; Portfolio: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

PortfolioSynch creates entries and exits based on the actual Trade History for the
specified Portfolio. Historical entry and exit signals are ignored, and the trades that
appear on the chart are based on realized trades only. Consequently, this function
allows you to base trading system processing on the actual signals from a specified
Portfolio.

Bar The bar being processed. Synchronization occurs on the signal, or alert
Bar.

Portfolio Specifies which Portfolio Manager portfolio to synchronize with. Pass an
empty string in the Portfolio parameter to match against positions in any
portfolio.

Remarks

• PortfolioSynch is functional only for Real-time ChartScript Windows and both the
Scans tools (WatchList Scans and Real-Time Scans).

• When using PortfolioSynch, exits for the next bar (alerts) are processed only for
open positions in the Portfolio.

ChartScript Placement

Method 1: Call PortfolioSynch the first thing in your main trading system loop.
This method is sufficient for most trading scripts. If your script uses
SetPositionData or otherwise initializes local variables during the
entry logic that are accessed in the exit logic, use Method 2.

Method 2: Place PortfolioSynch in both the entry and exit logic, after testing for
active Positions as shown in the example. It is important that
PortfolioSynch is called once for each Bar in the trading loop.

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

274

Example

{ A Real-Time testing script that issues buys and sells every other bar
}
const MYPORT = ''; // Ensure an empty string, not a white space
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
 // PortfolioSynch(Bar, MYPORT); // Method 1 placement
 if LastPositionActive then
 begin
 PortfolioSynch(Bar, MYPORT); // Method 2 placement (1 of 2)
 if Bar mod 2 = 0 then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 PortfolioSynch(Bar, MYPORT); // Method 2 placement (2 of 2)
 if Bar mod 2 = 0 then
 BuyAtMarket(Bar + 1, '');
 end;
end;

18.19 SellAtClose

SellAtClose(Bar: integer; Position: integer; SignalName: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sells and closes out an open long Position at closing price of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• SellAtClose will exit any position, short or long, that is passed to it in the Position
parameter.

• To exit all open long positions pass the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Note: AtClose orders can be difficult to realize in practice.

Example

{ 10 days is long enough for this system }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 if Bar - PositionEntryBar(LastPosition) = 10 then
 SellAtClose(Bar, LastPosition, '10 Day Exit');
 end;

© 2003-2006 WL Systems, Inc.

275 WealthScript Function Reference, Wealth-Lab Developer 4.0

end;

18.20 SellAtLimit

SellAtLimit(Bar: integer; LimitPrice: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sells and closes out an open long Position on the specified Bar if prices meet or
exceed the specified LimitPrice. If prices open above the LimitPrice, the Position is
closed at market open price. If prices fail to reach the LimitPrice objective, the
Position remains open and the function returns false. To exit all open long positions
pass the constant #All in the Position parameter.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• SellAtLimit can exit any position, short or long, that is passed to it in the Position
parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Try to get out at a recent high }
var BAR: integer;
var x: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 x := Highest(Bar, #High, 10) * 1.02;
 if SellAtLimit(Bar + 1, x, LastPosition, 'Limit Sell') then
 Print('Sold!');
 end;
end;

18.21 SellAtMarket

SellAtMarket(Bar: integer; Position: integer; SignalName: string);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sells and closes out an open long Position at open price of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

276

• SellAtMarket can exit any position, short or long, that is passed to it in the
Position parameter.

• To exit all open long positions pass the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Example

{ Sell when prices go below the 200 day moving average }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 if CrossUnder(Bar, #Close, SMASeries(#Close, 200)) then
 SellAtMarket(Bar + 1, LastPosition, 'Below 200 day SMA');
 end;
end;

18.22 SellAtStop

SellAtStop(Bar: integer; StopPrice: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sells and closes out an open long Position if prices meet or go below the specified
StopPrice. If prices open below the StopPrice, the Position is closed at market open
price. If prices fail to reach the StopPrice, the Position remains open and the function
returns false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• SellAtStop can exit any position, short or long, that is passed to it in the Position
parameter.

• To enter a SellAtStop order for all open long positions at StopPrice, simply pass
the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• Use PlotStops to plot the effective stop price for Position.

• For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Sell at a 20% stop loss level }
var BAR: integer;
var xStop: float;
for Bar := 40 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

277 WealthScript Function Reference, Wealth-Lab Developer 4.0

 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
 xStop := PositionEntryPrice(LastPosition) * 0.8;
 SellAtStop(Bar + 1, xStop, LastPosition, 'Stop Loss');
 end;
end;

18.23 SellAtTrailingStop

SellAtTrailingStop(Bar: integer; Price: float; Position: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Implements a trailing stop at the specified Price level. The stop level is adjusted only
if it is above the current stop level. This results in a trailing stop that is always raised,
and never lowered. Otherwise, this function behaves exactly like the corresponding
SellAtStop function. It returns true if the stop level was reached and the position
was closed.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• SellAtTrailingStop will exit any position, short or long, that is passed to it in the
Position parameter.

• To enter a SellAtTrailingStop order for all open long positions at the specified
Price, simply pass the constant #All in the Position parameter.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• Use PlotStops to plot the effective stop price for Position.

Example

{ Initiate a trailing stop after a 5% gain }
var Bar, p: integer;

PlotStops;
for Bar := 20 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 p := LastPosition;
 if PositionOpenMFEPct(p, Bar) > 5 then
 SellAtTrailingStop(Bar + 1, SMA(Bar, #Close, 20), p, 'TStop')
 else
 SellAtStop(Bar + 1, PositionEntryPrice(p) * 0.90, p,
'StopLoss');
 end
 else
 BuyAtStop(Bar + 1, Highest(Bar, #High, 20), '');
end;

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

278

18.24 SetAutoStopMode

SetAutoStopMode(Mode: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Allows you to control how the parameters of AutoStops are interpreted. This affects
InstallStopLoss, InstallProfitTarget, InstallTrailingStop (first parameter only),
InstallBreakEvenStop and InstallReverseBreakEvenStop.

The Mode parameter can be one of the following constants:

#AsPercent - AutoStop values are expressed as percentage moves (default)
#AsPoint - AutoStop values are expressed as point moves
#AsDollar - AutoStop values are expressed as dollar moves

Remarks

• The AutoStop Mode is currently a global value within a script execution. You
cannot have some AutoStops using percent and others using point, etc.

• Remember to call ApplyAutoStops to execute your automated stops.

Example

{ Stop Loss if price declines 5% or more }
SetAutoStopMode(#AsPercent);
InstallStopLoss(5);

{ Stop Loss if price declines 5 points or more }
SetAutoStopMode(#AsPoint);
InstallStopLoss(5);

{ Stop Loss if Position declines by $2,000 or more }
SetAutoStopMode(#AsDollar);
InstallStopLoss(2000);

18.25 SetCommission

SetCommission(Commission: float);

XChartScripts XSimuScripts XPerfScripts XCMScripts

Description

The SetCommission function sets the Commission value that is deducted from net
profit every time a trade is executed. The default commission setting can be found
under Trading Costs/Control in the Options Dialog (F12).

Note: For Wealth-Lab Developer Version 3.0, Build 4 and up, SetCommission no
longer has any effect on setting commissions. The use of SetCommission
in the ChartScript Window will generate an error; though in Scans,
$imulations, Rankings, and Optimizations, no error will be triggered so as
not to disrupt these processes. As an alternative, use CommissionScripts
for customized control of commissions. This information is included to
support use of older ChartScripts that employed the function.

© 2003-2006 WL Systems, Inc.

279 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

• SetCommission has been deprecated. Use CommissionScripts to control complex
commission calculations with user-defined functions.

18.26 SetPositionSize

SetPositionSize(Size: float);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets the Position Size, in dollars, that will be used for new Positions. Subsequent
trades will be sized with the dollar Size specified.

Remarks

• Use of SetPositionSize is generally discouraged since SimuScripts are available to
set position sizing in all tools (see SetPositionSizeFixed). The function is
primarily for compatibility with earlier versions of Wealth-Lab.

• When using the $imulator tool or Portfolio Simulation mode in the Position Sizing
control, you must choose the radio button for SetShare/PositionSize Value to
enable SetPositionSize to influence position sizing.

• In Raw Profit modes, SetPositionSize will override the Position Sizing control's
selection. Exception: SetPositionSize has no effect in a Raw Profit WatchList or
ChartScript Ranking.

• You can use both SetPositionSize and SetShareSize in the same script. As these
functions are global in nature, the next time a trade is processed it will use the
value from the function last called.

Example

{ Set a dynamic position size based on overbought/oversold levels }
var PS: float;
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 ps := (CMO(Bar, #Close, 14) + 200) * 10;
 SetPositionSize(ps);
{ ... Entry Rules ... }
 end
 else
 begin
{ ... Exit Rules ... }
 end;
end;

18.27 SetShareCap

SetShareCap(Cap: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

280

Description

Sets a maximum number of shares per position to Cap. Ordinarily, the size of a
Position is established by what you select in the Position Sizing control. However, if
you use SetShareCap you can limit the number of shares. You can also use this
feature to force a certain number of shares per Position, as follows.

Remarks

• SetShareCap is global in nature, therefore the most recent call to SetShareCap
will be used for subsequent trades. This implies that in the $imulator only the last
call in the final raw-profit run of the last symbol will be used as the share cap.

Example

{ Force Positions to be 100 shares each }
SetPositionSize(999999999); //would result in VERY large Positions
SetShareCap(100); //but here we cap shares at 100

18.28 SetShareFloor

SetShareFloor(Floor: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Sets a minimum number of shares per position to Floor. Ordinarily, the size of a
Position is established by what you select in the Position Sizing control. However, if
you use SetShareFloor you can limit the number of shares.

Remarks

• SetShareFloor is global in nature, therefore the most recent call to
SetShareFloor will be used for subsequent trades. This implies that in the
$imulator only the last call in the final raw-profit run of the last symbol will be used
as the share floor.

Example

{ Minimum trade size of 100 shares }
SetShareFloor(100);

18.29 SetShareSize

SetShareSize(Shares: integer);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Use SetShareSize to assign a fixed number of Shares (or contracts) per Position in
your script. Subsequent trades will use the number of Shares or contracts that you
specified.

Remarks

• Use of SetShareSize is generally discouraged since SimuScripts are available to
set position sizing in all tools (see SetPositionSizeShares). The function is
primarily for compatibility with earlier versions of Wealth-Lab.

• When using the $imulator tool or Portfolio Simulation mode in the Position Sizing

© 2003-2006 WL Systems, Inc.

281 WealthScript Function Reference, Wealth-Lab Developer 4.0

control, you must choose the radio button for SetShare/PositionSize Value to
enable SetShareSize to influence position sizing.

• In Raw Profit modes, SetShareSize will override the Position Sizing control's
selection. Exception: SetShareSize has no effect in a Raw Profit WatchList or
ChartScript Ranking.

• You can use both SetPositionSize and SetShareSize in the same script. As these
functions are global in nature, the next time a trade is processed it will use the
value from the function last called.

Example

{ Assign a trade size of 200 shares to new positions }
SetShareSize(200);

18.30 SetSlippage

SetSlippage(EnableSlippage: boolean; Slippage: float; LimitOrders: boolean);

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Lets you override the default Slippage settings in the Options Dialog|Trading
Costs/Control from within your script.

EnableSlippage Controls whether Slippage is on (activated) or off.

Slippage Controls the amount of Slippage to use.

LimitOrders Controls whether prices must move to at least the Slippage-
adjusted amount in order for Limit and Stop orders to be executed.

Remarks

• Settings for the most recent SetSlippage call are used for the trading signals that
follow (see example).

• See the Options Dialog|Trading Costs/Control topic in the Wealth-Lab User
Guide for details on how Slippage affects entry and exit price.

Example

var Bar: integer;
InstallTimeBasedExit(10);
InstallStopLoss(5);
for Bar := 20 to BarCount - 1 do
begin
{ Enable 2 units of slippage for the Autostops }
 SetSlippage(true, 2, true);
 ApplyAutoStops(Bar);

{ Disable slippage for other [manual] trading signals }
 SetSlippage(false, 2, true);
// rest of trading system...
end;

18.31 ShortAtClose

ShortAtClose(Bar: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

282

Description

Establishes a short Position at market close of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• ShortAtClose will return boolean false if the signal fails to establish a new
position. This can occur, for example, when using 100% equity position sizing
without Leeway.

Note: AtClose orders can be difficult to realize in practice.

Example

{ Short at Close on a TD Power of 9 Signal }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if CumUp(Bar, #Close, 4) = 9 then
 ShortAtClose(Bar, 'TD Power of 9');
 end
 else
 begin
{ ... Exit Rules ... }
 end;
end;

18.32 ShortAtLimit

ShortAtLimit(Bar: integer; LimitPrice: float; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a short Position if prices reach the indicated LimitPrice. The Position will
be opened if prices meet or exceed the LimitPrice on the specified Bar. If prices open
above the LimitPrice, the Position will be established at open price. If prices fail to
reach the LimitPrice objective, a Position is not established and the function returns
false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Short the next bar at limit price of recent 10 bar high }
var BAR: integer;

© 2003-2006 WL Systems, Inc.

283 WealthScript Function Reference, Wealth-Lab Developer 4.0

var p: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 p := Highest(Bar, #Close, 10);
 ShortAtLimit(Bar + 1, p, '');
 end
 else
 begin
{ ... Exit Rules ... }
 end;
end;

18.33 ShortAtMarket

ShortAtMarket(Bar: integer; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Establishes a short Position at market open of the specified Bar.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• ShortAtMarket will return boolean false if the signal fails to establish a new
position. This can occur, for example, when using 100% equity position sizing
without Leeway.

Example

{ Establish a short position if RSI gets overbought }
var BAR: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 if RSI(Bar, #Close, 20) > 70 then
 ShortAtMarket(Bar + 1, 'RSI Short Signal');
 end
 else
 begin
{ ... Exit Rules ... }
 end;
end;

18.34 ShortAtStop

ShortAtStop(Bar: integer; StopPrice: float; SignalName: string): boolean;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Trading System Control Functions

© 2003-2006 WL Systems, Inc.

284

Description

Establishes a short Position if prices reach the indicated StopPrice. The Position will
be opened if prices meet or go below the specified StopPrice on the specified Bar. If
prices open below the StopPrice, the Position will be established at open price. If
prices fail to reach the StopPrice objective, a Position is not established and the
function returns false.

Remarks

• Slippage, when activated, can affect the trade's execution price.

• The string passed as the SignalName parameter, which may be a blank string, will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

• For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Enter short if prices go a BIT lower than today's low }
var BAR: integer;
var sp: float;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
 sp := PriceLow(Bar) * 0.95;
 ShortAtStop(Bar + 1, sp, '');
 end
 else
 begin
{ ... Exit Rules ... }
 end;
end;

18.35 SplitPosition

SplitPosition(Position: integer; RetainPct: float): integer;

RChartScripts XSimuScripts XPerfScripts XCMScripts

Description

Splits a single Position into two and returns the Position Number of the new position.
You can then close off one of the Positions if desired. The RetainPct parameter
specifies the percentage of shares/contracts to retain in the original position. For
example, to keep 75% of the Position, specify 75 for this parameter. The new Position
will contain 25% of the shares of the original Position.

Remarks

• The Position Number of the original position is not affected by SplitPosition. The
new position is added to the PositionCount and becomes the LastActivePosition.

• When using an exact 50% split for odd-sized Positions, e.g. 7, 11, or 13 contracts,
it's possible that floating point rounding errors can cause the odd lot to be exited in
some cases and retained for others. You can work around this issue by passing a
number slightly less than or greater than 50 for the RetainPct parameter. For
example, use 49.999 to force the sale of the odd share (and retain the lesser
amount).

© 2003-2006 WL Systems, Inc.

285 WealthScript Function Reference, Wealth-Lab Developer 4.0

• See the SplitPosition Tutorial for additional information and examples in the
Wealth-Lab Knowledge Base.

Special Notes:

• Since SplitPosition has the effect of creating multiple positions on the entry bar,
trading systems that use this function cannot be supported by the Order Manager.

• "Merging" positions is currently not possible.

Example

{ Split our Position into two and sell one half }
var BAR, NP: integer;
for Bar := 40 to BarCount - 1 do
begin
 if not LastPositionActive then
 begin
{ ... Entry Rules ... }
 end
 else
 begin
{ ... Exit Rules ... }
 end;
{ Exit half after 10 days }
 if LastPositionActive then
 if Bar - PositionEntryBar(LastPosition) > 10 then
 begin
 np := SplitPosition(LastPosition, 50);
 SellAtClose(Bar, np, '');
 end;
end;

	Introduction
	Alert Functions
	Overview
	AlertCount
	AlertOrderType
	AlertPositionType
	AlertPrice
	AlertShares
	AlertSymbol

	Cosmetic Chart Functions
	Overview
	AnnotateBar
	AnnotateChart
	CreatePane
	DrawCircle
	DrawCircle2
	DrawDiamond
	DrawEllipse
	DrawHorzLine
	DrawImage
	DrawLabel
	DrawLine
	DrawRectangle
	DrawRoundRect
	DrawText
	DrawTriangle
	EnableNotes
	EnableTradeNotes
	HidePaneLines
	HideVolume
	PlotSeries
	PlotSeriesLabel
	PlotStops
	PlotSymbol
	PlotSyntheticSymbol
	SetBackgroundColor
	SetBarColor
	SetBarColors
	SetColorScheme
	SetLogScale
	SetPaneBackgroundColor
	SetPaneMinMax
	SetSeriesBarColor

	CommissionScript Functions
	Overview
	CMShares
	CMPrice
	CMEntry
	CMOrderType
	CMSymbol
	CMDataSource
	CMResult

	Data Access Functions
	Overview
	BarCount
	GetDate
	GetMargin
	GetPointValue
	GetSecurityName
	GetSymbol
	GetTick
	GetTime
	OpenInterest
	PriceAverage
	PriceAverageC
	PriceClose
	PriceHigh
	PriceLow
	PriceOpen
	Volume

	Date/Time Functions
	Overview
	BarInterval
	BarNum
	CurrentDate
	CurrentTime
	DateTimeToBar
	DateToBar
	DateToStr
	DayOfWeek
	DaysBetween
	DaysBetweenDates
	GetDay
	GetHour
	GetMinute
	GetMonth
	GetYear
	IsLeapYear
	LastBar
	OptionExpiryDate
	StrToDate
	StrToTime
	TimeToStr

	File Access Functions
	Overview
	FileClear
	FileClose
	FileCreate
	FileEOF
	FileFlush
	FileOpen
	FileRead
	FileWrite

	Fundamental Data Access Functions
	FundamentalPriceSeriesAverage
	GetFundamentalDetail

	Math Functions
	Overview
	Abs
	ArcCos
	ArcSin
	ArcSinh
	ArcTan
	ArcTanh
	Correlation
	Cos
	Cosh
	Cotan
	Dec
	DegToRad
	Exp
	Frac
	Hypot
	Inc
	Int
	LinearRegLine
	LineExtendX
	LineExtendY
	LN
	Log10
	Log2
	Max
	Min
	Pi
	Power
	RadToDeg
	RandG
	Random
	RandomInt
	Randomize
	RandSeed
	Round
	SetRandSeed
	Sin
	Sinh
	Sqr
	Sqrt
	Tan
	Tanh
	TrendLineValue
	Trunc

	PerfScript Functions
	Overview
	AccountExposure
	CashInterest
	DividendsPaid
	MarginLoan
	PerfAddCurrency
	PerfAddNumber
	PerfAddPct
	PerfAddString
	PerfAddBreak
	StartingCapital
	TotalCommission

	Position Management Functions
	Overview
	ActivePositionCount
	ClearPositions
	GetPositionData
	GetPositionPriority
	GetPositionRiskStop
	LastActivePosition
	LastLongPositionActive
	LastPosition
	LastPositionActive
	LastShortPositionActive
	MarketPosition
	PositionActive
	PositionBasisPrice
	PositionBarsHeld
	PositionCount
	PositionEntryBar
	PositionEntryPrice
	PositionExitBar
	PositionExitPrice
	PositionExitSignalName
	PositionLong
	PositionMAE
	PositionMAEPct
	PositionMFE
	PositionMFEPct
	PositionOpenMAE
	PositionOpenMAEPct
	PositionOpenMFE
	PositionOpenMFEPct
	PositionOpenProfit
	PositionOpenProfitPct
	PositionOrderType
	PositionProfit
	PositionProfitPct
	PositionShares
	PositionShort
	PositionSignalName
	PositionSymbol
	SetPositionData
	SetPositionPriority
	SetPositionRiskStop
	SetRiskStopLevel

	Price Series Functions
	Overview
	AbsSeries
	AddCalendarDays
	AddFutureBars
	AddSeries
	AddSeriesValue
	AnalyzeSeries
	ChangeBar
	ClearExternalSeries
	ClearIndicators
	CreateNamedSeries
	CreateSeries
	CreateSeriesLength
	CrossOver
	CrossOverValue
	CrossUnder
	CrossUnderValue
	DivideSeries
	DivideSeriesValue
	DivideValueSeries
	EnableSynch
	FindNamedSeries
	FirstActualBar
	GetDescription
	GetExternalSeries
	GetSeriesValue
	MultiplySeries
	MultiplySeriesValue
	OffsetSeries
	RestorePrimarySeries
	SetDescription
	SetPrimarySeries
	SetSeriesValue
	SingleCalcMode
	SubtractSeries
	SubtractSeriesValue
	SubtractValueSeries
	SynchAll
	SynchSeries
	SyntheticBar
	TurnDown
	TurnUp

	SimuScript Functions
	Overview
	BarCount
	BuyAndHold
	CandidateCount
	Cash
	DrawDown
	DrawDownPct
	Equity
	SetPositionSizeFixed
	SetPositionSizePct
	SetPositionSizeShares
	SortByEntryDate
	SortByExitDate

	String Functions
	Overview
	CharAt
	Chr
	CompareStr
	CompareText
	Copy
	Delete
	FloatToStr
	FormatFloat
	GetToken
	Insert
	IntToStr
	Length
	LowerCase
	Ord
	Pos
	StrToFloat
	StrToFloatDef
	StrToInt
	StrToIntDef
	Trim
	TrimLeft
	TrimRight
	UpperCase

	System Functions
	Overview
	Abort
	AddCommentary
	AddScanColumn
	AddScanColumnStr
	AllowSymbolSearch
	CreateOleObject
	GetGlobal
	GetScriptName
	GetTickCount
	Input
	IWealthLabAddOn3
	IWealthLabAuto
	IsRealTime
	Null
	PlaySound
	Print
	PrintFlush
	PrintStatus
	RunProgram
	SaveChartImage
	SetGlobal
	SetOptimizeValue
	SetPeakTroughMode
	ShowMessage
	Sleep
	UseUpdatedEMA
	WatchListAddSymbol
	WatchListClear
	WatchListCount
	WatchListDelete
	WatchListName
	WatchListRemoveSymbol
	WatchListSelect
	WatchListSymbol

	Technical Indicator Functions
	Overview
	AccumDist
	ADX
	ADXR
	AroonDown
	AroonUp
	ATR
	ATRP
	BBandLower
	BBandUpper
	BOP
	CADO
	CCI
	CMF
	CMO
	CumDown
	CumUp
	DIMinus
	DIPlus
	DSS
	DX
	EMA
	EMMinus
	EMPlus
	FAMA
	FIR
	Highest
	HighestBar
	HTDCPhase
	HTInPhase
	HTLeadSin
	HTPeriod
	HTQuadrature
	HTSin
	HTTrendLine
	HV
	Kalman
	KAMA
	KeltnerLower
	KeltnerUpper
	LinearReg
	LinearRegPredict
	LinearRegSlope
	Lowest
	LowestBar
	MACD
	MAMA
	Median
	MFI
	Momentum
	MomentumPct
	MoneyFlow
	NVI
	OBV
	Parabolic
	Peak
	PeakBar
	PeakNum
	PVI
	QStick
	RelSlope
	ROC
	RSI
	RSquared
	RVI
	SMA
	StdDev
	StdError
	StochD
	StochK
	StochRSI
	Sum
	TII
	TRIX
	Trough
	TroughBar
	TroughNum
	TrueRange
	UltimateOsc
	VHF
	Vidya
	VMA
	Volatility
	WilderMA
	WilliamsR
	WMA

	Time Frame Functions
	Overview
	ChangeScale
	DailyFromMonthly
	DailyFromWeekly
	GetDailyBar
	GetIntraDayBar
	GetMonthlyBar
	GetWeeklyBar
	IntraDayFromCompressed
	IntraDayFromDaily
	IsDaily
	IsIntraday
	IsMonthly
	IsWeekly
	SetScaleCompressed
	SetScaleDaily
	SetScaleMonthly
	SetScaleWeekly

	Trading System Control Functions
	Overview
	ApplyAutoStops
	BuyAtClose
	BuyAtLimit
	BuyAtMarket
	BuyAtStop
	CoverAtClose
	CoverAtLimit
	CoverAtMarket
	CoverAtStop
	CoverAtTrailingStop
	InstallBreakEvenStop
	InstallProfitTarget
	InstallReverseBreakEvenStop
	InstallStopLoss
	InstallTimeBasedExit
	InstallTrailingStop
	PortfolioSynch
	SellAtClose
	SellAtLimit
	SellAtMarket
	SellAtStop
	SellAtTrailingStop
	SetAutoStopMode
	SetCommission
	SetPositionSize
	SetShareCap
	SetShareFloor
	SetShareSize
	SetSlippage
	ShortAtClose
	ShortAtLimit
	ShortAtMarket
	ShortAtStop
	SplitPosition

