Wealth A Lab.o

WealthScript Function Reference
Wealth-Lab Developer 4.0

© 2003-2006 WL Systems, Inc.

Wealth-Lab Developer 4.0 WealthScript Function Reference

by WL Systems, Inc.

Revised: Monday, December 11, 2006

Wealth-Lab Developer 4.0 WealthScript Function Reference

© 2003-2006 WL Systems, Inc.

No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the
publisher.

Third party trademarks and service marks are the property of their respective owners.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use or misuse of information contained in this
document or from the use or misuse of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Printed: Monday, December 11, 2006

Special thanks to:

Wealth-Lab's great on-line community whose comments have
helped make this manual more useful for veteran and new users
alike.

EC Software, whose product HELP & MANUAL printed this
document.

I WealthScript Function Reference, Wealth-Lab Developer 4.0

Table of Contents

Part | Introduction 13
Part Il Alert Functions 15
O A= YT PSPPSR 15
P A L= o (00 YU 1 o | RPN 16
R N [T 4 (@ o [T gl 1Y o T PP PPPPRPRN 16
N [T o o 1] A Lo o 1 N4 o L= PR PR OPTPPPRT 17
O =T o 4 = T od PP 17
O =T 0] = 1= PP 18
A AN (=T 4 953 Y/ 111 o T] PP PPRPRN 18
Part Il Cosmetic Chart Functions 19
L OVEIVIEW oiieeiieiitiie ettt ettt ettt e ettt e oottt e e ettt e e e ettt e e e nb et e e e s bt e e e e nnbae e e e nbbe e e e nnnes 19
2 ANNOTALEBAI .ottt e e e e e e e e e s e n e e e e e e e e anae 19
R AN oY 0] = L (=T @1 o -1 AP T OO PPPPRPRN 20
A CrEALEPANEeeiii ittt oo et e e et e e e e e r e e e e e e a i eeaaeeeas 20
I B = T O o = PRSP 20
(S D) = T O] o = PRSP 21
A -\ B - o o o Lo HR PP TP PPRPRN 21
S I - A1V = | o == SRR 22
LS D = T o] 4 IR T PP PR PSR 22
O I = LV 0 = o = 23
L1 DraWLabel ...ttt e e e e e e e bbb e e e e e e e e nnrare s 23
I B = 1T oY= PRSPPI 24
R B T = (VY = To3 - LT | =SS 24
14 DrawWROUNARECT ..veviiiiiiiiiie ettt ettt e e s st e e e st e e s snbbe e e e snnneee s 25
T B =T = 25
G B T = U I =2 o] = SRS 26
A = = 1] 1] L0} £ PRSPPI 26
I = 1o (ol I = To L= N o (= TR PRP 27
19 HIAEPANELINES ...eeeiiiiiieie ettt e e e e e ettt e e e e e e e bt e be e e e e e e e e annbnneeas 27
20 HIAEVOIUME ..ottt ettt e e ettt e e e bbbt e e s nb b e e e s anbbe e e e anbbeeeennnes 27
P2 o To ST =T S PP PR PP 28
22 PlOLSEIIESLADEL ..eeiiiiiiiiiiieie ettt nnes 28
P22 T o 0] 451 {0] o 1= PP TP PPRPRPR 29
2 [0 #5371 21 T 1 PSR 30
25 PlotSYyNthetiCSYMDBOI oo 30
A IS T=Y1 2 - Tod 0o 1 o 10T 4 To [0 o] SRR 31
A S T=1 1 = 1= 6] Lo] AU TP PPPPRPT 32
28 SEtBArCOIOrS ot e e e nnnas 32

© 2003-2006 WL Systems, Inc.

Contents I

29 SEtCOIOISCREME ..ottt st e st e e st e e e st ae e e e nnnes 33
GO IS Y=Y o Yo 1 To7 1O PEERR 33
31 SetPaneBackgroUNACOIOr ettt e e e e e e e e e e e anes 33
32 SEEPANEMINIMAX ...eiiiiiiiiiiiiiiie ettt sttt et e e st e e s st bt e e s nb b e e e e nbb e e e e nbae e e e anres 34
33 SEtSEIIESBArCOION ..t 34
Part IV CommissionScript Functions 36
L OVEBIVIBW ittt ettt oottt et e e e oo oo bbbt e et e e e e e e aaa bbb et e e e e e e ea b b bbeee e e e e e e e nbbbbeeeaaeeeeannbeneeas 36
P OV 151 o = = PRSP 36
I O 1V 1 T o PRSP 36
O O 1V | 1 o1 4 TP P PP PP OPPPPPPPPPPPPPPPPPPPPR: 37
I 011V (@] (o [T o Y/ o 1 TP PPPPRPRN 37
LS 117,53 V7 1 4 o o | SRR 38
T CIMDALASOUICE ...t ee ettt e et e e e e e e et e e e e e e s et b e e et e e e e e e s s b b e ettt e e e s e e asnbrnneeeeeessannne 38
8 CIMRESUIL ettt e e e e oo et b bttt e e e e e e enbbe e e e e aeeeeeaanbbnaeeaaeeeaaanne 38
Part V Data Access Functions 39
O A= YT PRSP 39
A - T 701U o | SO T PP UOPPPPPPPPPPN 39
3 GeIDALE .. 39
=1 41 - o 1 o SRS 40
B GEIPOINIVAIUE ...ttt ettt e e et e e e st e e s anbbe e e e nnnes 40
B GEESECUITYNAIME ...uiiiiiiiie e i iectie et e e e e s se e e e e e e s st e e e e e e s s s et e e eeeeeesasnsaeseeeeeessaasnnsnnneeaeeeaannnns 40
A CT=1 853 Y/ 111 0o] I PP UOUPPPPRRPRNE 41
S =T i Yo QPRSP 41
LS C 1T i T o = PRSP 42
O @ o X< 1 =T = 42
N o oY VT - To L= PP U PPPPR P 43
D A ToT =Y N =T - Vo = SRR 43
R T o Ao =T [0] = PRSPPI 44
I e T o =1 o | SRR 44
ST o g To] =] I o TP PR PPPPR TP 44
G o=@ o 1= o SR 45
Y Lo 11 o1 TR 45
Part VI Date/Time Functions 46
L OVEBIVIBW ittt ettt ettt ettt e e e o4 oo bttt e et e e e e e e aaa b be e e e e e e e e e e b bbbe e e e e e e e e e nbbbbeeeaaeeeeannnbnneeas 46
2 BACINTEIVAL ..eeeiiiiiiie et b e e nnnees 46
G = T N [F o o OO P PP OPTPPPPPPPPP 46
4 CUITENTDALE ...ttt ettt ettt ettt ettt sttt st 5 555555555 s 55t st 5t et et s sesnennnsnnnnes 47
I O 01 ¢=T o | T 0 = PP PPPPRPRN a7
B DAtETIMETOBA .. .eiiiiiiiiii ettt e e sttt e e e sttt e e s anbb e e e e snbae e e s anbbeeeeaneees 47
T DAL TOBA .eiiiieiiiit ettt e e e e e e et e e e e e e e e et e e e e e e e et e e e e e e n e e e e e e e aanne 48

© 2003-2006 WL Systems, Inc.

WealthScript Function Reference, Wealth-Lab Developer 4.0

ST B = 1 =Y [0 1 1
9 DAYOFWEEK ..eevveeeciceeee ettt

10
11
12
13
14
15
16
17
18
19
20
21
22

Part VII

© 0 N O O A WDN B

Part VIII

1
2

Part IX

© 0 N O O A W DN PP

[
= o

DaySBEIWEENuuuiiiiiiiiiiiiiiiiiiiiiii b
DaysBetweenDatescoiviiiiiiiiiiiiii e
GEIDAY oo —————
GEEHOUT .t
GEEMINUEE ..
GEtMONTN e
GEEY AN ..ottt
ISLEAPYRAI ..
LASTBAN ..uiiiiiiiiiiiiiiiiiiiiiiitiii bttt
OPLIONEXPITYDALE ...ovvveiiieeiiiciiieeee e e e
SUTODALE ..o
SEITOTIME oot
TIMETOSEE i e e

File Access Functions

OVEIVIBW .eeiiiiiiie ettt ettt ettt ettt e et e e e eneee
FIHECIEAI ..ciiieiiee e
FIHECIOSE oo
FIECIEALE .veeie it
FIIEBEOF .o
FHEFIUSH ..o
FIHEOPEN ..o
FIIEREAM ..o
FIHEWIITE oo

Fundamental Data Access Functions

FundamentalPriceSeriesSAVEeragecccccccvvvvcvveeeeeeeeessinnnnns
GetFundamentalDetailccccovveieiiiiiie i

Math Functions

OVEIVIBW ..eiiiiiiee ittt ettt e ettt e e e e e e e s ae e e e e e e e anas
ADS
ATCCOS it
ATCSIN e
ATCSINN s
ATCTAN e
ATCTANN Lo

© 2003-2006 WL Systems, Inc.

Contents v

L2 DB eoiiieiiiii e e e et e e e e e — e — et e e e e e e e e e e e e e e e nrrr e et e e e e e e nnrnre s 63
IR T 7= o i 1o] == U R 64
I g o T 64
ST = o PP T PP PPPRPPPPP 64
LB HY POt oo ——————— 64
A | o TP P PR PPPRPPPPP 64
R T 1 0 T PSPPSR 65
S I T =T T =T | g Y= SRR 65
P20 I I g T=T o q (=T o o PP PSR 66
P2 I g T=T o q (=T o o PP PPP 66
2272 0 N PSPPSR 67
23 L0GA0 67
2 S o o RS 67
P2 T 1Y = PP PP 68
P25 1Y 11 o PSPPI 68
P22 A = TSP PPP 69
S T o V1T PP TP PPPPPPRPPPR 69
B2 B = - 1o I 1Y I T o PSRRI 70
10 = - o Vo [PSP RR 70
13 A = &= o o [0 o o PP PP 71
12 o &= o Lo (010111 o) APPSR 71
IS I o =T oo (0] 4 T 2= TSP RPP 71
K = 1[0 1T =T o [T TR PPPPPPT 72
1L T = Lo 11] o o PRSP 72
36 SELRANUSEEAoeeiiiiiiie ettt e bt e et e e e e e annes 72
ST o PP PRR 72
TS S 11 | o TSRS 73
1S T T | SRR 73
T T 1 PP PPPRPRRS 73
1 R I o PP PP P PP PPPPPPPPPPRR 73
A - 0| o [T P P PPPPRPPPR 73
A3 TreNULINEVAIUE ..ooeiiiiiiie ettt et e e st e e s et bt e e s snbbe e e e nnnes 73
I8 U o [o PP PP P P PP PP PPPPPPPPPPPPPRPPPRS 74
Part X PerfScript Functions 75
L OVEBIVIBW ittt ettt ettt ettt e e e o4 oo bttt e et e e e e e e aaa b be e e e e e e e e e e b bbbe e e e e e e e e e nbbbbeeeaaeeeeannnbnneeas 75
2 ACCOUNTEXPOSUIE .o 75
I 0= L] o1 g1 (=T) PP PRP PSR 76
A DIVIAENASPAI ..coieiiiiiiiiie ettt e e e e sttt e e e e e e s bbbt e e e e e e e e e aannnbbeeeaaaaeas 76
oI Y =T (o 1T a1 I ¥V o PP PPRPR 76
LS == 72X o [[T 1=) S EERR. 77
T PerfAAANUMDBET ..ottt e e e ettt e e s st e e e enees 77
I =T 7o [0] o3 PP TR PPPPRPRN 78

© 2003-2006 WL Systems, Inc.

WealthScript Function Reference, Wealth-Lab Developer 4.0

9
10
11
12

Part Xl

© 00 N O O A W DN PP

W W W W W W W W NN DNDNDNDNDNDDNDNDNMNDNEPLREEPLRPEPRPEPREPRLPEPPRPR P PR
N o o0 WON P O O 00N Ok WNEFPE O v 0o N o WODN -, O

L= N0 Lo 13 4 T o SRR 78
T T o (o] 2T =T | SRR 79
S e Ta AT [o [T o] 1 €= | PP U TP UUTPUPRRRTN 79
TOLAICOMIMISSION .uiiiiiiiiiiie ettt ettt e e sttt e s sabb e e s snbe e e e snbe e e e e snbbeeessnneeeeas 79
Position Management Functions 80
OV BIVIBW eeeeeie ettt ettt e e e oo oot bttt e e e e e oo bbb beee e e e e e e e nbbtbe e e e e e e e e aanbbbaeeeaeeesaannbbeneaaaeeeaaanne 80
ACTIVEPOSITIONCOUNT ...ttt e e e e e ettt e e e e e e e e st b e e e e e e e e e s annbbeeeaaaeeas 80
ClEAIPOSITIONS .oiiiiiiiee ittt e sttt e e e sttt e e s sttt e e s abb et e e s sbbeeeesabbeeeesnnbeeeenans 81
GEEPOSITIONDALA ...vveieeiiiiee ettt e e sttt e e sttt e e s et b e e e s sbbe e e e s nrbe e e e e nnbeeeeaan 82
GEPOSITIONPIIOITLY ..eeeiiiii ittt e e e e e et e e e e e e e s e sanbbaaeeeaeeeaannes 83
GEtPOSITIONRISKSIOP .oiiiiiiiiiie ittt e e et e e e e e e e e sanbbeae e e e e e e e aanes 83
LASTACLIVEPOSITION oottt sttt e e et e e s e bbe e e e nnnes 84
LaStLONGPOSITIONACLIVE ...uviiiiiieii et e e e e e e e e e e e s e re e e e e e e e e annrnneees 85
(= 05 {0 1T 1 1T] o TP PURTT R 85
LaStPOSITIONACTIIVE oottt e e e et e e e e e e s s bbbt e e e e e e e e e enneeneeas 86
LaStSNOMTPOSITIONACLIVE ... st s e e e e e 87
=1 A oo 1T 1 110 Yo RSP 87
POSTHIONACTIVE ...ttt e e oo e ettt et e e e e e s e ab bttt e e e e e e s nbbbbe e e e e e e e s annaeneeas 88
POSITIONBASISPIICE ..ot e e e e e e e e e nnaeeeeas 89
POSILIONBArSHEI ..ot st e e e nnnees 90
POSITIONCOUNT ..ttt et e e ettt e e st bt e e s sttt e e s enbb e e e e snbbeeesanbbeeeennnees 90
POSITIONENTIYBAI ..ot e e e e et e e e e e e e e nbaereeas 91
POSITIONENTIYPIICE oottt e e e e e s e bbbt e e e e e e e e ennaeneeas 92
POSIHIONEXITBANeiiiiiiiiii et ettt e e e st e e s abbe e e e nnnees 93
POSIHIONEXITPIICE .oeiiiiiiiii ettt e e e e 94
POSItIONEXItSIGNAINGIME ..o e e e e 94
Lo ST1 (o] o I o o o TR N TP PURTT R 95
POSIHIONMALE ...ttt e ettt e e s ettt e e s ettt e e e snbb e e e s anbbeeeennnees 96
POSIHIONMAEPCE ...ttt e e st e e s ebbe e e e nnnes 96
POSITIONMEE ...ttt oottt e e e e e e e e abbb et e e e e e e e s nbbbbe e e e e e e e s annneeneeas 97
POSITIONMEEPCL ...ttt e e e e e e st e e e e e e e s bbb be e e e e e e e e enneeneeas 98
POSITIONOPENMALE ...ttt e et e e e e e s et r e e e e e e s s et eeeeeesannsstneeeaeeesanneeneees 99
POSItIONOPENMAEPCT ...ttt e e e e e e e s s e e e e e e s s e e e eeeeeeeeannrnneees 99
POSITIONOPENMEE ...ttt e e e e e e s et e e e e e e e e e e sanbbeeeeaaeeeaannes 100
POSITIONOPENMEEPCE ...ttt e e e et e e e e e e e e et beeeeaaeeeaannes 100
Lo ST 0] @] =T a1 = o 1 | PR 101
POSItIONOPENPIOfItPCE ... e e e e e s e e e e e e e nnnes 102
L I T N (oY a1 @] o [T g Y/ o 1 TP UUT P UUTPPPRRPTN 102
POSITIONPIOTIL ...t e e e e e e e s et e e e e e e e e eannes 103
POSILIONPTIOTITPCL ..eiiiiiiiiicie et e e s srbe e e e nnbeee e e e 104
POSILIONSNAIES ...ttt e ettt e e s sttt e e s abbe e e e s sbbeeeenaes 105
POSITIONSRNOIT ... ettt e e e et e e e e e e s e et beeeeeaeeeaannes 105

© 2003-2006 WL Systems, Inc.

Contents VI

38 POSItIONSIGNAINGIME ...cccciiiieeiee e e e e e s e e e e e e s e et ee e e e e e s s e snnstnaneeeeeesnannes 106
TS I o 1Y 0] 153V 121 o 1 Y PSR 107
A0 SEtPOSITIONDALAeeieiieiie ettt e e e e e et e e e e e e e s aa b e et e e e e e e e nnr e aeaaaeeas 107
N ST~ { =T o oY1 4T] 1 d T 1 1 PP 108
42 SetPOSITIONRISKSIOP .uvviiiiiiiiiiiiii e e e e e s e e e e e e e s s s e e e e e e s s snraraeeeeeeas 110
43 SEtRISKSIOPLEVEI ... e e e e e e s e e e e e e e s e e e e e e 110
Part XIl Price Series Functions 112
O A= YT PRSP 112
2 ADSSEIIES .iiiiieiite et e et h bt e e e b bt e e e b et e e e abbe e e e s abre e e e e nrbeeeeaae 112
R AN Lo [@F= L= o Vo F= T B =Y £ S P PTTP T UPUPPPRTN 112
o [o LU AU =] 7= TR TP EPPT PP 113
I o [0 ST 1= PSP PPPPPROPPPR 114
B AUUASEMNESVAIUR ...ooiiiiiiiii ettt sttt e e s st bt e e s bt e e e s nbbeeeesnrbeeeeane 114
T ANAIYZESEIIES .ttt e e e oo et e e e e e e e e e h b b et e e e e e e e bbb be et e e e e e e anbbeaeaaaaeeaaaane 114
8 CRANGEBAT ..ciiiiii ettt e e e et e e e e e e e bbb et e e e e e e e e bb e e e e e e e e e aaane 115
O ClEarEXTEINAISEIIES . ueviii ettt e e st ee e st e e e s sbbeeeessnbeeeeaae 116
OB @[T T oo [od= 1 (0] £ USRS 116
11 CreateNAMEUSEIIES ..o eeiieiiie ettt e e e e e e et b e e e e e e e e e s e abbb e e e e e e e e e e bbbbeeeaaaeeeannreneeas 117
12 CrEALESEIIES ...ueiieeiiiii ettt oottt e e e oo oottt et e e e e oo e a bbb et e e e e e e e e bbb be e e e e e e e s e nbbbbeeeaaeeeeannreneaas 117
13 CreateSeriESLENGLIN oo e e 118
i Ol 0 111 @)V = PP PP PP PP PPPP 118
15 CrOSSOVEIVAIUR w..coiiiiiieteeee ettt ettt e e e e e e e e bbbt e e e e e e e s e bbb beee e e e e e e annnreneeas 119
G Ol o 111 U o [1= ST PPT PP 119
17 CroSSUNUEIVAIUEeiiiiiiiiie ettt ettt e st e e s st e e e e nnb e e e e nnbbe e e s anees 120
18 DIVIHESEIIES .eeeiieiiiiiie ettt ettt e st e e s bbbt e e e bttt e e e sttt e e snbbe e e e anbaeeesanbbeeesaneees 120
19 DiIVIAESEIESVAIUE ...ttt e et e e e e e e e s bbb et e e e e e e e annbeneeas 120
20 DiVIHEVAIUBSEIIES ...oeiiiiiiiiiiiii ittt e e e e e e et bbbt e e e e e e e snbbbeeeeaaessaaanbbeaeeaaaeeaannne 121
2 T g = 11 1=V o] o PR 121
22 FINANGMEASEIIES ...ueiiiiiiiiiie ettt ettt ettt e et e e ettt e e e enbb e e e e snbae e e s anbbeeeeaneees 122
23 FIFSTACTUBIBAT ...ttt e e e e e ettt e e e e e e e e bbbt e e e e e e e e e aanbbnaeaaaaeeaaanne 122
P 1=y DTS T o g1 1 { (o] o HP PP PPPPRPR 123
25 GEEXIEINAISEITES ...uviiiiiiiiiie ettt ettt e bt e e e sttt e e s snbbe e e e aneees 123
26 GEESEIESVAIUE ...ooiiiiiiii ittt ettt e e ettt e e e st e e e et e e nnees 124
27 MUIIPIY SEIIES .ttt ettt e e e e e e et b ettt e e e e e e anbbeeeeeaaeeeaannbbnaeeaaaeeaannne 125
28 MUILIPIYSEIIESVAIUE ..ottt e e et e e e e e e e saab b ae e e e e e e e aanes 125
A B O (1= AT A= PRSP 125
30 RESTOIEPIIMAIYSEIIES ..ooiiiciiiieiiie e e e e eec et e e e e s e r e e e e s s st reeeeeeesasssaeeeeeeeessaanstnnneeeeeasannnes 126
I Y=y D =T of] o) (o] I PP UOTPPPPPRPRN 126
32 SEEPTIMAIYSEIIES ...eeeiiiiee ittt ettt e e e e e e et bbbttt e e e e e e anbbeeeeeaaesaaaanbbaaeeaaaeeaannnes 127
33 SEESEIIESVAIUE ...eeiiiiiiie et nnas 128
1Y Y Yo | L=T @ 1Ko 1Yo T L= SO EERR. 128
35 SUBDTIACTSEIIES ..nuiiiiiiiiiie ettt ettt e e e e e e e bbbt e e e e e e e e snbbebeeeaaeesaannbbnaeaaaaeeaaanne 129

© 2003-2006 WL Systems, Inc.

VI

WealthScript Function Reference, Wealth-Lab Developer 4.0

36
37
38
39
40
41
42

Part XIllII

© 0 N O O A W DN B

[e
N B O

13

Part XIV

© 0O N O 0o B~ W DN P

e el e L = o
© O N o O~ W DN RFE O

SUDLIFACISEIIESVAIUE ...t e e e saaeee s 130
SUDLIFACIVAIUBSEITES ...ttt e et e et e e e snnaeee s 130
)Y 1o N | PP PP UUTPPPURPTN 130
YT 1S T PSR 131
Y414 = 4T ed 2 - PSR 132
LIS T4 21501,/ o PP T PP PPPPPPRPN 132
TUINUD 133
SimuScript Functions 134
(@Y= VT PP 134
=TT (101U | o | AT TSP PP TP R PP PP PPPPPPPTPPUPPPIR 134
BUYANAHOI ...ttt ettt e e e e e sttt e e e e e e e e aanbbeeeeaaeeeaannes 134
(0= T o [To F=1 =100 11| o | SO PPOTPRPTI 135
L@ 1] o PRSPPI 136
(B =111V B o 111V o E T TP PP PP PP PP PP PPPPPPPTPPUPPPIRt 136
(B = VT B o 111V o | = o S TP P PP PP PP PP PP PP PPPPPPPTPPUPPPIR 137
o 112 PPEER 137
SEtPOSITIONSIZEFIXEAeiiiiiiiiiie et e e saaee s 138
SEtPOSITIONSIZEPCL ...t e e e e e e e e e anes 138
SEtPOSITIONSIZESNAIES ...t e e e e et e e e e e e e anes 138
ST] A = 1 72 139
Yo 0=V 1 1 I = PSR 140
String Functions 141
OVEBIVIBW ettt ettt ettt sttt e e s h bttt e e e ettt e e sa bttt e e s ab et e e e ea bt e e e e am b bt e e e anbe e e e e anbe e e e s anbbeeeennnneeens 141
(O3 1= 1 PP OTPRPTI 141
3 T PRI 142
LO00] 001 o F=T =35 | S 142
L7010 a1 01> =0 I =" 142
L0707/ 143
(D=L (= PO PP PTPPPROTPRR 143
[(o T 1 01 TP UT T UPTPPPURPTN 143
o] g0 (=1 Lo - | PP OTPPPRTPRRN 144
(1= 0] (=] o PP 144
1 ES =T o SRR 145
INETOSET i 145
=T o) d o PSR 145
(o)1= O L] = TSP PP PP OPPPPPRPPPRN 146
L T o PRI 146
[0 1= T TSP P PP PR PP PP PPPPPPPTPPPPPPIR 146
T o] [T | PO 147
SEITOFIOAIDET ..ottt et et e e s snbb e e e anaeee s 147
S g 1o][ST P PP PP PPPPPPRRPPRN 147

© 2003-2006 WL Systems, Inc.

Contents VIII

20 SEITOINTDET oottt e sttt e s sttt e e s enbb e e e anbae e e s anbbeeeennnees 148
P22 R I 1 0 2 T PRSP 148
N I 4T 41 = i PP TP PPRPR 148
22 T I T 41 U | 1 SRR 149
P U Lo o =T O 1= SR 149
Part XV System Functions 150
L OVEBIVIBW oiiiiiieitte ettt ettt oottt et e e o4 oo e a ettt bt e e e e e e e e aaa bbb e e e e e e e e e e aanbbseeeeaeeesaannbbeaeaaaeeeaaanne 150
P2 N o 1o] o PP PPPRPROPPPR 150
IR AN Lo [@0 T 4410 1= 1 - T Y SO 150
A4 AdASCANCOIUMI Lottt e e e e s e bbbt e e e e e e e e e aabbbe e e e e e e e e e nnbbeeeaaaeeas 151
5 AdASCANCOIUMNSEE .ottt e et e e e e e e e s bbb e e e e e e e e snbbeaeeeaaeeaannes 151
6 AIIOWSYMDOISEAICI .ooiiiii e e e e s e e e e e e e s rear e e e e e e e annne 152
A O =T 1 110 1T] o] -1 o] USSR 152
R 1<) (€1 o] o I | PP TP UPUPPRRTRN 153
S 1= A5 Tod] o) { N = 1y 11 PP P TP UOUPPRPTRN 153
O 1= I Tod O o ¥ o USSR 154
5/ R 1 T o T SRR 154
12 IWealthLabAAUAONS ...ttt et e e et e e et e e e e st be e e e nntaeeeennsbeeeeennees 155
13 IWEAITNLADAULO ..eeeiiiiee ettt e e et e e e e e e s e bbb e e e e e e e e e annbeneeas 155
I Lo =T L T2 = RSP 156
1L T USSR 156
G o F= 1V T 1 U Lo TP TP 156
A = 11 | S PSPPSR 157
R T o 1 LU = o USRS 157
T o A1 1 05] £= LU 1P RR PSR 158
20 RUNPIOGIAM .. 158
A oAV <T@ o =T 4 [g = To 1= PP PPRPR 159
22 SEEGIODAL ... e nnnas 159
23 SELOPLIMIZEVAIUE ...oeviii ettt e e e e e e e e e e e e e s e et e e e e e e s e e snsstnaeeeeeeeaaannes 160
24 SetPeaKTroUGNMOTEcooeiiieeiee ettt e e e e st e e e e e e e e sanbbeae e e e e e e e aanes 161
25 SNOWIMESSATE ... eetieiiiiie ettt ettt e e e oo e ek bbbttt e e e e e e e bbbt et e e e e e e e e nbbete e e e e e e e e anbbaaeaaaaeeaaanne 162
2S-SR 162
7 A 1= 10 o o - = o |1 PR 163
28 WatChLISTAAASYMDOI ...ttt e e e e e e e e e e e anes 163
29 WALCNLISTCIAIutiiiiiiiiii ittt e e e ettt e e e e e e e bbb e e e e e e e e e e aanbbnneeeaaeeaaanne 164
IO V= (o | IS} e U o | PRSP 165
3L WALCHLISIDEIELE ...ccoiiiiii ettt et ettt e e e st e e s snbbe e e s ennes 165
32 WALCNLISTNGAIME ...ttt e e e e ettt e e e e e e e s bbbt e e e e e e e e e aanbbnneeaaeeeaaanne 166
33 WatChLIStREMOVESYMDO! ..o a e e 166
34 WALCNLISISEIECT w.eeiiiiiiii ettt et e s st e e s ennes 166
35 WaAtChLISTSYMDO! .oeeiiiiiiii i e e e e e e s e et e e e e e e s s e snnraaneeeeeesannne 167

© 2003-2006 WL Systems, Inc.

IX

WealthScript Function Reference, Wealth-Lab Developer 4.0

Part XVI

© 00 N O O A W DN PP

ADA W W W W W W W W W W NDNDNDNDNDNDNDDNDNDMNDNMNDNNEPRPRPPEREERPEPRPRPER P PE
P O © 0o N OO O A W NP O O 0O NO O W NP OO 00O NO O A W DN P+, O

Technical Indicator Functions 168
OV EBIVIBW ettt ettt ettt e e e oo oottt bttt e e e e oo oMbt be et e e e e e e o aab bt be e e e e e e e e e nbbbbeeeaaaeeesanbbbaeeaaaeesannnes 168
ACCUMDIST ...ttt e e e e e s e bbbt et e e e e e e e snbb b b e e e e e e e e e annnneneeas 168
N 5) PRSP P PR 169
F) PSR PR 170
YN geTo] 1 5o 111V o E PP T PP PP PP PUPPPPPPPPPPPRt 171
YN e Yo] 016 1 o R TP P P TP PP PP PP PPPPPPPPPPPPPRt 172
NN 1 S PSRRI 173
N 1 L PSR P PR 174
BBANULOWET ...ttt ettt ettt e e e e e s e bbb et e e e e e e s e aanbbeaeeaaeeeaaaanbbeaeeaaeeeaaanne 174
2] - o To 10] o o 1T U PP UUTPPPURPTN 175
21 = PO OTPPPROTPRR 176
1O 5 1 LRI 176
X PRSPPI 178
L3 1Y PRSPPI 179
317 PRI 180
CUMDOWNN <ttt e e e ettt e e e e s bbb e et e e e e e s et bbb e et e e e e e e annbbnneeeaeesaannns 181
LO{T1 101 o 182
DIMINUS ettt ettt ettt e e e 4o ekt bttt e e e a2 e e e aaabbe e e e e e e e e saamnbbeeeeaaeeeaaannbbsaeaaaeeeaaannes 183
DIPIUS ettt ettt ettt bt e e e b et e e e b bt e e e b bt e e e e b bt e e e e b be e e e e abbe e e e e abbeeeeenrreeeeaae 184
513 PP PTPPPPTTPRRN 185
5) SO RPPUPRR 186
B A e e e e b e e e et —— e e e e et teee e et bt e e e e aEbaeeeaarbaeeeaarbaeeeaarreaee et 187
EIMIMINUS ottt ettt e e ettt e e s bttt e e sk bt e e ek bt e e e sk be e e e e abbe e e e e abbeeeeeabbeeeenan 189
EIMPIUS oottt ettt e e bt e e e bt e e ekt e e ek bt e e e e b b e e e e b be e e e e abbe e e e e arreeeeeae 190
AN 1 SO SP PRSP 190
1 SO SPUPSR 191
L [T | =S PR 192
L [Te | =531 2 - PSR 193
[I 1O o T T TSRO RPRUPSR 194
HTINPRASE ...ttt ettt e e e e e e ettt e e e e e e e e aanbbeee e e e e e e e e aanbbeeeaaaeeeaaannes 195
[I =T To 1S 1 o PP PTPPPPPTPPRN 195
[I =T o Lo PP OTPPPRTPRR 197
[IO TUF=To L= LU =PSRRI 198
L 8 1S 1 RSP SPOUPSR 199
L I = oY | o PSP PTPPPPTPRR 200
YOS PTPPPPOTPRR 202
(= 111 1 = T o U PP OUTPPPURPTN 203
A 1 S OUPSPRUPSR 204
Q=1L 1= o) =] PP OTPPPRTPRRN 205
L= 1 =T o 1= PSR 206
LT T =T o [P UUTPPPRRPTN 206

© 2003-2006 WL Systems, Inc.

Contents X

A IR Y= T T g LT o | o =T o PSR 207
I IR g L= -T2 LT o 1 Lo T o 1= PSSR 207
2 o)1V L TP PO T PP TP PPPPPPPPPPPPPPPPPPPR: 208
A5 LOWESTBA ..eeeeiiieiiiiit ettt e e et e e e e e e e e e e e rr e e e e e e a e e eeeeas 209
AB IMACD oot b e E e e e bt e e b bt e e e et b et e e e abbe e e e e abbeeeeaarreeeean 209
A7 VAN A e et e b ettt e e b et e e et bttt e et be e e e e abbe e e e e abbeeeeaanreeeean 211
N I |V =T 1= T PP TP PPPRT 212
L V| PRSPPI 212
50 MOMENTUIM oottt e e e e e e e e e e e e e e s e bbb e et e e e e e e aan b b e ee et e e e s e aannbrnneeeeeeesannne 214
51 MOMENTUMPCE ...t e e e e et e e e e e e st r e et e e e s s e annbreneeeeeeeaannes 215
B2 MONBYFIOW ..ttt e e e e oottt e e e e e e s nb bbb e e e e e e e e e annbbeaeeaaaeeaaannes 215
53 N N Y PRSP 216
S O 2 Y PP 217
LT o= 1= o o] [T o PR PR PSR 218
LG =T 1SRRI 220
A == 2 7| PRSP 221
B8 PRAKINUM ..ttt e ettt e e s bt e e ettt e e e et e e e e et bt e e e nbre e e e nnnees 222
ST T Y PRSP 223
LS TO I O 1] o] RO ER PSR 224
L2 T L= 1] 1o o 1= SRR 225
22 = { @ L PRSP 225
L2 T 45 1 PRSP 227
T ST LU= T Yo PP TP PPRPRN 228
LTSI =4 Y PRSP 229
B8 S A e e e b b e e e e b e e e e e b et e e e b bt e e e b be e e e abae e e e abreeeeannres 230
LS (o T RPN 231
LTS o | = o] PP PPPPRPRE 232
(1SS (oY od o1 I PRSP 233
40T (oY o3 o 1 -G PRSP 234
4TS (oY od o1 = 45] PRSP 235
47 11] 14 TSP 236
45 T 1 | PP PR PSR 237
£ I 0 PRSP 238
5 I 10T | PR 239
7B TrOUGNBAT ittt e e e ettt e e e e e e s bbbt e e e e e e e e e aanbbeeeeaaaeeaannes 240
A I (o 1V 1 1N 10 o SRR 240
4= T 8 1= = Vg Yo = SR 242
A I O L1011 F= 1 (=T L= o PRSP 243
SO Y 1SR 243
S YT Y- PP PR PSR 244
S 2 PP 245
S I o = 41 /SRR 246

© 2003-2006 WL Systems, Inc.

Xl

WealthScript Function Reference, Wealth-Lab Developer 4.0

84
85
86

Part XVII

© 0 N O O A W DN B

e e R N o e
N o o0 W N R O

18

Part XVIII

© 0 N O O~ WDN P

e e e e L
o N o o WDN PR O

WITAEIMA ettt e e e ettt e e ettt e e e ettt e e e anbbe e e e enbbeeesanbaeeesanees 247
WITTAMSR ettt e e sttt e e e st e e e e bt e e s enbb e e e s anbbeeesanees 248
L USRS 249
Time Frame Functions 251
(@Y= VT PP 251
CRANGESCAIE ... ettt e e e e e et b e e e e e e e e e nbbr e e e e e e e e e ane 251
DailyFromMMONTNTY .ot e e e e e e e e e e e e e e e annes 252
DallYFrOMWEEKIY .eeeeiieiiieceee et e e e e s e st e e e e e e e s s nnnb e e e e e eeeeannnne 252
LCT= = 11}V - PSR 253
GELINIIADAYBAI ... s 253
GEEMONTNIYBAT ...ttt e e e e e ettt e e e e e e e e snbbe e e e e e e e e e annes 254
LCT= VAT YA = PSR 254
INtraDayFromMCOMPIrESSEA ..oociiiiiiiiieie e e e e e e e e s e e e e e s e st e e e e e e s e snrareeeaeeeseannrneeees 255
INtraDayFrOMDAIY ...t e e e e e e e e b ene s 256
1Y 7 V] TP URPTTTTR 256
£ 1 8= o - 256
1S3 o a1 o1 PSR 257
ISVVEEKIY . ettt oottt e e e e e e s bbbt e e e e e e e e e bbb be e e e e e e e e e nnreaeeas 257
SEtSCAlECOMPIESSEA ..ttt ettt e e e e e sttt e e e e e e e s nbbbbe e e e e e e e e snbbsaeeaaaeeaaannes 257
Y=Y o= 1= I 11 Y PSR 258
Y= STtz 1= o T 1 1 1Y/ SRS 259
SEESCAIEWEEKIY ...ttt e e e e e et a e e e e e e e e anes 259
Trading System Control Functions 261
OVEBIVIBW ettt ettt ettt sttt e e s h bttt e e e ettt e e sa bttt e e s ab et e e e ea bt e e e e am b bt e e e anbe e e e e anbe e e e s anbbeeeennnneeens 261
F N o] o1}V U (o 1] o o 1SR 261
270N (O [0 1] PR P UUTPPPURPTN 263
U Y72 0 1 PSR 263
2T YN 1Y, T = PSR 264
LY] e o PSPPSR 265
L670)Y 1= AN { O [0] = U UUTPUPUPRTN 265
70NV N IR o | PRI 266
COVEIALMAIKEL .ot e st e st e e sbb e e s snbb e e e snnaeeeas 267
(70 YT A £ o o 267
COVEIALTIAIHINGSTOP eeiiiiiiiiie ittt e e e e ettt e e e e e e e enbb e e e e e e e e e e annes 268
INSTAlIBrEaKEVENSIOP uvuviiiiiiie it e e e e e e s e e e e e e e eb e e e e e e e e e annrnneees 269
T B3 €= 1 = o) 110 1= U =3 S 269
INStallREVErSEBIrEakEVENSIOP \1oovvviiiiieie e iiiiie et e e e s s e e e e e s s e e e e e e e e snnnreees 270
Ta] €= 1 IS (o] o] o 11 PP UUPTP TR 270
INSLATIMEBASEAEXIT ..eeiiiiiiiiiiiiiie ettt ettt e e st e e e ennes 271
Ta By €= LI = V1 T T 1] o o S 272
POrtTOlIOSYNCR L. e e e a e e e e nne 273

© 2003-2006 WL Systems, Inc.

Contents Xl

ST N {1 o E] =S PRSP 274
P20 IS T=] 1N { I o1 RPN 275
21 SEIATMAIKEL ...ttt e oottt e e e e e e e bbb e et e e e e e e e abbete e e e e e e e e anbraaeaeaaeeaaanne 275
S Y= | N £ o o SRR 276
P2 IS Y= | AN I = U1 T 1) (0 o SRR 277
S Y=Y A W o 1] o 011, o o L= SRR 278
25 SEECOMIMISSION L.uiiiiiiiiie ettt e e e e e e ettt et e e e e e s e abbbeeeeaa e s e anbbeeeeeaaesaaaanbbnaeeaaaeeaaannes 278
26 SELPOSILIONSIZE .ueiiiiiiiie ettt ennas 279
TS 1=] =T =15 T SRS 279
S IS T=] 0S] g V=] o o Yo T S PP PR PSR 280
29 SEESNAIESIZE ...ttt e e e e e e e e b bet e e e e e e e e e nbraaeeaaeeeaaaane 280
GO ST =Y] 1T 0] o = Lo =SSR 281
I S s [0 Y 7N (O o] = PRSP 281
IS 1o Y 7N IR o | PP 282
IS IS Yo 7N 11V = T = PP T PO PPPPRPRN 283
TS T] 7N 4] o o SRR 283
G LSS o 11 o 1= 1 oY SRR 284

Index 0

© 2003-2006 WL Systems, Inc.

13

WealthScript Function Reference, Wealth-Lab Developer 4.0

Introduction

The Function Reference defines, describes, and demonstrates the WealthScript
functions by example. However, if you need more examples of a particular function,

you can use the function search feature
that contain a specific WealthScript function.

of the ChartScript Explorer to find scripts

Each function contains a header in its description that indicates if its use is valid for a
particular type of script. For example, the following header indicates that the function
is valid for use in ChartScripts and SimuScripts, but not in PerfScripts or CMScripts.

MChartScripts MSimuScripts OPerfScripts ©CMScripts

The legend below provides definitions for additional indicative symbology:

M Valid for use
O Invalid usage

Valid in specific cases

& Usage difference between ChartScripts and SimuScripts

Useful tips:

1.

Use the QuickRef, which is found in the main icon bar on the left. Place the
cursor on a WealthScript function, which is syntax highlighted in blue by default,
in the Editor view and press F1 to call up the QuickRef for the function.

When coding manually, use the Smart Code Editor features. Before typing a
WealthScript function name, strike Ctrl+Space bar to bring up a list of
WealthScript functions. As you continue to type characters, you can filter the list
to quickly locate the function you're looking for. Also, for functions with
parameter lists, after typing the opening parenthesis "(" a list of parameters will
be displayed with a cue for the current parameter in bold type.

WealthScript functions are found in at least one of 14 categories. Click below to be
taken to an overview.

Alert Functions/18

Cosmetic Chart Functions/i

CommissionScript Functions/z&

Data Access Functions/z$

Date/Time Functions/4

File Access Functions/s6)
Math Functionsleh

PerfScript Functions/7

Position Management Functions/sh

Price Series Functions/i®

SimuScript Functionsfis

String Functionsfah

System Functions 154

Technical Indicator Functions/ie®

Time Frame Functions/zsh

© 2003-2006 WL Systems, Inc.

Introduction

Trading System Control Functionslzeh

14

© 2003-2006 WL Systems, Inc.

WealthScript Function Reference, Wealth-Lab Developer 4.0

Alert Functions
Overview

An Alert is an order that needs to be placed for the next bar. Using the Alert
Functions, you can access the number of alerts that a script has generated, as well as
the symbol, order type, position type, price, and number of shares (contracts) of a
specific Alert.

Note: The Alert category of WealthScript functions are not available for
SimuScripts.

The following example shows how you can create a text file of Alert information
automatically from within any script.

Example

{ These decl arations may appear at the begi nning of the script }
const delim="]";

const fle = "C\Alerts.txt';
var MyAlert: string;
var a, FleHdl: integer;

{ Afunction to round Price to precisely 2 digits after the decinal }
function StockFix(Price: float): float;

begin
const factor = 100; // 1000 for 3 digits, etc.
Result := Round(Price * factor) / factor

end;

{ (* Your script's nain body goes here *) }

if AlertCount > 0 then

begin

FleHdl := FileOpen(fle);

for a:=0to AlertCount - 1 do

begin

MyAlert := GetSynbol + delin

+ IntToStr(AlertPositionType(a)) + delinm
+ IntToStr(AlertShares(a)) + delin

+ IntToStr(AlertOrderType(a)) + delinm

+ FloatToStr(StockFix(AlertPrice(a)));

Filewite(FleHdl, M/Alert);
end;
end;

© 2003-2006 WL Systems, Inc.

Alert Functions 16

2.2 AlertCount

AlertCount: integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the number of Alerts that have been generated. An Alert is an order that
needs to be placed for the next bar. Use AlertShares, AlertPositionType,
AlertOrderType, AlertSymbol and AlertPrice to gain more information on a specific
Alert.

Example

{ Place at the end of your script }
if AlertCount > 0 then
ShowMessage(IntToStr(AlertCount) + ' Alert(s) for the next Bar!'

)i

2.3 AlertOrderType

AlertOrderType(Alert: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the order type of the specified Alert. The Alert parameter is an integer value
that contain an Alert Index number. The index number should be between zero (first
Alert) and AlertCount - 1.

The return value will be one of the following:

0 = Market Order
1 = Stop Order
2 = Limit Order
3 = AtClose Order

Example

{ Place at the end of your script }
var a: integer;

var s: string;

for a:=0to AlertCount - 1 do

begi n
s :="Alert ' +IntToStr(a+ 1) +"' is a';
case AlertOrderType(a) of
0:
s :=s + ' Mrket';
1:
s :=s + ' Stop';
2:
s :=s + ' Limt';
3:
s :=s +'n At dose';
end;
s :=s + ' Oder';
DrawLabel (s, 0);
end;

© 2003-2006 WL Systems, Inc.

17 WealthScript Function Reference, Wealth-Lab Developer 4.0

2.4 AlertPositionType
AlertPositionType(Alert: integer): integer;
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Returns the Position type of the specified Alert. The Alert parameter is an integer
value that contain an Alert Index number. The index number should be between zero
(first Alert) and AlertCount - 1.

The return value will be one of the following:

0 = Buy
1 = Sell
2 = Sell Short

3 = Cover Short

Example

{ Place at the end of your script }
var a: integer;

var s: string;

for a:=0to AlertCount - 1 do

begin
s :="Alert " +IntToStr(a+ 1) +' is a"';
case ertPositionType(a) of
0:
S :=s + 'Buy';
1:
s :=s + "Sell";
2.
s := s + 'Short';
3.
s := s + 'Cover';
end;
s :=s + ' Oder';
DrawLabel (s, 0);
end;

2.5 AlertPrice

AlertPrice(Alert: integer): float;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the price of the specified Alert. Limit and Stop Order Alerts will have a Price
only. The Alert parameter is an integer value that contain an Alert Index number.
The index number should be between zero (first Alert) and AlertCount - 1.

Example

{ Place at the end of your script }
var a: integer;
for a:=0to AlertCount - 1 do
if (AlertOderType(a) =1) or (AlertOderType(a) = 2) then
DrawLabel ("Alert ' + IntToStr(a + 1) + ' has a price of '
+ Format Fl oat (' $#, ##0.00', AlertPrice(a)), 0);

© 2003-2006 WL Systems, Inc.

Alert Functions 18

2.6 AlertShares

AlertShares(Alert: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the number of shares, or contracts, in the specified Alert. The Alert
parameter is an integer value that contain an Alert Index number. The index number
should be between zero (first Alert) and AlertCount - 1.

Example

{ Place at the end of your script }
var a: integer;
for a :=0to AlertCount - 1 do
DrawLabel ("Alert ' + IntToStr(a + 1) + ' is for
+ IntToStr(AlertShares(a)) + ' shares', 0);

2.7 AlertSymbol

AlertSymbol(Alert: integer): string;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the symbol of the specified Alert. The Alert parameter is an integer value that
contain an Alert Index number. The index number should be between zero (first
Alert) and AlertCount - 1.

Remarks

e Since you can make trades on symbols other than the 'clicked' symbol through the
use of the SetPrimarySeries function, the AlertSymbol may not be the same as
the 'clicked' symbol.

Example

{ Place at the end of your script }
var a: integer;
for a:=0to AlertCount - 1 do
DrawLabel ("Alert ' + IntToStr(a + 1) + ' is for synmbol: '
+ AlertSynbol (a), 0);

© 2003-2006 WL Systems, Inc.

WealthScript Function Reference, Wealth-Lab Developer 4.0

Cosmetic Chart Functions

Overview

In Wealth-Lab Developer 4.0, you have control over almost everything that is
displayed on the chart. Whether it be a text annotation, a graphics object, or even a
bitmap image, look towards the Cosmetic Chart Functions to do the job. Many of the
functions use the color and style constants found here.

Note: The Cosmetic Chart category of WealthScript functions are not available for
SimuScripts.

Color value constants (Color parameter)
#Bl ack, #Maroon, #G een, #Oive, #Navy, #Purple, #Teal, #Gay, #Silver,
#Red, #Linme, #Yellow, #Blue, #Fuchsia, #Aqua, #Wite, and finally
#W nLoss, which is used primarily for PerfScripts|7s.
Light colors, normally used for shading the chart background:
#RedBkg, #Bl ueBkg, #G eenBkg

Additionally, colors can be specified as 3-digit integers representing a RGB color,
where the first digit is the red color contribution, the second digit from green, and the
third digit from blue. For example, 900 would be red only, whereas 009 is blue only.

Plot formatting (line Style parameter) constants
#Thi n, #Dot t ed, #Thi ck, #Hi st ogran, #Thi ckHi st , #Dot s

Finally, note that many default Chart settings are found in the Options dialog,
Tools|Options (F12)|Colors/Style tab.

AnnotateBar

AnnotateBar(Text: string; Bar: integer; AbovePrices: boolean; Color: integer; FontSize: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Annotates the specified Bar with the text provided in the Text parameter. If
AbovePrices is true, AnnotateBar draws the text above the bar, otherwise below it.
Call AnnotateBar multiple times for the same Bar to stack Text strings above or
below the bar.

Example

{ Annotate a bar if it's a 200 day closing | ow }
var BAR i nteger;
for Bar := 20 to BarCount - 1 do
begin
if PriceCose(Bar) = Lowest(Bar, #C ose, 200) then
Annot ateBar('Low , Bar, false, #Black, 7);
end;

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 20

3.3 AnnotateChart

AnnotateChart(Text: string; Pane, Bar: integer; Price: float; Color: integer; FontSize: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Annotates the chart with the specified Text at the position determined by the Bar and
Price parameters. Use this function to draw ad-hoc annotations anywhere on the
chart.

Example

{ Annotate the last bar if we have a support level below it }
var LP, P: float;
I p := Peak(BarCount - 1, #Hi gh, 6);
p := PriceC ose(BarCount - 1);
if p>1Ip then
Annot at eChart (' Support', 0, PeakBar(BarCount - 1, #H gh, 6), Ip,
#Geen, 8);

34 CreatePane

CreatePane(Height: integer; AbovePrices: boolean; ShowGrid: boolean): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Creates a new blank chart pane. You can plot indicators in the pane using the
PlotSeries function. The Height parameter specifies the height of the new pane in
pixels. An average height of 75 pixels is common for new panes. The AbovePrices
parameter specifies whether to draw the new pane above or below the main
price/volume panes. The Grid parameter controls whether default horizontal grid lines
are drawn on the pane.

Example

{ Create a new Pane and plot an RSI in it }

var MyPane: integer;

MyPane := CreatePane(100, true, true);

Pl ot Seri es(RSl Series(#C ose, 30), M/Pane, #Navy, #Thin);

3.5 DrawCircle

DrawCircle(Radius: integer; Pane: integer; Bar: integer; Price: float; Color: integer; Style: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a circle with the specified Radius at a location determined by the values of the
Bar and Price parameters.

Example

{ CGrcle any 200 day High }
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begin
if PriceH gh(Bar) = Highest(Bar, #Hi gh, 200) then

© 2003-2006 WL Systems, Inc.

21 WealthScript Function Reference, Wealth-Lab Developer 4.0
DrawCircle(4, 0, Bar, PriceH gh(Bar), #Red, #Thick);
end;
3.6 DrawCircle2
DrawCircle2(BarCenter: integer; PriceCenter: float; BarRadius: integer; PriceRadius: float; Pane: integer;
Color:integer; Style: integer);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Draws a circle centered on BarCenter/PriceCenter, and intersecting at point
BarRadius/PriceRadius. The radius of the circle becomes the distance between these
two points.
Example
var Barl1, Bar2, Radius: integer;
var x1, x2, yl, y2: float;
Bar1l : = BarCount - 150;
Bar2 := BarCount - 100;
Set Bar Col or (Bar1, #Blue);
Set Bar Col or (Bar 2, #Blue);
yl := PriceC ose(Barl);
y2 := PriceC ose(Bar2);
DrawCircle2(Barl, yl1, Bar2, y2, 0, #Red, #Thin);
3.7 DrawDiamond

DrawDiamond(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Bar3: integer; Price3: float; Bar4:
integer; Price4: float; Pane: integer; Color: integer; Style: integer; FillColor: integer;
BehindPrices: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a diamond (or any 4 sided polygon), the four corners of which are specified by
the parameters Barl1/Pricel, Bar2/Price2, Bar3/Price3 and Bar4/Price4.

Pane Specifies which on which pane to draw the diamond. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the diamond.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the diamond. Pass -1 to draw an

unfilled diamond.

BehindPrices Controls whether the diamond is drawn behind or in front of the price
bars.

Example

var P1, P2, P3, P4: float;

var B, B3, B2, Bl, B4: integer;
b := BarCount - 1;

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 22

3.8

3.9

b3 := TroughBar(b, #C ose, 13);
b2 := PeakBar(b3, #C ose, 13);
bl := TroughBar(b2, #C ose, 13);
b4 : = b2;

pl := Priced ose(bl);

p2 := Priced ose(b2);

p3 := Priced ose(b3);

p4 :=pl - (p2 - pl);

Drava|armnd(bl, pl, b2, p2, b3, p3, b4, p4, 0, #G ay, #Thick, #Silver,

true);

DrawEllipse

DrawEllipse(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Pane: integer; Color: integer; Style:

integer; FillColor: integer; BehindPrices: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws an ellipse, the corners of which are specified by the parameters Barl/Pricel
and Bar2/PriceZ2.

Pane Specifies which on which pane to draw the ellipse. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane

call for a custom pane.

Color Controls the color used to draw the ellipse.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the ellipse. Pass -1 to draw an

unfilled ellipse.

BehindPrices Controls whether the ellipse is drawn behind or in front of the price
bars.

Example

var BAR, PRICE: integer;

Bar := TroughBar(BarCount - 1, #lLow, 13);

Price := PriceLow Bar);

Drawkl i pse(Bar - 4, Price * 1.02, Bar + 4, Price * 0.98, 0, #RedBkg,
#Thi n, #RedBkg, true);

Bar := PeakBar(BarCount - 1, #Hi gh, 13);

Price := PriceH gh(Bar);

Drawkl | i pse(Bar - 4, Price * 1.02, Bar + 4, Price * 0.98, O,

#G eenBkg, #Thin, #G eenBkg, true);

DrawHorzLine
DrawHorzLine(Value: float; Pane: integer; Color: integer; Style: integer);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a horizontal line on a Pane, at the value specified in the Value parameter.

Example

{ Draw a line at the psychol ogically inportant 1000 |evel }
Dr awHor zLi ne(1000, 0, #Green, #Dotted);

© 2003-2006 WL Systems, Inc.

23 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.10 Drawlmage
DrawImage(Bitmap: string; Pane: integer; Bar: integer; Price: float; TopDown: boolean);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Draws a bitmap image on the chart in the specified Pane. The image is drawn with a
transparent area. The transparent color is determined by the color of the bitmap's
lower left pixel.

Bitmap The Bitmap parameter must contain the name of a bitmap file (bmp)
that resides in the "Bitmaps" folder directly under the main Wealth-
Lab Developer 4.0 folder. Provide the file name only, no path or file
extension.

Pane Specifies which on which pane to draw the ellipse. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Bar Specifies the bar at which the image should be drawn. The image will
be centered around the middle of the specified Bar.

Price Indicates which price level (or indicator value, for non-price panes) at
which to draw the image. (See TopDown next.)

TopDown If the TopDown parameter is true, the top of the image will be placed
at the specified Price level, otherwise the bottom of the image is
placed at this level.

Example
var BAR i nteger;

Bar := BarCount - 40;

Drawl mage(' UpArrow , 0, Bar, PriceLow(Bar) * 0.995, true);

Bar := BarCount - 30;

Dr awl nage(' DownArrow , O, Bar, PriceHi gh(Bar) * 1.005, false);

3.11 DrawLabel

DrawlLabel(Text: string; Pane: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a Text label in the upper left corner of the specified Pane. You can call this
function multiple times and the labels will be drawn one below the other. For more
control over drawing text, use the DrawText function.

Example

{ Plot a 200 day noving average, and add a |l abel to the chart }
Pl ot Seri es(SMASeries(#C ose, 200), 0, #G een, #Thin);
DrawLabel (' 200 day SMA', 0);

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 24

3.12 DrawlLine

DrawLine(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Pane: integer; Color: integer; Style:
integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a line between the two specified points. You specify a point as a bar/price pair.
The Barl/Bar2 parameters correspond to the x-axis values, and Pricel/Price2
parameters to the y-axis values. The function automatically converts the bar/price
pairs into drawing coordinates on the chart so you can more easily establish points for
your lines.

Example

{ Draw a line between the |ast 2 peaks }

var Pl, P2: float;

var BAR, PBl, PB2: integer;

Bar := BarCount - 1,

pl := Peak(Bar, #H gh, 4);

pbl : = PeakBar(Bar, #Hi gh, 4);

p2 := Peak(pbl, #H gh, 4);

pb2 : = PeakBar(pbl, #High, 4);

DrawLi ne(pbl, pl, pb2, p2, 0, #Red, #Dotted);

3.13 DrawRectangle

DrawRectangle(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Pane: integer; Color: integer;
Style: integer; FillColor: integer; BehindPrices: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a rectangle, the corners of which are specified by the parameters Barl/Pricel
and Bar2/PriceZ2.

Pane Specifies which on which pane to draw the rectangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the rectangle.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color to fill the rectangle with. Pass -1 to draw an
unfilled rectangle.

BehindPrices Controls whether the rectangle is drawn behind the price bars or in
front of them.

Example
var Pl1, P2: float;

var BAR, Bl, B2, P2: integer;
Bar := BarCount - 1;

bl := PeakBar(Bar, #C ose, 10);
b2 := TroughBar(Bar, #C ose, 10);
pl := Priced ose(bl);

p2 := Priced ose(b2);

Dr awRect angl e(bl, pl, b2, p2, 0, #Blue, #Thick, #BlueBkg, true);

© 2003-2006 WL Systems, Inc.

25 WealthScript Function Reference, Wealth-Lab Developer 4.0
3.14 DrawRoundRect
DrawRoundRect(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Pane:integer; Color: integer;
Style: integer; FillColor: integer; BehindPrices: boolean);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Draws a rectangle with rounded corners, which are specified by the parameters
Barl/Pricel and Bar2/PriceZ2.
Pane Specifies which on which pane to draw the rectangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.
Color Controls the color used to draw the rectangle.
Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.
FillColor Specifies the color to fill the rectangle with. Pass -1 to draw an
unfilled rectangle.
BehindPrices Controls whether the rectangle is drawn behind the price bars or in
front of them.
Example
var P1, P2: float;
var Bl, B2: integer;
bl := BarCount - 50;
b2 := BarCount - 10;
pl := Highest(b2, #Hi gh, 40);
p2 := Lowest(b2, #Low, 40);
Dr awrRoundRect (bl, pl, b2, p2, 0, #Navy, #Thick, -1, false);
3.15 DrawText

DrawText(Text: string; Pane: integer; x: integer; y: integer; Color: integer; Size: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Writes the specified Text to a Pane. The X and Y parameters control the placement of
the text, expressed as pixels from the upper left corner of the pane. Color refers to
font color, and Size to font size. Standard font size is 8.

Example

{ Draw the result of our conmmentary to the vol une pane }

var COMMVENTARYSTRI NG string;

ConmentaryString := 'This is my advice, now listen closely ...";
Dr awText (ConmentaryString, 1, 4, 4, #Black, 8);

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 26

3.16 DrawTriangle

DrawTriangle(Barl: integer; Pricel: float; Bar2: integer; Price2: float; Bar3: integer; Price3: float; Pane:
integer; Color: integer; Style: integer; FillColor: integer; BehindPrices: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Draws a triangle, the three corners of which are specified by the parameters
Barl/Pricel, Bar2/Price2, and Bar3/Price3.

Pane Specifies which on which pane to draw the triangle. Pass 0 for the
Price Pane, 1 for the Volume Pane, or use the return value of a
CreatePane call for a custom pane.

Color Controls the color used to draw the triangle.

Style Controls the type of line used. You can use the constants #Thin,
#Thick or #Dotted for Style.

FillColor Specifies the color with which to fill the triangle. Pass -1 to draw an
unfilled diamond.

BehindPrices Controls whether the triangle is drawn behind or in front of the price
bars.

Example

var PRI CE1l, PRI CE2, PRICE3: float;
var BAR2, BAR, BAR1l, BAR3: integer;
Bar := BarCount - 1;

Bar2 := PeakBar(Bar, #Hi gh, 15);
Barl1l := TroughBar(Bar2, #Low, 15);
Bar3 := Bar2 + (Bar2 - Barl);

Pricel := PriceLow(Barl);

Price2 := PriceH gh(Bar2);

Price3 := Pricel;

DrawTri angl e(Barl, Pricel, Bar2, Price2, Bar3, Price3, 0, #Qdive,
#Thick, -1, false);

3.17 EnableNotes

EnableNotes(Enable: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Turns on (Enable = true) or off the display of notes above and below trades in the
chart, such as "Buy 500 @10.00". If a trading system generates a multitude of
trades, turning this option off will result in a much less cluttered chart.

Remarks

e See also: EnableTradeNotes

Example

{ Turn off those pesky notes if there are too many trades }
i f PositionCount > 20 then
Enabl eNot es(fal se);

© 2003-2006 WL Systems, Inc.

27 WealthScript Function Reference, Wealth-Lab Developer 4.0

3.18 EnableTradeNotes
EnableTradeNotes(Text: boolean; Arrow: boolean; Circle: boolean);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Turns on or off the display of textual and graphical notes above and below trades in
the chart. If a Trading System generates a multitude of trades, passing false for the
Text, Arrow, and/or Circle parameters will result in a much less cluttered chart.

Text Controls whether or not textual notes are drawn on the chart, such as
"Buy 200 @5.00".

Arrow Controls whether or not buy and sell arrows appear above/below the
bar where trades are opened and closed.

Circle Controls whether the circles are drawn at the exact spot where trades
occur on the bar. Additionally, if Circle is false, the horizontal dotted
line that is normally drawn for open trades is not drawn.

Remarks
e This function supersedes the original EnableNotes function, which allowed the text
notes only to be turned off.
Example
{ Turn off those pesky notes if there are nmany trades, show arrows only
i f PositionCount > 20 then
Enabl eTradeNot es(fal se, true, false);
3.19 HidePaneLines
HidePaneLines;
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Hides the black lines that are drawn between chart panes.
Example
Hi dePanelLi nes;
3.20 HideVolume
HideVolume;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Renders the volume pane invisible, providing more room to the Prices Pane in the

chart.

Example
Hi deVol une;

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 28

3.21 PlotSeries

PlotSeries(Series: integer; Pane: integer; Color: integer; Style: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description
Plots the specified price Series on one of the panes of the chart.

Series An integer Price Series handle or a WealthScript function that returns an
[integer] Price Series handle.

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style One of the following plot formatting constants: #Thi n, #Dot t ed, #Thi ck,
#Hi st ograrm, #Thi ckHi st, or #Dot s

Remarks

e Although the OHLC/V values are automatically rendered according to the selected
chart style, you may also wish to plot the average or average-close Standard Price
Series using the constants #Average or #AverageC, respectively.

e If your futures data contains Open Interest, create a new pane and pass the
#0Openlnterest constant for Series. See the OpenlInterest example in the Data
Access category of functions.

Example

{ Plot the CMO in a new Pane }

var NEWPANE, CMOSER: i nt eger;

NewPane : = CreatePane(80, true, true);
CroSer := CMOSeries(#C ose, 20);

Pl ot Seri es(CmSer, NewPane, #Blue, #Thick);

3.22 PlotSeriesLabel

PlotSeriesLabel(Series: integer; Pane: integer; Color: integer; Style: integer; Label: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Plots the specified Price Series on one of the Panes of the chart, and adds a descriptive
Label to the chart in the same color as that used to plot the series.

Series An integer Price Series handle or a function that returns an [integer]
Price Series handle.

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style One of the following plot formatting constants: #Thi n, #Dot t ed, #Thi ck,
#H st ogram, #Thi ckHi st , or #Dot s

© 2003-2006 WL Systems, Inc.

29

WealthScript Function Reference, Wealth-Lab Developer 4.0

3.23

Label A string literal or variable used to describe the plotted Series.

Remarks

e The label is drawn only if Plot Labels on Chart is checked in

Tools|Options|Colors/Style.

See PlotSeries for additional remarks.

Example

{ Plot the CMO in a new Pane }

var NEWPANE, CMOSER: i nt eger;

NewPane := CreatePane(80, true, true);

CmoSer := CMOSeries(#C ose, 20);

Pl ot Seri esLabel (CnbSer, NewPane, #Blue, #Thick, 'CMJ(C ose, 20)"');

PlotStops

PlotStops;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Causes the various stop levels and profit targets to be visually depicted as small dots
on the chart. The various levels are drawn using the following colors:

Profit Target Green

Stop Loss Red

Breakeven Blue

Trailing Pink

Manual Stop Brown
Remarks

Stops are plotted for exit signals only on the bar for which they are active.

Manual stops are plotted at the stop or limit price passed to the exit signal. For
example, a stop is plotted at Bar by the SellAtStop StopPrice parameter, whereas
a profit target is plotted by the LimitPrice parameter in SellAtLimit.

Other signals that fall into the manual-stop/limit category include
SellAtTrailingStop, CoverAtLimit, CoverAtStop, and CoverAtTrailingStop

PlotStops enables the display of stops and should be called prior to the main
trading loop. "Installed" AutoStops are actually processed by the ApplyAutoStops
function.

See Also: The QuickRef entry for the Min function provides a more dynamic
example with manual stops.

Example

var Bar: integer;
Install ProfitTarget(10);
Instal | StopLoss(5);
Install TrailingStop(1, 50);
Pl ot St ops;
for Bar := 20 to BarCount - 1 do
begin
Appl yAut oSt ops(Bar);

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 30

3.24

3.25

{ Arbitrarily short every 100 bars }
if Bar Mbd 100 = O then
Short At Market (Bar + 1, '');
end;

PlotSymbol

PlotSymbol(Symbol: string; Pane: integer; Color: integer; Style: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Plots the symbol specified in the Symbol parameter to the chart pane specified in the
Pane parameter. If Symbol does not exist in one of your DataSources, or it does not
contain data within the range of the Primary Series specified in the Data Loading
control, a run-time error will be generated.

Symbol A string literal or variable containing the desired symbol. You should
use a symbol other than the one for the Primary Series (the current
chart symbol).

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc.

Style Controls how the symbol appears, and can be one of the following
constants: #OHLC, #Candle, or #Line

Example

var nP: integer;

Pl ot Synbol (' MSFT', 0, #Silver, #Candle);
nP := CreatePane(100, true, true);

Pl ot Synbol (' BORL', nP, #Blue, #OHLC);

PlotSyntheticSymbol

PlotSyntheticSymbol(Symbol: string; Open: integer; High: integer; Low: integer; Close: integer; Pane:
integer; Color: integer; Style: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Creates a synthetic "symbol" that contains open, high, low and closing prices. The
Symbol parameter specifies the identity of the synthetic symbol. The next four
parameters should contain Price Series handles that contain the Open, High, Low, and
Close Price Series, respectively.

Symbol A string literal or variable expression containing the synthetic symbol's
name.

Open An integer Price Series handle or a WealthScript function that returns an
[integer] Price Series handle to be used for the opening Price Series of
the synthetic symbol.

High, Low, and Close - same as Open for the respective Price Series.

© 2003-2006 WL Systems, Inc.

31 WealthScript Function Reference, Wealth-Lab Developer 4.0

Pane Controls in which pane the series will be plotted. Pass 0 for the Price
Pane, 1 for the Volume Pane, or use the return value of a CreatePane
call for a custom pane.

Color A 3-digit integer that specifies the RGB color, or one of the standard
color constants, e.g. #Black, #Red, #Blue, etc. Synthetic symbols are
plotted as a single color and do not follow up/down bar coloring.

Style Controls how the symbol appears, and can be one of the following
constants: #OHLC, #Candle, or #Line, the latter of which plots only the
Close series.

Note: It's possible (and quite likely) for candles/bars to sometimes appear
"incorrect" for a synthetic symbol. This is due, for example, to the low prices
not always being less than the open, high and close for certain bars.
Consequently, these candle values do not always form into traditionally
correct candles.

Example

var SMAPANE, O, H, L, C integer;
SMAPane : = CreatePane(100, true, true);
O : = SMASeries(#Open, 20);

H := SMASeries(#Hi gh, 20);

L := SMASeries(#Low, 20);

C := SMASeries(#C ose, 20);

Pl ot Synt heti cSynbol (' SMACandle', O H, L, C, SMAPane, #Blue, #Candle

)
DrawLabel (' SMA Candl e', SMAPane);
3.26 SetBackgroundColor

SetBackgroundColor(Bar: integer; Color: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you color the background area of all chart panes with a specified Color, on a bar-
by-bar basis. You can use this feature to highlight bull and bear trends in the chart.
When coloring the chart background, be sure to use light, pastel colors for the Color
parameter. Good colors to use for backgrounds include 988 (#RedBkg), 898
(#GreenBkg), and 889 (#BlueBkg).

Remarks

e To individually set the background color of any pane, use
SetPaneBackgroundColor.

Example

{ Identify bull and bear trends using the 52 week nobvi ng average }
var SMAWEEKLY, SMAWEEKLYDAILY, BAR: i nteger;
Set Scal eWeekl y;
SmaWeekly : = SMASeries(#Cl ose, 52);
Rest orePri marySeri es;
SmaWeekl yDai ly : = Dail yFromieekl y(SmaWeekly);
for Bar := 52 to BarCount - 1 do
begi n
if PriceC ose(Bar) > GetSeriesValue(Bar, SmaWeeklyDaily) then
Set Backgr oundCol or (Bar, #G eenBkg)
el se

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 32

Set Backgr oundCol or (Bar, #RedBkg);
end;

3.27 SetBarColor

SetBarColor(Bar: integer; Color: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you color a specific Bar of the chart's primary Price Series. Generally, you'll use
Tools|Options|Colors/Style to set your default choices for Up/Down bar coloring,
however, you may want to color bars based on an indicator value, for example.

Remarks

e SetBarColor has priority over the SetBarColors function.

e See SetSeriesBarColor to set the color of individual bars in a Price Series other
than the primary Price Series.

Example

{ Color bars green when RSI < 20, otherw se
col or up days blue and down days red }
var Bar, hRSI, RSIPane: integer;

hRSI := RSI Series(#C ose, 14);
for Bar := 20 to BarCount - 1 do
begi n

if @RSI[Bar] < 60 then
Set Bar Col or (Bar, #Geen)
el se

if PriceClose(Bar) > PriceC ose(Bar - 1) then
Set Bar Col or (Bar, #Bl ue)

el se
Set Bar Col or (Bar, #Red);

end;
RSI Pane : = CreatePane(75, true, true);
Pl ot Seri es(hRSI, RSIPane, #Blue, #Thick);

3.28 SetBarColors

SetBarColors(UpBars: integer; DownBars: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Specifies the bar colors for all bars on the chart. Specify the color for up bars (close >
open) using the UpBars parameter, and down bars (close < open) with the DownBars

parameter. This function is useful when sharing ChartScripts and you need to show a

specific color scheme for your methodology.

Note: Use Tools|Options|Colors/Style to set your default choices for Up/Down
bar coloring. See Also: SetColorScheme.

Example
Set Bar Col ors(#Navy, #Maroon);

© 2003-2006 WL Systems, Inc.

33

WealthScript Function Reference, Wealth-Lab Developer 4.0

3.29

3.30

3.31

SetColorScheme
SetColorScheme(UpBars: integer; DownBars: integer; Volume: integer; Background: integer; GridLines:
integer; MarginArea: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you control the color complete scheme of the chart in a single statement. Specify
the color of up bars, down bars, volume bars, background, gridlines and bottom
margin area. This function is especially useful when sharing ChartScripts and you
need to show a specific color scheme for your methodology.

Example

{ A slick black chart style }
Set Col or Schene(#Line, 922, #0ive, 001, 021, #Silver);

SetLogScale

SetlLogScale(Pane: integer; UselLogScale: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Controls whether or not the specified Pane will use a semi-log scale as controlled by
the UselLogScale parameter. A semi-log scale gives equal weight to percentage
changes, rather then absolute value changes. For example, the distance from 1 to 10
will be the same size on the chart as the distance from 10 to 100. It's called "semi-
log" because only the y-axis uses the log scale, whereas the x-axis [typically] remains
evenly-spaced.

Example
Set LogScal e(0, true);

SetPaneBackgroundColor

SetPaneBackgroundColor(Bar: integer; Pane: integer; Color: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the background color of the specified Pane to the color provided in the Color
parameter, at the specified Bar. Specify a Pane parameter of zero for the price pane,
one for the volume pane, or use custom pane created by the CreatePane function.

Remarks

o SetPaneBackgroundColor overrides SetBackgroundColor for the specified Pane.

Example

{ Plot RSI and CMO, col or backgrounds to show overbought/oversold
| evel s }

var Bar: integer;

var RSl Pane: integer;

RSI Pane : = CreatePane(75, true, true);

Pl ot Series(RSI Series(#C ose, 14), RSIPane, 005, #Thick);
DrawLabel (' RSI (Cl ose, 14)', RSl Pane);

© 2003-2006 WL Systems, Inc.

Cosmetic Chart Functions 34
var CMOPane: i nteger;
CMOPane : = CreatePane(80, true, true);
Pl ot Seri es(CMOSeries(#C ose, 14), CMOPane, 009, #Thick);
DrawLabel (' CM) Cl ose, 14)', CMOPane);
for Bar := 20 to BarCount - 1 do
begin
if RSI(Bar, #C ose, 14) < 30 then
Set PaneBackgr oundCol or (Bar, RSIPane, #G eenBkg)
else if RSI(Bar, #O ose, 14) > 70 then
Set PaneBackgr oundCol or (Bar, RSI Pane, #RedBkg);
if CMY Bar, #COose, 14) < -50 then
Set PaneBackgr oundCol or (Bar, CMOPane, #G eenBkg)
else if CM) Bar, #Cd ose, 14) > 50 then
Set PaneBackgr oundCol or (Bar, CMOPane, #RedBkg);

end;

3.32 SetPaneMinMax
SetPaneMinMax(Pane: integer; Min: float; Max: float);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Applies minimum values to the low and high end of the selected Pane. Normally a
pane's min and max values are dependent on the Price Series that are plotted within
the pane. The following example uses SetPaneMinMax to make sure that the RSI
overbought and oversold levels appear clearly in the pane.
Note: Wealth-Lab's charting engine will still automatically scale panes to plot values
outside of the Min and Max values specified in SetPaneMinMax.
Example
{ Make sure full price range is always visible in the pane }
var RSI PANE: i nteger;
RSI Pane : = CreatePane(100, true, true);
Pl ot Series(RSI Series(#C ose, 30), RSIPane, #Navy, #Thin);
Set PaneM nhax(RSI Pane, 20, 80);
3.33 SetSeriesBarColor

SetSeriesBarColor(Bar: integer; Series: integer; Color: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you color individual bars of any Series that is plotted. For example, you can color
bars of an oversold oscillator green and overbought red.

Remarks

e To prevent drawing specific Bars of an indicator, pass -1 as the Color parameter.

Example

{ Color Bars of the indicator
var RSI SER, BAR, RSI| PANE:
RSI Ser
for Bar

based on oversol d/ over bought
i nteger;

RSI Seri es(#C ose, 30);

= 0 to BarCount - 1 do

| evel s }

© 2003-2006 WL Systems, Inc.

35 WealthScript Function Reference, Wealth-Lab Developer 4.0

if RSI(Bar, #Cl ose, 30) > 60 then
Set Seri esBar Col or (Bar, RSISer, #Red)
else if RSI(Bar, #C ose, 30) < 40 then
Set Seri esBar Col or (Bar, RSISer, #Blue);
RSI Pane : = CreatePane(100, true, true);
Pl ot Seri es(RSI Ser, RSIPane, #Navy, #Thick);

© 2003-2006 WL Systems, Inc.

CommissionScript Functions 36

4 CommissionScript Functions

4.1 Overview

You should always include real-world trading costs to add fidelity to your backtesting.
The Option Dialog (F12) includes a "Trading Costs/Control" tab that provides
selections for commissions and slippage that you will experience in real-world trading.

If your broker uses a flat-fee commission for each trade, then you may select the "per
Trade" One Way Commission option, which simply deducts a fixed amount from each
trade in a simulation. Likewise, the "per Share" option reduces a trade's gross profit
or loss by the number of shares multiplied by the value entered. Still, these simple
commission options do not include other small adjustments that your broker can make
on a per trade basis, such as the SEC fee for sale transactions in the U.S., which at
the time of this writing is $0.0468 per $1,000.

Some brokers use graduated commission schedules or base their fees on a percentage
of trade volume. CommissionScripts give you complete control over calculating simple
to the most complex commission schedules used by brokers worldwide. Using the
special "CM" variables provided, you can emulate the your broker's calculation and

assign the result to the CMResult variable. Once complete, save the script to the L3
CommissionScripts ChartScript folder. At this point, the script will be available as a
selection in the CommissionScript drop down control in the Options Dialog.

For each trade processed during a simulation - both entries and exits - Wealth-Lab will
execute the selected CommissionScript. The value calculated and applied to the
CMResult variable will then be used as the trade's commission cost.

Note: If you find that no commissions are ever deducted when using your
commission script, check the script for errors.

4.2 CMShares

CMShares(): integer;
OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

Returns the number of shares (or contracts) for the commission calculation.

4.3 CMPrice

CMPrice(): float;

OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

Returns either the entry or exit price, as required, of the position for the commission
calculation.

© 2003-2006 WL Systems, Inc.

37 WealthScript Function Reference, Wealth-Lab Developer 4.0
4.4 CMEntry
CMEntry(): boolean;
OChartScripts ©SimuScripts OPerfScripts MCMScripts
Description
Returns boolean true if the trade being processed is an entry signal. Consequently,
CMEntry will be false when exiting a position. You can use this function to add the
SEC fee for sales transactions in the U.S., for example.
Example:
{ My broker charges 10.99 per trade, but al so adds the SEC sales fee }
var SECFee: fl oat;
const SECRate = 0.0234; /1 per $1,000
CMResult := 10.99;
if not CMEntry then
begi n
SECFee := SECRate * CMshares * CMPrice / 1000;
SECFee : = Round(SECFee * 100) / 100;
CMResult := CMResult + SECFee;
end;
45 CMOrderType

CMOrderType(): integer;

OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

Returns an integer indicating the type of order used.

0 = Market

1 = Stop

2 = Limit

3 = Close
Example:

{ My broker charges $9.99 for market orders, $11.00 for limt or stop
orders, and $12.50 to work an order at the close }
var Com sh: float;

case CMOrder Type of

0:

Com sh := 9. 99;
1, 2:

Comi sh := 11.00;
3.

Comi sh := 12.50;
el se
{ This one's on the house! }
Comi sh := 0.0;
end;
CMResult := Com sh;

© 2003-2006 WL Systems, Inc.

CommissionScript Functions 38

46 CMSymbol

CMSymbol(): string;

OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

Returns the security symbol of the trade to which commissions will be applied.

4.7 CMDataSource

CMDataSource(): string;

OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

Returns the name of the DataSource to which CMSymbol belongs. You can test the
DataSource name to use a different commission structure based on a DataSource.

Remarks

e In real time CMDataSource returns a blank string.

4.8 CMResult

CMResult(): float;

OChartScripts ©SimuScripts OPerfScripts MCMScripts

Description

You must assign the final result of the CommissionScript calculation to the special
CMResult variable. CMResult is akin to the Result variable used to return the final
result of a user-defined function in WealthScript. CMResult need not be declared and
can be used as a normal float-type variable throughout the CommissionScript's
process.

Example

{ Emul ate commi ssions for a broker with the follow ng fee structure:
1¢ for first 500 shares, Y4 per share thereafter, and $1 m ni num}
i f CMBhares <= 500 then
CVMResult := CMshares * 0.01
el se
CMResult := (500 * 0.01) + ((CMshares - 500) * 0.005);

if CMResult < 1 then
CMResul t 1;

© 2003-2006 WL Systems, Inc.

39 WealthScript Function Reference, Wealth-Lab Developer 4.0
5 Data Access Functions
5.1 Overview
The Data Access functions provide the methods to access the data from all the raw
Price Series in the Primary Data Series (the symbol selected for the script) as well as
other Standard Price Series information. Additionally, futures symbols' point, margin,
and tick entries in the Future Symbol Manager can be easily accessed from within your
script.
5.2 BarCount
BarCount: integer;
MChartScripts M#SimuScripts MPerfScripts ©CMScripts
Description
Returns the total number of bars available in the current chart.
Remarks
The first bar of any chart is Bar Number 0, and the last bar can be found by the
expression Bar Count - 1.
Example
{ Atypical trading systemnain |oop }
var Bar: integer;
for Bar := 30 to BarCount - 1 do
begin
{ ... Trading Rules ... }
end;
5.3 GetDate

GetDate(Bar: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the date of the specified Bar number. WealthScript represents date values as
large integers - the year followed by month followed by day. For example, 1/23/2001
would be represented as 20010123. You can thus compare dates by simply using the
standard arithmetic operators.

Example

{ Print the nost recent date on the chart to the debug w ndow }
var S: string;

S := IntToStr(GetDate(BarCount - 1));

Print(s);

© 2003-2006 WL Systems, Inc.

Data Access Functions 40

54 GetMargin

GetMargin: float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the Margin for the current symbol being charted. Margin is the amount of
funds required to maintain a single futures contract position. If the current symbol is
not a futures symbol, the function returns zero. You define Margin in the Futures
Symbols Manager, Tools|Futures Symbols Manager (Ctri+Alt+F).

Example
var Bar: integer;
{ Take on $20,000 margi n per position }

if GetMargin > 0 then
Set Shar eSi ze(Round(20000 / GetMargin));

for Bar := 4 to BarCount() - 1 do
begi n
i f LastPositionActive then
Sel | At Stop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
el se
BuyAt St op(Bar + 1, Highest(Bar, #H gh, 3), "');
end;

5.5 GetPointValue

GetPointValue: float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the Point Value for the current futures symbol being charted. The Point Value
is the amount of profit made when prices increase a single point. If the current
symbol is not a futures symbol, the function returns 1. You define Point Value in the
Futures Symbols Manager, Tools|Futures Symbols Manager (Ctrl+Alt+F).

Example

var PtValue: float;

var s: string;

Pt Val ue : = Get Poi nt Val ue;

s := FormatFloat('0.00", PtValue);
ShowMessage(' The Point Value is ' + s);

5.6 GetSecurityName

GetSecurityName: string;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the security name (company name) of the symbol currently being operated
on. Not all DataSources provide the security name in which case a blank string is
returned.

© 2003-2006 WL Systems, Inc.

41

WealthScript Function Reference, Wealth-Lab Developer 4.0

5.7

5.8

Example
ShowMessage('We''re now running ' + GetSecurityNane);

GetSymbol

GetSymbol: string;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the symbol of the current chart.

Example

{ Show the closing price with the synbol in a chart |abel }
var X: float;
X := PriceC ose(BarCount - 1);
DrawlLabel ("C osing price for ' + GetSynbol + ' was '
+ Fornmat Fl oat (' ##, ##0.00', x), 0);

GetTick

GetTick: float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the Tick value for the current primary symbol. The Tick value is the smallest
incremental price move that a futures contract can make. You define Tick values in
the Futures Symbols Manager, Tools|Futures Symbols Manager (Ctri+Alt+F).

Remarks

e In a SimuScript, GetTick returns the Tick value for the current futures symbol
being position-sized.

e GetTick returns 0 for any symbol that does not have an entry in the Futures
Symbols Manager, i.e., a stock. With Stock Mode selected in the DataSources main
menu, GetTick always returns 0.

Example

{ The 89/13 Futures Breakout System}
var Tick, XLOWN XH GH fl oat;
var BAR i nteger;

Tick := GetTick;

for Bar := 90 to BarCount - 1 do

begin
i f LastPositionActive then
begin
i f PositionLong(LastPosition) then
begin
xLow : = Lowest(Bar, #Low, 13) - TICK
Sel | At Stop(Bar + 1, xLow, LastPosition, '');
end
el se
begin

© 2003-2006 WL Systems, Inc.

Data Access Functions 42

xH gh := Hi ghest(Bar, #Hi gh, 13) + TICK
Cover At Stop(Bar + 1, xHigh, LastPosition, '');
end;
end
el se
begin
xH gh := Hi ghest(Bar, #Hi gh, 89) + TICK
xLow : = Lowest(Bar, #Low, 89) - TICK

i f BuyAtStop(Bar + 1, xHigh, '") then
Set Posi ti onRi skSt op(LastPosition, Lowest(Bar, #lLow, 13))
else if ShortAtStop(Bar + 1, xLow, '') then
Set Posi ti onRi skSt op(Last Position, Highest(Bar, #H gh, 13));
end;
end;

Pl ot Seri es(Hi ghestSeries(#H gh, 89), 0, 777, #Thin);
Pl ot Seri es(Lowest Series(#Low, 89), 0, 777, #Thin);
Pl ot Seri es(Hi ghestSeries(#H gh, 13), 0, 888, #Thin);
Pl ot Seri es(Lowest Series(#Low, 13), 0, 888, #Thin);

59 GetTime
GetTime(Bar: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the time of the specified Bar. WealthScript represents time values as integers
- hour (24 hour clock format) followed by minute. For example, 1:00 PM is
represented as 1300. You can thus easily test for specific time values or test times
against each other using the standard arithmetic operators.

Non-intraday DataSources will always return a value of zero for GetTime.

Example

{ Buy only after 12 noon }

var NOON: i nteger;

var BAR i nteger;

Noon : = 1200;

for Bar := 0 to BarCount - 1 do
begi n

if GetTime(Bar) > Noon then

Set Bar Col or (Bar, #Red);
end;

5.10 Openinterest

Openlnterest(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the open interest for the specified Bar. Open Interest is the number of
contracts currently open for a given futures contract. OpenInterest is available only
for Futures DataSources. Non-Futures DataSources will always contain zero values for
Openlnterest.

Use the OpenInterest function to return the open interest value as of a specified Bar.

© 2003-2006 WL Systems, Inc.

43

WealthScript Function Reference, Wealth-Lab Developer 4.0

5.11

5.12

If you need to access the complete Open Interest Price Series handle, use the
#0Openlnterest built-in constant.

Interpretation

Open Interest can be used to gauge market liquidity, similar to Volume.

Example

var OEPANE: i nteger;

CEPane : = CreatePane(50, false, true);

Set PaneM nhax(OEPane, 0, 100);

Pl ot Seri es(#Openl nterest, OEPane, #G een, #Hi stogram);
DrawLabel (' Open Interest', OEPane);

PriceAverage

PriceAverage(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the average price for the specified Bar. Use PriceAverage to return the value
of individual average prices at specific bars. The Average Price is defined as (High +
Low) / 2. If you need to access the complete average price Price Series, use the
#Average constant instead.

Example

{ Plot a noving average of daily average prices }

var X: float;

var BAR i nteger;

X := PriceAverage(Bar);

Pl ot Seri es(SMASeries(#Average, 30), 0, #Blue, #Thick);

PriceAverageC

PriceAverageC(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the average price for the specified Bar. Use PriceAverage to return the value
of individual average prices at specific bars. The Average Price is defined as (High +
Low + Close) / 3. If you need to access the complete average price Price Series, use
the #AverageC constant instead.

Example

{ Plot a noving average of close-weighted daily average prices }
var X: float;

var BAR i nteger;

X := PriceAverageC(Bar);

Pl ot Seri es(SMASeries(#AverageC, 30), 0, #Blue, #Thick);

© 2003-2006 WL Systems, Inc.

Data Access Functions 44

5.13 PriceClose

PriceClose(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the closing price for the specified Bar. Use PriceClose to return the value of
individual closing prices at specific bars. If you need to access the complete closing
price Price Series, use the #Close constant instead.

Example

{ Have we had an up day? }
var BAR integer;
for Bar := 1 to BarCount - 1 do
if PriceClose(Bar) > PriceC ose(Bar - 1) then
Set Bar Col or (Bar, 853);

5.14 PriceHigh
PriceHigh(Bar: integer): float;
MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the high price for the specified Bar. Use PriceHigh to return the value of
intraday highs at specific bars. If you need to access the complete high price Price
Series, use the #High constant instead.

Example

{ Have we achi eved a new 200 bar high in the last 20 bars? }
var X, X2: float;
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begin
X := Highest(Bar, #H gh, 20);
x2 := Highest(Bar, #H gh, 200);
if x = x2 then
Set Bar Col or (Bar, 083);
end;

5.15 PriceLow

PriceLow(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the low price for the specified Bar. Use PriceLow to return the value of
intraday lows at specific bars. If you need to access the complete low price Price
Series, use the #Low constant instead.

Example

{ Set a stop at the low of the entry bar }
var BAR integer;

© 2003-2006 WL Systems, Inc.

45 WealthScript Function Reference, Wealth-Lab Developer 4.0

for Bar := 80 to BarCount - 1 do
begi n
i f LastPositionActive then
Sel | At Stop(Bar + 1, Lowest(Bar, #Low, 20), LastPosition, 'Stop'

)
el se
begin
i f BuyAtStop(Bar + 1, Highest(Bar, #H gh, 80), 'Stop') then
Set Posi ti onRi skSt op(Last Position, Lowest(Bar, #Low, 20));
end;
end;

5.16 PriceOpen

PriceOpen(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the opening price for the specified Bar. Use PriceOpen to return the value of
opening prices at specific bars. If you need to access the complete open price
PriceSeries, use the #0pen constant instead.

Example
{ I'f we have a gap up open, buy it }
var BAR i nteger;
for Bar := 1 to BarCount - 1 do
begin
i f LastPositionActive then
Sel | At Market(Bar + 1, LastPosition, '1 Day')
el se
begin
if PriceQpen(Bar) > PriceHigh(Bar - 1) * 1.05 then
BuyAt Mar ket (Bar, 'Gap');
end;
end;

5.17 Volume

Volume(Bar: integer): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the volume for the specified Bar. Use Volume to return the volume at specific
bars. If you need to access the complete volume Price Series, use the #Volume
constant instead.

Example

{ Plot a 30 day noving average of Volune }
var VOLSMA: i nteger;

Vol SMA : = SMASeri es(#Volune, 30);

Pl ot Series(Vol SMA, 1, #Red, #Thin);

© 2003-2006 WL Systems, Inc.

Date/Time Functions 46

6.1

6.2

6.3

Date/Time Functions

Overview

Generally speaking, the Date and Time category of WealthScript functions give you
access to date/time-related information of an underlying Price Series at specific Bar
Numbers. More general date/time information is available, such as the current

date/time of your computer and important market events, like option expiry dates.

Barinterval

BarlInterval: integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar interval in minutes, seconds, or ticks (as required) for intraday charts.
Returns zero in non-intraday charts.

Example
var bi: integer;
bi := Barlnterval;

if bi <1 then
ShowMessage(' Not an intraday chart')
el se
ShowMessage(' The intraday bar interval is '
+ IntToStr(bi));

BarNum

BarNum(Bar: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the Bar Number of the specified Bar within the trading day for intraday charts.
Intraday charts can be minute, second, or tick-based. The first bar of the day has a
BarNum of zero. Non-intraday charts always return zero for BarNum.

Example

{ Color the mddle of the trading day }

var MAXBARS, BAR, PCT: integer;

{ First determ ne how many bars there are in one day }
MaxBars : = 0O,

for Bar := BarCount - 1 downto 1 do
if BarNun(Bar) = 0 then
begin
MaxBars := BarNum(Bar - 1);
Br eak;
end;
if MaxBars = 0 then
Exit;
{ Now color the bars 40 - 60%wi thin the day's range }
for Bar := 0 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

a7 WealthScript Function Reference, Wealth-Lab Developer 4.0
begi n
pct := BarNum(Bar) / MaxBars;
if (pct >=0.4) and (pct <= 0.6) then
Set Bar Col or (Bar, #Oive);
end;
6.4 CurrentDate
CurrentDate: integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Returns the current system date in yyyyMMdd format.
Example
{ Draw the current date in yyyyMvdd integer formt }
DrawLabel (I nt ToStr(CurrentDate), 0);
{ Use DateToStr to draw the current date using your Wndow s settings
in the volunme pane }
DrawLabel (DateToStr(CurrentDate), 1);
6.5 CurrentTime
CurrentTime: integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Returns the current system time in hhmm format.
Example
{ Draw the current tine in hhnminteger fornat }
DrawLabel (IntToStr(CurrentTine), 0);
{ Use TineToStr to draw the current tinme using your Wndow s settings
in the volune pane }
DrawLabel (TineToStr(CurrentTine), 1);
6.6 DateTimeToBar

DateTimeToBar(Date: integer; Time: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Bar Number on an intraday chart that corresponds to the specified Date
and Time values. If there is no bar that corresponds to the specified date, the
function returns -1.

Remarks

e Date is an integer value with the format yyyyMMdd, where yyyy is the year, MM is
the two-digit month (01 through 12), and dd is the two-digit day (01 through 31,
depending on the month).

© 2003-2006 WL Systems, Inc.

Date/Time Functions 48

e Time is an integer value with the format hhnn, where hh is the hour (0 through
23), and nn is the two-digit minute (00 through 59).

o If either Date or Time is not a valid, "in range" value, a run-time error will result.
e DateTimeToBar can be used to return a Bar Number on a non-intraday chart by
passing zero as Time, though DateToBar is preferred.

Example

{$l '"EnterAtPrice'}
{ "Load" a specific trade at 1050 on 20040123, try with AAPL }
var Bar: integer;

Bar := DateTi neToBar(20040123, 1050);

if Bar = -1 then
Print('This bar does not exist in the chart')
el se

if not EnterAtPrice(Bar, 22.65, 'Long', 'Buy') then
Print('Buy failed on bar ' + IntToStr(Bar));

6.7 DateToBar

DateToBar(Date: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Bar Number on the chart that corresponds to the specified Date value. If
there is no bar that corresponds to the specified date, the function returns -1.

Remarks

e Date is an integer value with the format yyyyMMdd, where yyyy is the year, MM is
the two-digit month (01 through 12), and dd is the two-digit day (01 through 31,
depending on the month).

e If Date is not a valid, "in range" value, a run-time error will result.

o DateToBar returns the Bar Number of the first bar of the specified Date in the
intraday data.

Example

{ Highlight ny birthday bars }
var Y, DT, B: integer;
for y := 1980 to 2020 do
begi n

dt :=y * 10000 + 825;

b := DateToBar(dt);

if b >= 0 then

Set Bar Col or (b, #Blue);
end;

6.8 DateToStr

DateToStr(Date: integer): string;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

49 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns a string representation of the specified integer Date value. The date
representation of the resulting string is determined by your computer's Regional
Options for "Short date format" on the Date tab.

Example

{ Record the dates where RSI was at an extrenely high |evel }
var BAR i nteger;
for Bar := 20 to BarCount - 1 do
if RSI(Bar, #Cl ose, 30) > 75 then
Print(DateToStr(GetDate(Bar)) + ' '
+ Format Fl oat (' ##0.00', RSI(Bar, #Cl ose, 30)));

6.9 DayOfWeek

DayOfWeek(Bar: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the day of the week of the specified Bar number. Sunday is the first day of
the week and Saturday is the seventh. You can use the provided constants #Monday
through #Friday to reference day of weeks in your WealthScript code.

Example

{ Col or Mdondays red and Fridays G een }
var BAR i nteger;
for Bar := BarCount - 1 downto 1 do
begin

i f DayCOf Week(Bar) = #MONDAY t hen

Set Bar Col or (#Red)

el se if DayOf Week(Bar) = #FRI DAY t hen
Set Bar Col or (#Green);
end;

6.10 DaysBetween

DaysBetween(Barl: integer; Bar2: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Determines the number of Calendar Days (including weekends) between the two
specified bars numbers, Barl and Bar2.

Remarks

e DaysBetween returns a negative number of days if the date specified by Bar2
occurs prior to the date of Barl.

e See also: DaysBetweenDates

Example

var BAR, P, | NBAR, QOUTBAR, BARSI NTRADE, DAYSI NTRADE: i nteger;
Install ProfitTarget(6);

Instal |l StopLoss(6);

for Bar := 20 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

Date/Time Functions 50

begi n
Appl yAut oSt ops(Bar);
i f TurnUp(Bar, WWASeries(#Cl ose, 20)) then

BuyAt Market (Bar + 1, '');
end;
if PositionCount > 0 then
begin
p := LastPosition;
InBar := PositionEntryBar(p);

if PositionActive(p) then
QutBar := BarCount - 1

el se
QutBar := PositionExitBar(p);

Bar sl nTr ade : QutBar - InBar + 1;

Daysl nTrade : = DaysBetween(|InBar, QutBar) + 1;

DrawLabel (' The last trade was for ' + IntToStr(BarslnTrade) + '
Bars', 0);

DrawLabel ("and ' + IntToStr(DayslnTrade) + ' days', 0);
end;

6.11 DaysBetweenDates

DaysBetweenDates(Datel: integer; Date2: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Determines the number of calendar days including weekends between the two
specified dates, Datel and Date2, in yyyyMMdd (standard) format.

Remarks

e DaysBetweenDates returns a negative number of days if Date2 is chronologically
prior to Datel.

e See also: DaysBetween

Example

{ Calculate the nunmber of days between the | ast bar and the date

entered }

var days, datel, date2: integer;

datel := GetDate(BarCount - 1);

date2 := StrTolnt(Input('Enter a yyyyMwdd date'));

days := DaysBetweenDates(datel, date2);

ShowMessage(IntToStr(days) + ' days between ' + DateToStr(datel)
+ ' and ' + DateToStr(date2));

6.12 GetDay

GetDay(Bar: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

GetDay returns the day of the month of the specified Bar.

Example
{ Highlight all Friday the 13ths }

© 2003-2006 WL Systems, Inc.

51

WealthScript Function Reference, Wealth-Lab Developer 4.0

6.13

6.14

var BAR integer;
for Bar := 0 to BarCount - 1 do
begin
i f DayOf Week(Bar) = #Friday then
if GetDay(Bar) = 13 then
begi n
Set Bar Col or (Bar, #Red);
Annot at eBar (' Look out!', Bar, true, #Red, 10);
end;
end;

GetHour

GetHour(Bar: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the hour of the specified Bar. Hours are expressed using a 24 hour clock,
e.g., 13 indicates the bar falls between 1:00PM and 1:59PM, inclusive. Non-intraday
charts will always return zero for GetHour.

Example

{ Buy on Breakout and close at 3:00 PM}
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begi n

i f LastPositionActive then

begi n

if GetHour(Bar) = 15 then
Sel | At Mar ket (Bar, LastPosition, '3:00");

end

else if GetHour(Bar) < 12 then

BuyAt St op(Bar + 1, Highest(Bar, #H gh, 20), 'Buy Stop');
end;

GetMinute

GetMinute(Bar: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the minute of the specified Bar (0 to 59). Non-intraday bars will always
return zero for GetMinute.

Example

{ Color Intraday bars by mnute }

var Bar, n: integer;

for Bar := 0 to BarCount - 1 do

begin
n:=(GtMnute(Bar) * 100) div 60;
Set Bar Col or (Bar, n);

end;

© 2003-2006 WL Systems, Inc.

Date/Time

Functions 52

6.15

6.16

6.17

GetMonth

GetMonth(Bar: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

GetMonth returns the month at the specified Bar. Month values range from 1 to 12

(January to December).

Example

{ W& think February is an awful nonth for stocks }
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
i f not LastPositionActive then
if GetMonth(Bar) = 2 then
Short At Mar ket (Bar, 'Feb Blues');
i f LastPositionActive then
if GetMonth(Bar) = 3 then
Cover At Mar ket (Bar, LastPosition, 'Exit Short');
end;

GetYear

GetYear(Bar: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

GetYear returns the year at the specified Bar.

Example

{ Change our tactics for the new mllenium}
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
if GetYear(Bar) < 2000 then
begin
{ .. old tactics .. }
end
el se
begin
{ .. newnilleniumtactics .. }
end;
end;

IsLeapYear

IsLeapYear(Year: integer): boolean;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns boolean true if the specified calendar Year is a leap year.
other cases.

Remarks

Returns false in all

© 2003-2006 WL Systems, Inc.

53 WealthScript Function Reference, Wealth-Lab Developer 4.0

e IsLeapYear(Year) simply returns the same result as (Year Mod 4 = 0).

Example
var Bar: integer;

for Bar := 100 to BarCount - 1 do

begin
i f LastPositionActive then
begin
if CrossUnder(Bar, #C ose, SMASeries(#Cl ose, 100)) then
Sel | At Market(Bar + 1, LastPosition, '');
end
el se
begin

if not IsLeapYear(CGetYear(Bar)) then /'l Take | eap years off
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 100)) then
BuyAt Market (Bar + 1, '');
end;
end;

6.18 LastBar

LastBar(Bar: integer): boolean;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns boolean true if the specified Bar is the last bar of the day for intraday charts.
Returns false in all other cases.

Remarks

e LastBar is most useful in backtesting to detect the last intraday bar, especially for
incomplete market days or those sessions that close earlier than normal.

e For real-time charts, LastBar returns true for the final bar of the sessions that
matches the "Market Closing Time" in the real-time data loading filter control, when
activated. If the filter is not activated, LastBar is undefined and can return either
true or false for the final bar in the chart.

e For real-time trading, consider using the PortfolioSynch function in combination
with a specific test for the market closing time (adjust each day if required for short
market sessions) using GetTime.

Example

{ Daytrading SMA crossover script (backtesting only) that closes all
positions at the end of the day. }
var Bar, p, hMASI ow, hMAFast: integer;

hMAFast
hMASI ow :

SMASeri es(#C ose, 10);
SMASeri es(#C ose, 30);

for Bar := 30 to BarCount - 1 do
begi n

i f not LastPositionActive then

begin { Entry Rules - don't enter on LastBar! }

if not LastBar(Bar) then
if CrossOver(Bar, hMAFast, hMASI ow) then
BuyAt Mar ket (Bar + 1, ' XOver');
end

© 2003-2006 WL Systems, Inc.

Date/Time Functions 54

el se { xit Rules }
begi n
p := LastPosition;
if LastBar(Bar) then
Sel | At Cl ose(Bar, p, 'EQD)
el se
begin { normal intraday exit logic }
i f CrossUnder(Bar, hMAFast, hMAS|I ow) then
Sel | At Market (Bar + 1, p, 'XUnder');
end;
end;
end;

Pl ot Seri es(hMAFast, 0, #Geen, #Thin);
Pl ot Seri es(hMASI ow, 0, #Red, #Thin);

6.19 OptionExpiryDate

OptionExpiryDate(Bar: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns boolean true if the specified Bar falls on an option expiration date. The
expiration date for all listed stock options in the U.S. is the third Friday of the
expiration month.

Note: If the normal Friday expiration date falls on a holiday, the
OptionExpiryDate is the preceding Thursday.

Example

{ Annotate Option Expiry Dates on the Chart }
var Bar: integer;

for Bar := 0 to BarCount - 1 do
if OptionExpiryDate(Bar) then
begin

DrawCircle(4, 0, Bar, PriceOpen(Bar), #Navy, #Thick);
DrawCircle(4, 0, Bar, PriceC ose(Bar), #Blue, #Thick);
end;

6.20 StrToDate

StrToDate(Value: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Converts the string parameter Value into an integer representing a WealthScript date
value, which has a format of YYYYMMDD. The Value string must be in your computer's
short date format, otherwise a run-time error will result.

Example

{ This was a bad day }

var dt, Bar: integer;

dt := StrToDate('10/19/1987");
Bar := DateToBar(dt);

if Bar > -1 then

© 2003-2006 WL Systems, Inc.

55 WealthScript Function Reference, Wealth-Lab Developer 4.0
Set Bar Col or (Bar, #Red);
6.21 StrToTime
StrToTime(Value: string): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Converts the string parameter Value into an integer representing a WealthScript time
value, which is an integer having the format hhmm. The Value string must be a valid
time format, e.g., '14:30', '2:30 PM', etc., otherwise a run-time error will result.
Example
{ Only take action after 2:00 PM}
var Bar: integer;
for Bar := 0 to BarCount - 1 do
begin
{ }_ .
if GetTime(Bar) > StrToTine('2:00 PM) then
begin
end;
end;
6.22 TimeToStr

TimeToStr(Time: integer): string;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Converts the specified integer Time value into a string for display purposes. The time
representation of the resulting string is determined by your computer's Regional
Options for "Time format" on the Time tab.

Example

{ Draw the tine of the last bar on the chart }
DrawLabel (TineToStr(GetTinme(BarCount - 1)), 0);

© 2003-2006 WL Systems, Inc.

File Access Functions 56

7.1

7.2

7.3

7.4

File Access Functions

Overview

The File Access category of functions give you the ability to easily work with data from
external ASCII text files or generate data from within your ChartScripts to export data
for later review.

FileClear

FileClear(File: integer);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Clears the contents of the file handle specified in the File parameter. Use this function
if you've written lines to file and want to clear the existing contents and start fresh.

Note: File handles are returned by either the FileOpen or FileCreate functions.

FileClose

FileClose(File: integer);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Explicitly closes the selected File and removes the resources allocated by the file. The
File Handle represented by the File parameter is no longer valid following this call, and
should not be used in subsequent File Access functions.

Note: File handles are returned by either the FileOpen or FileCreate functions.

Files are automatically closed after the script completes processing. During WatchList
Scans or $imulations, files are automatically closed after the complete Scan or
$imulation. Consequently, when opening a file using FileCreate, each symbol run
during a Scan or $imulation can append lines of data to a single output file without
deleting the file that was created at the beginning of the Scan or $imulation.

FileCreate

FileCreate(FileName: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Creates a new operating system file with the specified FileName. A file handle is
returned by the function call. Use this file handle in subsequent calls to FileWrite. If
a file with the specified file name already exists, the file is deleted and a new one
created in its place.

© 2003-2006 WL Systems, Inc.

57 WealthScript Function Reference, Wealth-Lab Developer 4.0
FileName A string representing the full path location and name for the new file. If
a path is not specified, as in the example below, the file will be created
in the main Wealth-Lab Developer 4.0 directory.
Example
{ Create a file to store analysis results }
var f: integer;
f := FileCreate(GetSynbol + '.txt');
7.5 FileEOF
FileEOF(File: integer): boolean;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Returns true if the specified File is currently at "end of file".
Example
{ Dunp contents of Wn.ini }
var F: integer;
f := FileQpen('c:\Wndows\win.ini');
while not FileEOF(f) do
Print(FileRead(f));
7.6 FileFlush
FileFlush(File: integer);
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Normally, data written to a file using FileWrite isn't physically written to the
underlying operating system file until after the script completes. You can use
FileFlush to cause the contents of File, the file handle, to be written to the operating
system file immediately.
7.7 FileOpen

FileOpen(FileName: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Opens an existing operating system file with the specified FileName. The function
returns a file handle that should be used in subsequent calls to FileRead or
FileWrite. If the file does not exist, FileOpen will create it.

FileName A string representing the full path location and name of the file. If a
path is not specified, as in the example below, the file will be assumed
to exist in the main Wealth-Lab Developer 4.0 directory.

Example

{ Open a file to read external data for the synbol }
var f: integer;

© 2003-2006 WL Systems, Inc.

File Access Functions 58

f 1= FileOpen(GetSynbol + '.txt');

7.8 FileRead
FileRead(File: integer): string;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Reads a line of data from the specified File handle. The File parameter should be a file
handle that was returned by the FileOpen function. The function returns the next
line of the file as a string. If there are no more lines in the file the function returns a
blank string. Use the FileEOF function to test whether a file is truly at end of file.

Example

{ Read a line fromthe file into a string variable }
var s: string;

var fh: integer;

fh := FileQpen('c:\nyfile.txt");

s := FileRead(fh);

7.9 FileWrite
FileWrite(File: integer; Line: string);
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Writes a single Line of text to the specified File handle. You can write to new files that
were created with FileCreate or to existing files that were opened with FileOpen.
Read and write file operations maintain separate file pointers, so you can read from a
file created with FileOpen and use FileWrite to write to the same File Handle without
disrupting the read.

Example
{ Wite an analysis file that consists of RSI |evel and price change 20
bars out }

var f, Bar: integer;
var s: string;
var x: float;

f := FileCreate('RSI Analysis.csv');
for Bar := 20 to BarCount - 21 do
begin
X := PriceClose(Bar + 20) - PriceCd ose(Bar);
X :=(x/ PriceClose(Bar)) * 100;
s := FloatToStr(RSI(Bar, #Close, 20)) +'," + FloatToStr(x);
Filewite(f, s);
end;

© 2003-2006 WL Systems, Inc.

59

WealthScript Function Reference, Wealth-Lab Developer 4.0

8.1

8.2

Fundamental Data Access Functions

FundamentalPriceSeriesAverage

FundamentalPriceSeriesAverage(Item: string; Period: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns a Price Series containing the rolling average of the fundamental data Item for
the specified Period. This function is useful for creating a rolling average of any
fundamental data item, particularly economic indicators.

Remarks

e Wealth-Lab Pro only. See the Fundamental Data and Economic Indicator Definitions
Guide for valid Item parameters.

e If Item is not found, the function raises an error, which can be detected using a
try/except/end block (see "Error Handling" in the WealthScript Language Guide).

¢ FundamentalPriceSeriesAverage returns 0 value for all bars if the full number of
specified Period are not available, which is typical behavior at the beginning of the
fundamental series.

e To access fundamental data of secondary symbols, call SetPrimarySeries first.

Example

var P, A AV: integer;

P := CreatePane(100, true, true);

A : = Fundanental PriceSeries('assets');

AV : = Fundanental PriceSeri esAverage('assets', 4);
Pl ot Series(A p, #Red, #ThickH st);

Pl ot Series(AV, p, #Black, #Thick);

GetFundamentalDetail

GetFundamentalDetail(Bar: integer; Item: string; Detail: string): string;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Provides access to item-specific Details associated with the fundamental data Item
that is synchronized to the specified Bar number. Detail is Item-dependent and can
be any one of the strings on the left side of the "=" sign in the Data string. Use
FundamentalIltemData to access the entire Data string of an Item.

For example, consider the following data string:

FY=2006; Cur QTR=3; Cur QTRMbnt h=9; Cal endar Year =2006; EPSCur FY=2. 57; EPSNext F
Y=2. 874;

For the Data string above, Detail can be any of the following strings: 'FY' or 'CurQTR'
or 'CurQTRMonth' or 'CalendarYear' or 'EPSCurFY' or 'EPSNextFY'. See the Remarks
for other typical Items and their Data strings.

Important!

GetFundamentalDetail has the ability to synchronize to only one same-type Item on

© 2003-2006 WL Systems, Inc.

Fundamental Data Access Functions 60

a given bar. For example, if two insiders traded on the same day (or within the same
week/month for weekly/monthly bars), it is possible to access only the first of those
transactions using GetFundamentalDetail. Of the fundamental items that contain
detail strings, only 'estimated_earnings' is guaranteed to be unique by bar. Ifitis
important in your analysis to access every item on each bar, then use the
FundamentalltemData method and manually parse the Data string instead.
Furthermore, only FundamentalltemData has the ability to access future (or past)
earnings that do not fall within a chart's range.

Remarks

e Wealth-Lab Pro only. See the Fundamental Data and Economic Indicator Definitions
Guide for valid Item parameters.

e GetFundamentalDetail always returns a string value. If necessary, convert the
string to a number using StrTolInt or StrToFloat.

e Only the following list of Items contain Data strings:
' esti mat ed_ear ni ngs' Data string (typical):
FY=2006; Cur QTR=3; Cur QTRMont h=9; Cal endar Year =2006; EPSCur FY=2. 57; EPS
Next FY=2. 874;

"insider_transactions' Data string(typical):
Fi r mMName=Mar ket
Edge; Nor mal i zedRat i ng=SELL; Act i onCode=DOWNNGRADE; Pr evNor mal i zedRat i ng=NEU
TRAL; Anal yst Name=Mar ket Edge;

"anal yst _rating' Data string (typical):
transt ype=B; i nsi der =Dl ON KURCZEK; titl e=Vi ce President;

e GetFundamentalDetail returns an empty string for valid Items that do not include
details, e.g., 'assets', 'cash’, 'dividend’, etc.

e If Item is not found, the function raises an error, which can be detected using a
try/except/end block (see "Error Handling" in the WealthScript Language Guide).

e To access fundamental data of secondary symbols, call SetPrimarySeries first.

Example

const EE = 'estinmated_earnings';
var b: integer;
var eps, calyr: string;

/'l Get the nost recent occurrence on the chart

b := BarCount - 1;

eps : = GetFundamental Detail (b, EE, 'EPSCurFY');

calyr := GetFundanental Detail (b, EE, 'Cal endarYear');

Showvessage(' The EPS of the current fiscal year is $ + eps + #13#10 +
‘from cal endar year ' + calyr);

© 2003-2006 WL Systems, Inc.

61

WealthScript Function Reference, Wealth-Lab Developer 4.0

9.1

9.2

9.3

Math Functions
Overview

Most scientific Math function that you would expect from a scripting language are
available in WealthScript. If you cannot find the function that you're looking for, try
browsing the Studies folder or Wealth-Lab Code Library found on the Wealth-Lab site.

Three of the math functions are specific to WealthScript and allow you to determine
values or the location of a line drawn on the chart: LineExtendX/ss], LineExtendY/es,
and TrendLineValuel73]. Note that these functions are applicable in a linear sense, and
therefore should not be used for semi-logarithmic charting. See, for example,
LineExtendYLog in the Code Library.

Abs

Abs(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the absolute value of the specified Value.

Example

{ Report on the change in price after 200 days }
var S: string;

var DI FF: float;

var BAR i nteger;

Bar := BarCount - 1;
Diff := PriceC ose(Bar) - PriceCose(Bar - 200);
Diff :=Diff / PriceCose(Bar - 200) * 100;
s :="After 200 days, prices ';
if DIff > 0 then
s := s + 'advanced’
el se
s :=s + 'declined ;

Diff := Abs(Diff);
s:=s +' by ' + FormatFloat('#0.0%, Dff);
DrawLabel (s, 0);

ArcCos

ArcCos(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

ArcCos returns the inverse cosine of the specified number, Value. The number must
be between -1 and 1. The return value is the angle, in degrees.

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/libraryview?item=173

Math Functions 62

94 ArcSin

ArcSin(Value: float): float;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

ArcSin returns the inverse sine of the specified number. The number must be
between -1 and 1. The return value is the angle in degrees.

9.5 ArcSinh

ArcSinh(Value: float): float;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

ArcSinh returns the inverse hyperbolic sine of the specified number, Value.

9.6 ArcTan

ArcTan(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Calculates the arctangent of a specified number, Value, in degrees.

9.7 ArcTanh

ArcTanh(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the inverse hyperbolic tangent of the specified humber, Value. The number
must be between -1 and 1.

0.8 Correlation

Correlation(Seriesl: integer; Series2: integer; StartBar: integer; EndBar: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns Pearson's Correlation Coefficient between the two specified Price Series,
Series1 and Series2. Specify the quantity of data to analyze in the StartBar and
EndBar parameters.

Example

{ How well correlated were CMO and RSI ? }
var corr: float;

var RSl Ser, CMOSer: integer;

RSI Ser := RSI Series(#C ose, 20);

CMOSer := CMOSeries(#C ose, 20);

© 2003-2006 WL Systems, Inc.

63

WealthScript Function Reference, Wealth-Lab Developer 4.0

9.9

9.10

9.11

9.12

corr := Correlation(RSISer, CMOSer, 0, BarCount

- 1)
DrawLabel (' Correlation: ' + FloatToStr(corr), 0);

Cos

Cos(Value: float): float;
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description

Returns the cosine of the specified angle, Value. The angle should be specified in
degrees.

Cosh

Cosh(Value: float): float;
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description

Returns the hyperbolic cosine of the specified angle, Value.

Cotan

Cotan(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the cotangent of the specified angle. Specify the angle in degrees. Only use
with angles that are non-zero.

Dec

Dec(Value: integer);

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description
Decrements the variable passed in the Value parameter by 1.
Note: Dec operates on regular integer variables only, not object field variables.
In the example below, the statement
Dec(cnt);
is equivalent to

cnt :=cnt - 1;

Example
{ Each tinme the price crosses above 25, decrenment a counter variable }
var Bar, cnt: integer;

cnt = 1000; /[l Initialize the variable
for Bar := 1 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

Math Functions 64

i f CrossOverVal ue(Bar, #C ose, 25) then
Dec(cnt);

ShowMessage(' The counter is ' + IntToStr(cnt));

9.13 DegToRad

DegToRad(Degrees: float): float;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the value of the specified degree measurement, Degrees, in radians. The
conversion from degrees to radians is given by the formula:

radi ans = degrees(pi / 180)

9.14 Exp

Exp(Value: float): float;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the value of € raised to the specified Value, where € is the base of the natural
logarithms and is approximately equal to 2.71828.

9.15 Frac

Frac(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the fractional part of the floating point number specified by Value.

9.16 Hypot

Hypot(x: float; y: float): float;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the length of the hypotenuse of a triangle. Specify the lengths of the sides
adjacent to the right angle in X and Y parameters.

9.17 Inc

Inc(Value: integer);

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Increments the variable passed in the Value parameter by 1.

© 2003-2006 WL Systems, Inc.

65 WealthScript Function Reference, Wealth-Lab Developer 4.0

Note: Inc operates on regular integer variables only, not object field variables.

In the example below, the statement
Inc(cnt);

is equivalent to
cnt :=cnt + 1;

Example

{ Each time the price crosses below 25, increnent a counter variable }
var Bar, cnt: integer;

cnt = 0; /[l Initialize the variable
for Bar := 1 to BarCount - 1 do
i f CrossUnderVal ue(Bar, #Cl ose, 25) then
Inc(cnt);

ShowMessage(' The counter is ' + IntToStr(cnt));

9.18 Int

Int(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the integer part of a floating point humber as a floating point number after
rounding towards zero. Assign the result of Int to a variable of type float.

Compare to: Trunc, Round

Example

{ f equals -5.0 follow ng the conversion }
var x, f: float;

X = -5.678;

f:r=1Int(x);

ShowMessage(Format Float('0.0", f));

9.19 LinearRegLine

LinearRegLine(Series: integer; Start: integer; End: integer; Predict: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Allows you to perform ad-hoc linear regression analysis on the specified Price Series.
Specify the Start and End bars for which to calculate the regression line. Then,
specify the bar, Predict, for which you want to predict a value. This could be a bar
that extends into the future.

Example

{ Draw a bul |l seye around the predicted closing price of the |ast bar of
t he

chart based on a linear regression that conpleted 1 - bars earlier }
var X: float;
var ENDBAR, BAR1l, BAR2: integer;

© 2003-2006 WL Systems, Inc.

Math Functions 66

EndBar := BarCount - 1;

Barl := EndBar - 30;

Bar2 := EndBar - 10;

X := LinearRegLi ne(#C ose, Barl, Bar2, EndBar);
DrawCircle(8, 0, EndBar, x, #Red, #Thick);
DrawCircle(4, 0, EndBar, x, #Bl ack, #Thick);

9.20 LineExtendX

LineExtendX(x1: float; y1: float; x2: float; y2: float; y: float): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Extends the line specified by the x1, y1, x2, and y2 parameters, solving for x using
the specified y parameter.

Remarks

e The equation used in the solution assumes a linear (not logarithmic) y-scale axis.

Example

{ Determ ne middle bar between |ast 2 peaks }

var PRI CEl, PRICE2, PRICE3: float;

var BAR, BARl, BAR2, BAR3: integer;

Bar := BarCount - 1,

Bar1l : = PeakBar(Bar, #Hi gh, 13);

Pricel := Peak(Bar, #Hi gh, 13);

Bar2 := PeakBar(Barl, #Hi gh, 13);

Price2 := Peak(Barl, #Hi gh, 13);

Price3 := (Pricel + Price2) [2;

Bar3 := Trunc(LineExtendX(Barl, Pricel, Bar2, Price2, Price3));

Set Bar Col or (Bar 3, #Red);
DrawLi ne(Barl, Pricel, Bar2, Price2, 0, #Blue, #Thin);

9.21 LineExtendY

LineExtendY(x1: float; y1: float; x2: float; y2: float; x: float): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Extends the line specified by the x1, y1, x2, and y2 parameters and solves for y using
the specified x parameter.

Remarks

e The equation used in the solution assumes a linear (not logarithmic) y-scale axis.
See LineExtendYLog in the Wealth-Lab Code Library for the semi-log
complementary function.

e See Also: TrendLineValue

Example

{ Extend recent resistance line to nbst current bar }
var PRI CEl, PRICE2, Price3, Rev: float;

var BAR1l, BAR, BAR2: integer;

Rev := 5;

© 2003-2006 WL Systems, Inc.

67 WealthScript Function Reference, Wealth-Lab Developer 4.0

Bar := BarCount - 1,

Barl := PeakBar(Bar, #Hi gh, Rev);

Pricel := Peak(Bar, #H gh, Rev);

Bar2 := PeakBar(Barl, #H gh, Rev);

Price2 := Peak(Barl, #Hi gh, Rev);

Price3 := LineExtendY(Barl, Pricel, Bar2, Price2, BarCount - 1);

DrawLi ne(Barl, Pricel, Bar2, Price2, 0, #Blue, #Thick);
DrawLi ne(Bar2, Price2, BarCount - 1, Price3, 0, #Red, #Thin);

9.22 LN

LN(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the natural log of the specified Value.

Example

{ This function returns the | og BaseN of a Nunber }
function Log(Nunber, BaseN:. float): float;
begi n
Result := LN(Nunmber) / LN(BaseN);
end;

var f: float;

f := Log(81, 3);

ShowMessage(' The log base 3 of 81 is ' + FormatFloat('0.0', f));
9.23 Log1l0

Log10(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the base 10 logarithm for the specified Value.

9.24 Log2

Log2(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the base 2 logarithm for the specified Value.

© 2003-2006 WL Systems, Inc.

Math Functions 68

9.25 Max

Max(nl: float; n2: float): float;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the greater of the two specified values, n1 and n2. The result is returned as a
float type.

The ChartScript below is set up for optimization on two variables, which are used for
the moving average periods. To ensure that both MA Price Series are valid for all
permutations of the #OptVars, we use Max to determine which one is greater and use
the result as the first bar in the main loop.

Example
{ Long-only noving avg crossover trading script set up for Optinization

{#Opt Var1 8; 6; 14; 2}
{#Opt Var 2 14; 8; 20; 2}
var Bar, StartBar, pl, p2, hMAl, hMA2: integer;

pl : = #Opt Var 1;
p2 : = #Opt Var 2;
hMAl : = SMASeries(#C ose, pl);
hMA2 : = SMASeries(#C ose, p2);

{ Trunc converts the float type to an integer type }
StartBar := Trunc(Max(pl, p2));

for Bar := StartBar to BarCount - 1 do
begi n

if not LastPositionActive then

begi n

if CrossOver(Bar, hMAl, hMA2) then
BuyAt Mar ket (Bar + 1, ' XOver');
end
el se
i f CrossUnder(Bar, hMAL, hMA2) then
Sel | At Market (Bar + 1, LastPosition, 'XuUnder');
end;
Pl ot Series(hMAL, 0, #Geen, #Thin);
Pl ot Series(hMA2, 0, #Red, #Thin);

9.26 Min

Min(n1: float; n2: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the lower of the two specified values, n1 and n2. The result is returned as a
float type.

In the example, the short-only trading system sets a stop based on the value of two
Price Series. We use Min to determine the lesser value of the two series for the
trailing stop.

© 2003-2006 WL Systems, Inc.

69 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Each tine the price crosses below 25, increnent a counter variable }
var Bar, pl, p2, hMAL, hMA2: integer;
var Stp: float;

pl := 10;
p2 := 20;
hMAL : = SMASeri es(#C ose, pl);
hMA2 : = SMASeri es(#C ose, p2);
Pl ot St ops;

for Bar := p2 to BarCount - 1 do
begin
i f not LastPositionActive then
begin
if CrossUnder(Bar, hMAL, hMA2) then
begin
Short At Market (Bar + 1, ' XuUnder');
{ Initialize a stop 3% higher than entry }
Stp := PositionEntryPrice(LastPosition) * 1.03;
Cover At TrailingStop(Bar + 1, Stp, LastPosition, 'Cvr');
end;
end
el se
if CrossOver(Bar, hMAlL, hMA2) then
Cover At Mar ket (Bar + 1, LastPosition, 'XOver')
el se
begin
Stp := Mn(@MAl[Bar] * 1.02, @MA2[Bar] * 1.01);
Cover At TrailingStop(Bar + 1, Stp, LastPosition, 'TStop');
end;
end;
Pl ot Series(hMAL, 0, #Green, #Thin);
Pl ot Series(hMA2, 0, #Red, #Thin);

9.27 Pi
Pi: float;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the ratio of a circle's circumference to its diameter, approximately
3.141592854.

9.28 Power

Power(Base: float; Exponent: float): float;
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description

Power raises the number specified by Base to the power specified in Exponent.

Note: For a fractional Exponent, Base must be greater than zero, otherwise a run-
time error will result.

© 2003-2006 WL Systems, Inc.

Math Functions 70

Remarks

To take the negative of the root 1/r of some positive number p, you can use:
var x, p: float;
p :=5;
X :=(-1) * Power(p, 1/3)

Note that this is not the same as taking the negative root 1/r of p as in:
X = Power(-p, 1/r);

which results in a complex number and a run-time error.

9.29 RadToDeg

RadToDeg(Radians: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the specified radian angle measurement, Radians, to degrees. The
conversion from radians to degrees is given by the formula:

degrees = radians * (180 / pi)

9.30 RandG

RandG(Mean, StdDev: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Generates random numbers with a Gaussian distribution about the Mean. RandG is
useful for simulating data with sampling errors and expected deviations from the
Mean.

Remarks
¢ Call SetRandSeed before RandG to generate a repetitive random sequence.

e See also Random, RandomliInt.

Example

{ Set 200 or 300 Fixed Bars and execute }

var n, m BarCnt: integer;

var |st: TList = TList.Create;

var h: integer = CreateSeries;

var Pane: integer = CreatePane(150, true, true);

Bar Cnt := BarCount - 1;
for n := 0 to BarCnt do
I st. Add(Rand@ 100, 5.0));

{ Re-order and plot to show the Gaussian distribution }
| st. Sort Nuneri c;

Ist.ltem(n);

© 2003-2006 WL Systems, Inc.

71 WealthScript Function Reference, Wealth-Lab Developer 4.0
@[BarCnt - M :=1Ist.ltem(n);
Inc(m);
Inc(n);
until n >= BarCnt;
Pl ot Series(h, Pane, 0, #H stogram);
9.31 Random
Random: float;
MChartScripts MSimuScripts MPerfScripts CMScripts
Description
Returns a random number between zero and one.
Remarks
¢ Call SetRandSeed before Random to generate a repetitive random sequence.
Example
{ Get a random val ue between 100 and 200 }
var x: float;
X := Random * 100 + 100;
9.32 Randomint
RandomlInt(Limit: integer): integer;
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description
Returns a random integer between zero and Limit - 1.
Remarks
e Call SetRandSeed before RandomInt to generate a repetitive random sequence.
Example
{ Get a randominteger between 0 and 99 }
var ri: integer;
ri := Randomi nt(100);
ShowMessage(IntToStr(ri));
9.33 Randomize
Randomize;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Initializes the random number generator with a random value. You can call this
function at the start of a script to ensure that you get a different sequence of random
numbers each time the script is executed.

© 2003-2006 WL Systems, Inc.

Math Functions 72

9.34 RandSeed

RandSeed;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the random number generator's current "seed" value. You can use the
SetRandSeed function to change the seed value, and start a repetitive sequence of
random numbers.

9.35 Round

Round(Value: float): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Rounds the specified floating point number, Value, to the nearest whole number,
which is returned as an integer type.

Remarks

¢ Round uses "Bankers Rounding", which means that if Value is exactly between two
whole numbers, the result is always an even number.

e Compare to: Int, Trunc

Example

{ nequals 2 and p equals -3 at the end of the exanple }
var x: float;
var n, p: integer;

X 1= 2.5
n := Round(x);
X 1= -3.49;

p := Round(x);
ShowMessage(IntToStr(n) + #9 + IntToStr(p));

9.36 SetRandSeed

SetRandSeed(Value: integer);

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Changes the seed Value of the random number generator. You can generate
repetitive sequences of random numbers by resetting the seed to a set value.

9.37 Sin

Sin(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the sine of the specified angle, Value. The angle should be specified in
degrees.

© 2003-2006 WL Systems, Inc.

73

WealthScript Function Reference, Wealth-Lab Developer 4.0

9.38

9.39

9.40

9.41

9.42

9.43

Sinh
Sinh(Value: float): float;
MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the hyperbolic sine of the specified angle, Value.

Sqr
Sqgr(Value: float): float;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the square of the specified Value. The return value is Value * Value.

Sqgrt
Sqart(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the square root of the specified Value.

Tan

Tan(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the tangent of the specified angle, Value. The angle should be in degrees.

Tanh

Tan(Value: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the hyperbolic tangent of the specified Value.

TrendLineValue

TrendLineValue(Bar: integer; TrendLine: string): float;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Allows you to obtain the value at Bar of a named Trendline that you drew with Wealth-
Lab Developer 4.0's TrendLine tool. If the named Trendline could not be found for the
current symbol and time frame, the function returns 0.

© 2003-2006 WL Systems, Inc.

Math Functions 74

Remarks

e The equation used in the solution assumes a linear (not logarithmic) y-scale axis.
e See also: LineExtendY

Example

{ Have we crossed the resistance TrendLine? }
var RES: fl oat;
var BAR integer;

for Bar := 1 to BarCount - 1 do
begin
res := TrendLi neValue(Bar - 1, 'Resistance');
if PriceClose(Bar - 1) < res then
begin
res := TrendLi neVal ue(Bar, 'Resistance');
if PriceClose(Bar) >= res then
begin

Set Bar Col or (Bar, #Red);
DrawCircle(5, 0, Bar, res, #Red, #Thin);
end;
end;
end;

9.44 Trunc

Trunc(Value: float): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Truncates the decimal portion of the specified floating point number and returns the
integer portion. Trunc returns an integer type.

Compare to: Int, Round

Example

{ nequals 1 at the end of the exanple }
var x: float;

var n: integer;

x = 1.234,

n := Trunc(x);

© 2003-2006 WL Systems, Inc.

75

WealthScript Function Reference, Wealth-Lab Developer 4.0

10

10.1

10.2

PerfScript Functions

Overview

PerfScripts, or Performance Scripts, are Scriptable Performance Reports. You can
customize Wealth-Lab Performance Reports to display whatever performance metrics
that you can imagine using the PerfScript feature. Performance Scripts must be saved

to the special PerfScripts folder, where a sample is included with your Wealth-Lab
Developer 4.0 installation that duplicates the standard Wealth-Lab Performance
Report.

When enabled in the ChartScript Window or $imulator tools, Wealth-Lab will execute a
PerfScript four times to process All Trades (Long+Short), Long Only, Short Only, and
Buy & Hold positions. Since Wealth-Lab automatically makes the appropriate group of
positions available to the PerfScript during each of the four runs, it's not necessary to
write special code to test position types.

Of the seven PerfScript functions, four are used to add data to a performance record,
which is simply a single row of text in the Performance Report. Each row must have a
unique Label. Depending on the type of data to be displayed, you'll reference this
Label using either PerfAddCurrency 771, PerfAddNumber|7, PerfAddPct/7), or
PerfAddString|7). Consequently, the same performance record can display different
types of data as required for All Trades, Long Only, etc.

For example, for any performance metric that involves a division, you should include
logic to detect if the divisor is zero prior to the division operation. If it is, then you
can use PerfAddStringﬁﬁ to show 'INF'. Otherwise, use one the other functions to
display a number with the appropriate format.

AccountExposure

AccountExposure: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the total market exposure in percent for the trading system. Wealth-Lab
calculates exposure on a bar-by-bar basis and measures the area of the portfolio
equity curve that was exposed to the market.

Remarks

e AccountExposure is available only for PerfScripts.

Example
Per f AddPct (' Exposure', Account Exposure, 2, #Black, 0, 8);

© 2003-2006 WL Systems, Inc.

PerfScript Functions 76

10.3 Cashinterest

Cashlnterest: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the total interest earned on uninvested cash during a $imulation ($imulator

only).

Remarks

e Cashlnterest is available only for PerfScripts.

e Interest and loan options are found in the Options dialog, Trading Costs/Control
options group.

Example
Per f AddCurrency(' Cash Interest', Cashlnterest, #WnLoss, 0, 8);

10.4 DividendsPaid

DividendsPaid: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the total amount of dividends collected and paid during a $imulation. The
amount can be negative if dividends were paid while holding stock short. To enable
dividend payment, mark the checkbox for "Apply Dividend Payments" in the Trading
Costs/Control options dialog group.

Remarks

e Wealth-Lab Pro only. In "Developer" DividendsPaid always returns zero.

o DividendsPaid is available only for PerfScripts.

Example
Per f AddCurrency('Dividends', DividendsPaid, #WnLoss, 0, 8);

10.5 MarginLoan

MarginLoan: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the total cash paid out due to margin interest during a $imulation ($imulator
only).

Remarks

e MarginLoan is available only for PerfScripts.

e Interest and loan options are found in the Options dialog, Trading Costs/Control
options group.

© 2003-2006 WL Systems, Inc.

77 WealthScript Function Reference, Wealth-Lab Developer 4.0
Example
Per f AddCurrency('Margin Loan Interest', MarginLoan, #WnLoss, 0, 8);
10.6 PerfAddCurrency
PerfAddCurrency(Label: string; Value: float; Color: integer; Style: integer; Size: integer);
OChartScripts ©SimuScripts MPerfScripts ©CMScripts
Description
Adds a floating point value formatted using the Decimal and Currency configuration in
the Options Dialog|System Settings.
Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.
Value Floating point expression of the performance metric to be displayed.
Color Controls the Value's text color using one of the standard color constants,
e.g., #Bl ack, #Red, #G een, etc. For in-the-black/in-the-red coloring
(positive/negative values, respectively), use #W nLoss.
Style Controls the style of the Label and can be either #Bol d, #ltalic, orQ
for normal type.
Size Point size of font, 8 is standard.
Example
Per f AddCurrency('Net Profit', NetProfit, #WnLoss, 0, 8);
10.7 PerfAddNumber

PerfAddNumber(Label: string; Value: float; Decimals: integer; Color: integer; Style: integer; Size: integer

)i
OChartScripts ©SimuScripts MPerfScripts ©CMScripts
Description
Adds a floating point value, which is displayed with the specified number of Decimals.
Value is rounded to correspond to the specified Decimals precision.
Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.
Value Floating point expression of the performance metric to be displayed.

Decimals Number of digits to be displayed right of the decimal point. Rational
numbers are zero-filled. Enter O for integer expressions.

Color Controls the Value's text color using one of the standard color constants,
e.g., #Bl ack, #Red, #Geen, etc. For in-the-black/in-the-red coloring
(positive/negative values, respectively), use #W nLoss.

Style Controls the style of the Label and can be either #Bol d, #ltalic, orQ
for normal type.

Size Point size of font, 8 is standard.

© 2003-2006 WL Systems, Inc.

PerfScript Functions 78

Example

Per f AddNunber (' Nunber of Trades', PositionCount, 0, #Black, #Bold, 8
)

10.8 PerfAddPct

PerfAddPct(Label: string; Value: float; Decimals: integer; Color: integer; Style: integer; Size: integer);

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description
Adds a floating point value displayed with the % symbol. Value should already be
formatted in percent terms, i.e., multiplied by 100.
Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.
Value Floating point expression of the performance metric to be displayed.

Decimals Number of digits to be displayed right of the decimal point. Rational
numbers are zero-filled. Enter O for integer expressions.

Color Controls the Value's text color using one of the standard color constants,
e.g., #Bl ack, #Red, #Geen, etc. For in-the-black/in-the-red coloring
(positive/negative values, respectively), use #W nLoss.

Style Controls the style of the Label and can be either #Bol d, #ltalic, or0
for normal type.
Size Point size of font, 8 is standard.
Example

Perf AddPct (' Net Profit %, (NetProfit / StartingCapital) * 100, 2,
#W nLoss, #Bold, 8);

10.9 PerfAddString

PerfAddString(Label: string; StringVal: string; Color: integer; Style: integer; Size: integer);

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Adds the string identified by the StringVal expression.

Label Text label identifying the performance record, displayed in the left-most
column of the Performance report.

StringVal String expression or literal to be displayed.

Color Controls StringVal's text color using one of the standard color constants,
e.g., #Bl ack, #Red, #Geen, etc.
Style Controls the style of the Label and can be either #Bol d, #ltalic, orQ
for normal type.
Size Point size of font, 8 is standard.
Example

Perf AddString('Annualized Gain $', 'NA, #Black, 0, 8);

© 2003-2006 WL Systems, Inc.

79 WealthScript Function Reference, Wealth-Lab Developer 4.0

10.10 PerfAddBreak
PerfAddBreak;
©ChartScripts ©SimuScripts MPerfScripts ©CMScripts
Description
Adds a blank line after the last PerfAdd function call that creates a unique label.

Example
Per f AddBr eak;

10.11 StartingCapital

StartingCapital: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the Starting Capital for Portfolio Simulations, or zero for Raw Profit Mode.

Remarks

e StartingCapital is available only for PerfScripts.

Example

Perf AddCurrency('Starting Capital', StartingCapital, #Bl ack, #Bold, 8
)

10.12 TotalCommission

TotalCommission: float;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts

Description

Returns the total commission generated during a simulation.

Remarks
e TotalCommission is available only for PerfScripts.

e The function is equally applicable to both the $imulator and ChartScript Window
tools in either Portfolio Simulation or Raw Profit mode.

Example
Per f AddCurrency(' Total Conmi ssion', Total Conni ssion, #WnlLoss, 0, 8);

© 2003-2006 WL Systems, Inc.

Position Management Functions 80

11 Position Management Functions
11.1 Overview

When you need to know about the performance or "properties" of an open or closed
Position so to make a future trading decision, look to the Position Management
category of functions. Each Position that you open will have a set of constant
properties, such as the Bar Number on which the position was opened or the number
of shares/contracts. All of these data are assigned to a Position Number that you later
use to reference a particular Position. Position Numbers start at zero with the first
Position opened by the ChartScript and increments by one for each newly opened (or
split) Position.

While the Position is still open, you can also access up-to-the bar performance data,
like Max Adverse/Favorable Excursions (MAE/MFE). Additionally, your Positions have
extra storage for items such as a risk stop price (SetPositionRiskStophil) for position
sizing, a priority number to influence the decisions at the Portfolio Simulation level
(SetPositionPriority108), and an arbitrary data value (SetPositionDatal%) that you can
use for any purpose you choose!

11.2 ActivePositionCount
ActivePositionCount: integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the number of active Positions currently being held by the trading system.

Example

{ Here we Iimt the systemto 3 active Positions max }
var BAR, N integer;

for Bar := 21 to BarCount - 1 do
begin

n .= 30;

while n > 0 do

begin

i f CrossUnderVal ue(Bar, RSISeries(#C ose, 20), n) then
if ActivePositionCount < 3 then
BuyAt Market (Bar + 1, IntToStr(n));
n:=n- 5;
end;
if CrossOverValue(Bar, RSISeries(#C ose, 20), 55) then
for n :=0 to PositionCount - 1 do
if PositionActive(n) then
Sel | At Market(Bar + 1, n, "');
end;
var RSl Pane: integer;
RSI Pane := CreatePane(75, true, true);
Pl ot Seri es(RSl Series(#C ose, 20), RSIPane, 205, #Thick);
DrawLabel ("RSI(Cose, 20)', RSIPane);
AddScanCol um(' RSI 20", RSI(BarCount - 1, #Cl ose, 20));

© 2003-2006 WL Systems, Inc.

81

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.3

ClearPositions

ClearPositions;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Clears out all Positions and Alerts. You'd only need to use this function if you're
writing a complex script that is basing buy/sell decisions on an idealized profit curve.
In this case, you could run one pass of the system and collect information in one or
more in custom Price Series. You could then clear out the Positions and Alerts and
execute the system again, this time using the metrics that you gathered in the first
run.

Remarks

¢ In Portfolio Simulation Mode, ClearPositions resets Equity to the Starting Capital

value in the Position Sizing Control, whereas Equity is reset to zero in Raw Profit
Mode.

Example

{ Calculate the win/loss ratio of the systemtaking all trades.
Then re-run the system but only take trades when the prior
win/loss ratio was above 50% }

var W nLossPane, Wnners, Trades, p, WnLoss, Bar, CMOPane: integer;

CMOPane : = CreatePane(80, true, true);
Pl ot Seri es(CMOSeries(#C ose, 20), CMOPane, 009, #Thick);
DrawLabel (' CM) Cl ose, 20)', CMOPane);

W nLoss := CreateSeries;

for Bar := 20 to BarCount - 1 do
begi n
Wnners := 0;
Trades : = 0;
for p :=0 to PositionCount - 1 do
begi n
if not PositionActive(p) then
begi n
Inc(Trades);
if PositionProfit(p) > 0 then
Inc(Wnners);
end;
end;
if Trades > 0 then
Set Seri esVal ue(Bar, WnLoss, Wnners * 100 / Trades);

i f CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), -40) then
BuyAt Market (Bar + 1, 'CMO)
el se if CrossUnderVal ue(Bar, CMOSeries(#Cl ose, 20), 40) then
Sel | At Market(Bar + 1, #All, 'CMO);
end;

{ Plot the Wn/Loss Ratio }

W nLossPane := CreatePane(100, false, true);

Set PaneM nMax(W nLossPane, 0, 100);

Pl ot Seri es(WnLoss, WnLossPane, #Geen, #ThickH st);
DrawLabel (' Wn/Loss Ratio', WnLossPane);

{ Cear the trades }

© 2003-2006 WL Systems, Inc.

Position Management Functions 82

Cl ear Posi ti ons;

{ Execute the systemagain, but only take the trade if the
win/loss ratio was above 50 }
for Bar := 20 to BarCount - 1 do
begi n
i f CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), -40) then
begi n
i f GetSeriesValue(Bar, WnLoss) > 50 then
BuyAt Market (Bar + 1, 'CMO);

end
el se if CrossUnderVal ue(Bar, CMOSeries(#Cl ose, 20), 40) then
Sel | At Market (Bar + 1, #All, 'CMO);
end;

11.4 GetPositionData

GetPositionData(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the value of any user-specific data for this Position [Number]. You can store
a single floating point value for each Position with the SetPositionData function in a
ChartScript (only). If no user-specific data is stored, the function returns 0.

Note: In WLD3.0 and later, position data no longer influences $imulator decisions
during periods of insufficient capital. This task is now accomplished using
SetPositionPriority.

Remarks

e Although you may assign data to a Position at any time after it has been created,
the ChartScript must use SetPositionData on the signal bar if you plan to retrieve
the data using GetPositionData in a SimuScript. Otherwise, using
SetPositionData after the signal bar can result in a look-ahead (peeking) error
during $imulator processing.

o GetPositionData is available for use in a SimuScript referenced from the $imulator
only.

e In a SimuScript, pass the special constant #Current to access the Position that the
$imulator (or Portfolio Simulation) is currently sizing.

Example (SimuScript)

{ A ChartScript stores the current CMO level in the Position data.
Use this value in a SinuScript to help establish Position size }
var x: float;

X := GetPositionbData(#Current);
X :=(x +100) [/ 2
x := 100 - x;

Sef Posi tionSizePct(x);

Example
{ This script uses Position Data to store whether the signal was
generated froman RSI or an SMA Crossover. It uses the Position

data to execute the corresponding exit. }
var P, BAR, CROCSS: integer;
for Bar := 50 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

83 WealthScript Function Reference, Wealth-Lab Developer 4.0

i f CrossOverVal ue(Bar, RSISeries(#C ose, 20), 30) then
begi n
BuyAt Market (Bar + 1, 'RSI Cross 30");
Set Posi ti onDat a(LastPosition, 1);
end;
if CrossOver(Bar, SMASeries(#Cl ose, 20), SMASeries(#C ose, 50))
t hen
begin
BuyAt Mar ket (Bar + 1, 'SMA CrossOver');
Set Posi ti onDat a(LastPosition, 2);
end;
i f CrossUnderVal ue(Bar, RSISeries(#C ose, 20), 70) then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
if GetPositionData(P) = 1 then
Sel | At Market(Bar + 1, P, "RSI Cross 70");
i f CrossUnder(Bar, SMASeries(#C ose, 20), SMASeries(#C ose, 50)
) then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
if GetPositionData(P) = 2 then
Sel | At Market(Bar + 1, P, 'SMA CrossOver');
end;

11.5 GetPositionPriority

GetPositionPriority(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Priority value that was assigned to the Position via a call to
SetPositionPriority. A Position's priority determines whether or not it will be
included by the portfolio $imulator tool if there are more trades available than capital.
Positions with a higher priority values take precedence. For example, a priority 5
Position will be included over a priority 1 Position if sufficient cash is not available for
both Positions.

Remarks

e Priority values need not be simple integers, and, they can also be negative values.

e If Positions are not assigned priority by SetPositionPriority, Positions are chosen
randomly when sufficient cash is not available for all trading signals during
$imulations. Note, however, that the random "seed" is always the same so that
$imulation results will be reproducible.

11.6 GetPositionRiskStop

GetPositionRiskStop(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Risk Stop Level (the initial stop price) of the Position. The Risk Stop level
is set by calling SetRiskStopLevel or SetPositionRiskStop from within a
ChartScript (only).

© 2003-2006 WL Systems, Inc.

Position Management Functions 84

11.7

Remarks

e Use this value in a SimuScript to determine a position size based on an initial stop

loss level recorded in the ChartScript.

Example (SimuScript)
var XSTOP, XBASIS, XRISK: float;

xStop := GetPositionRi skStop(#Current);
xBasis := PositionBasisPrice(#Current);

XRi sk := Abs(xBasis - xStop);
if xRisk > 10 then

Set Posi ti onSi zeShares(1)
else if xRisk > 5 then

Set Posi ti onSi zeShares(2)
else if xRisk > 2.5 then

Set Posi ti onSi zeShares(3)
else if xRisk > 1 then

Set Posi ti onSi zeShares(4)
el se

Set Posi ti onSi zeShares(5);

Example

{ Try and buy at the 20 bar low. |If we get the trade,

t he

30 bar low. The $inulator can then use our stop |evel

position

size that will risk whatever percent of capital

var BAR, P: integer;
Install ProfitTarget(10);
for Bar := 0 to BarCount - 1 do
begin
Appl yAut oSt ops(Bar);
if not LastPositionActive then
begin

Set Ri skSt opLevel (Lowest(Bar, #Low, 30) - 0.05);

BuyAtLimt(Bar + 1, Lowest(Bar,
end
el se
begin

P := LastPosition;

Sel | At Stop(Bar + 1, GetPositionRiskStop(P),

end;
end;

LastActivePosition

LastActivePosition: integer;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

Description

#Low, 20),

set a stop at

to create a

we desire. }

P1

)

)

Returns the Position Number index of the most current active Position.

active Positions, the function returns -1.

Remarks

If there are no

e The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. Closed means that the
shares have been sold (or covered, for short positions). LastActivePosition

returns the last open trade in the list.

© 2003-2006 WL Systems, Inc.

85

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.8

11.9

Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Example

{ This sinple average down system can be effective if you have
unlimted capital }
var BAR, P: integer;

for Bar := 20 to BarCount - 1 do
begi n
BuyAtLimt(Bar + 1, Lowest(Bar, #C ose, 20), '');

if LastActivePosition >= 0 then
for P:= 0 to PositionCount - 1 do
Sel lAtLimt(Bar + 1, Highest(Bar, #H gh, 13), P, "');
end;

LastLongPositionActive

LastLongPositionActive: boolean;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

Description

Returns true if the last long Position is currently active.

Remarks

The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last /ong position
in the list is open, then LastLongPositionActive returns boolean true.

Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastLongPositionActive to ensure
that you do not trade the last Position from the wrong symbol.

function LastLongPositionActiveSyn(sym string): bool ean;

begin
Result := LastLongPositionActive;
if Result then
begin
i f PositionSynbol (LastPosition) <> symthen
Result := fal se;
end;
end;

LastPosition

LastPosition: integer;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

Description

Returns the Position Number of the most-recently created Position. This function is
handy in Trading Systems that work with only one open Position at a time.

© 2003-2006 WL Systems, Inc.

Position Management Functions 86

Remarks

e The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. Closed means that the
shares have been sold (or covered, for short positions). LastPosition returns the
position number of the last trade in the list.

e LastPosition returns -1 if a position has not yet been created. Note that the
number of the first position is 0.

e LastPosition is equivalent to (PositionCount - 1).

e Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Example

var Bar: integer;

Pl ot Series(SMASeries(#C ose, 20), 0, #Red, #Thin);
Pl ot Series(SMASeries(#C ose, 10), 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do

begin
if CrossOver(Bar, SMASeries(#Cl ose, 10), SMASeries(#Cl ose, 20))
t hen
BuyAt Market (Bar + 1, '')
else if CrossOver(Bar, SMASeries(#C ose, 20), SMASeries(#C ose,
10)) then
Sel | At Mar ket (Bar + 1, LastPosition, "');
end;

11.10 LastPositionActive

LastPositionActive: boolean;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

Description

Returns true if the last Position is currently active. This is typically used in single
Position trading systems to determine whether to execute the entry rules or the exit
rules.

Remarks

e The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last position in
the list (returned by LastPosition) is open, then LastPositionActive returns
boolean true.

e Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastPositionActive to ensure that
you do not trade the last Position from the wrong symbol.

function LastPositionActiveSym(sym string): bool ean;

begi n
Result := LastPositionActive;
if Result then
begin

i f PositionSynbol (LastPosition) <> symthen

© 2003-2006 WL Systems, Inc.

87 WealthScript Function Reference, Wealth-Lab Developer 4.0

Result := fal se;
end;
end;

Example

var BAR i nteger;
I nstal | StopLoss(20);
Install ProfitTarget(7);
for Bar := 40 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

i f not LastPositionActive then

if CrossOverVal ue(Bar, RSISeries(#Average, 40), 25) then
BuyAtLimt(Bar + 1, PriceH gh(Bar), '');

end;

11.11 LastShortPositionActive

LastShortPositionActive: boolean;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

Description

Returns true if the last short Position is currently active.

Remarks

e The list of positions contains all trades that have been created since the script first
started executing. Each trade can be either open or closed. If the last short
position in the list is open, then LastShortPositionActive returns boolean true.

e Avoid using Last* functions in SimuScripts since they will not produce the desired
result when used in the $imulator.

Caution! If your script uses a WatchList loop, it's possible that the LastPosition
is from a symbol different to the one currently being processed. You can
use the following function instead of LastShortPositionActive to
ensure that you do not trade the last Position from the wrong symbol.

function LastShortPositionActiveSym(sym string): bool ean;
begi n

Result := Last Short PositionActive;

if Result then

begi n

i f PositionSynbol (LastPosition) <> symthen
Result := false;

end;

end;

11.12 MarketPosition

MarketPosition: integer;

MChartScripts XISimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

Position Management Functions 88

Description

Returns 0 if the last position is closed, or a position has not yet been created. Returns
1 if the last position is active and long, and -1 if the last position is active and short.
This function is useful for single-position systems that take long and short positions
(see example).

Remarks
¢ Avoid using MarketPosition in SimuScripts since it will not produce the desired

result when used in the $imulator.

Example

{ Channel Breakout System for Futures }
var HH, LL, HL, LH, BAR integer;

HH : = Hi ghest Series(#H gh, 20);
LL := Lowest Series(#Low, 20);
HL : = Hi ghestSeries(#Low, 20);
LH : = Lowest Series(#Hi gh, 20);
for Bar := 21 to BarCount - 1 do
begin
case Market Position of
0:
begin
if not BuyAtStop(Bar + 1, @H Bar], '') then
Short At Stop(Bar + 1, @L[Bar], '');
end;
1:
begin
if Sell AtStop(Bar + 1, @H Bar], LastPosition, '') then
Short At Stop(Bar + 1, @L[Bar], '');
end;
-1
begin
if CoverAtStop(Bar + 1, @lL[Bar], LastPosition, '") then
BuyAt Stop(Bar + 1, @H Bar], '');
end;
end;
end;

11.13 PositionActive

PositionActive(Position: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the specified Position is open, and false if it has been closed. Use this
function in trading systems that manage multiple Positions.

Remarks

e For SimuScripts, PositionActive returns true if the specified Position is active at
the time of the SimuScript call, otherwise false. You can use this function in
Position Sizing scripts that are based on streaks, like the one that follows.

Example (SimuScript)
{ Use winning streaks of closed positions to establish a position size

}
var STREAK, P: integer;

© 2003-2006 WL Systems, Inc.

89 WealthScript Function Reference, Wealth-Lab Developer 4.0

streak := 0O;
for p := PositionCount - 1 downto O do
begin
if not PositionActive(p) then
begi n
if PositionProfit(p) <= 0 then
Br eak
el se
streak := streak + 1;
end;
end;
if streak = 0 then
streak := 1;
if streak > 10 then
streak := 10;

Set Posi ti onSi zePct (streak * 10);

Example
var BAR, P: integer;
for Bar := 40 to BarCount - 1 do
begin
if CrossOverVal ue(Bar, RSISeries(#Average, 40), 35) then
BuyAtLimt(Bar + 1, PriceH gh(Bar), '');

i f CrossUnderVal ue(Bar, RSISeries(#Average, 40), 70) then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
Sel | At Market(Bar + 1, P, "');
end;

11.14 PositionBasisPrice

PositionBasisPrice(Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Basis Price of the specified Position. The Basis Price is the price used to
establish the size of the Position.

Remarks

e For next-bar market orders, the Basis Price is the close of the bar on which the
trade is signaled. The actual entry price is the open of the following bar.

e For AtClose orders, the Basis Price is equal to the closing price of the signal bar.

e For stop and limit orders, the Basis Price is equal to the Stop/Limit price. The trade
may be filled at a different price if there is a gap against the Stop/Limit price.

Example (SimuScript)

var XSTOP, XBASIS, XRI SK: fl oat;
xStop := GetPositionRi skStop(#Current);
xBasi s := PositionBasisPrice(#Current);
XRi sk := Abs(xBasis - xStop);
if xRisk > 10 then
Set Posi ti onSi zeShares(1)
else if xRisk >5 then
Set Posi ti onSi zeShares(2)
else if xRisk > 2.5 then
Set Posi ti onSi zeShares(3)

© 2003-2006 WL Systems, Inc.

Position Management Functions 90

else if xRisk > 1 then

Set Posi ti onSi zeShares(4)
el se

Set Posi ti onSi zeShares(5);

Example

{ Display differences between Basis Price and Entry Price }
var Bar: integer;

Pl ot St ops;
for Bar := 4 to BarCount - 1 do
begin
i f LastPositionActive then
Sel | At Stop(Bar + 1, Lowest(Bar, #lLow, 3), LastPosition, '')
el se
begin
if BuyAtStop(Bar + 1, Highest(Bar, #Hi gh, 3), '") then

Print(FloatToStr(PositionEntryPrice(LastPosition)
- PositionBasisPrice(LastPosition)));
end;
end;

11.15 PositionBarsHeld
PositionBarsHeld(Position: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the number of bars the specified Position was active. This method is useful
when calculating statistics at the end of the script and should not be used within the
trading loop since it does not provide the number of bars currently held.

Remarks

e If the position was closed, PositionBarsHeld returns the same result obtained by
subtracting PositionEntryBar from PositionExitBar.

e If the position is open after the trading loop ends, PositionBarsHeld returns the
result obtained by subtracting PositionEntryBar from BarCount - 1.

11.16 PositionCount

PositionCount: integer;

MChartScripts M#SimuScripts MPerfScripts ©CMScripts

Description

Returns the total number of trading system Positions, both open and closed.

Remarks

e In SimuScripts, PositionCount returns the number of Positions at the time the
SimuScript was called. This count does not include the Position that is currently
being processed by the SimuScript.

e Since a Portfolio Simulation can reject trades for insufficient cash, PositionCount
can differ from a Raw Profit PositionCount. Therefore in a SimuScript,
PositionCount returns the number of positions that have been accepted by the
current $imulation run at the time the SimuScript is called.

© 2003-2006 WL Systems, Inc.

91 WealthScript Function Reference, Wealth-Lab Developer 4.0

Example (SimuScript)

{ Scal e down Position size the nore active Positions that we have }
var PS, P: integer;

ps : = 40,
for p:=0 to PositionCount - 1 do
begin
if PositionActive(p) then
begin

ps := ps - 10;
if ps = 10 then
Br eak;
end;
end;
Set Posi ti onSi zePct (ps);

The following ChartScript uses an advanced technique for quickly looping through all
active Positions. Knowing that the most-recently created Positions have the greatest
Position Numbers, we can "count backwards" and exit the PositionCount loop after
determining that all active Positions have been processed. The result is a significant
savings in processing time for ChartScripts that create many Positions since older,
closed Positions are not processed needlessly.

Example

{ The script adds a long position whenever CunDown is 9 or greater.
When Cumldp = 9, all active positions are sold. }
var Bar, p, Processed, APCount: integer;
for Bar := 9 to BarCount - 1 do
begi n
i f CunDown(Bar, #Close, 4) >= 9 then
BuyAt Mar ket (Bar + 1, ;
if (Cunmp(Bar, #Close, 4) =9) then

begi n
APCount : = ActivePositionCount;
Processed : = 0;
for p := PositionCount - 1 downto O do
begi n
if PositionActive(p) then
begin
Sel | At Market(Bar + 1, p, "');
I nc(Processed);
end;

if Processed = APCount then
br eak;
end;
end;
end;

11.17 PositionEntryBar
PositionEntryBar(Position: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar number on which the Position was established.

Example

var Bar: integer;
for Bar := 20 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

Position Management Functions 92

begi n
i f not LastPositionActive then
begin
if StochK(Bar, 20) > 70 then
BuyAt Mar ket (Bar + 1, 'Stoch');
end
el se
begin
{ Sell after 10 days }
if Bar - PositionEntryBar(LastPosition) = 10 then
Sel | At Market (Bar + 1, LastPosition, '10 day');
end;
end;

11.18 PositionEntryPrice
PositionEntryPrice(Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the entry price of the specified Position.

Remarks

e When backtesting, PositionEntryPrice returns the actual entry price for signals on
Bar + 1 even though the order is executed on Bar. Do not use the entry price for a
Position created on Bar for other trading rules on the same Bar.

e In general, SimuScripts should use PositionBasisPrice, not PositionEntryPrice,
for the #Current Position. This is because at the time the SimuScript is called, only
the basis price is known for next-bar orders. See the SimuScript example below.

e PositionEntryPrice always returns zero for entry signal Alerts.

Example (SimuScript)

{ Use a larger size if the Basis Price of the current Position

is less than the average entry price of all Positions thus far. }
var p: integer;
var sunPr, avgPr: float;

i f PositionCount = 0 then
Set Posi ti onSi zeShares(200)

el se
begin
for p:=0 to PositionCount - 1 do
sunPr := sunPr + PositionEntryPrice(p);
avgPr := sunPr / PositionCount;

i f PositionBasisPrice(#Current) < avgPr then
Set Posi ti onSi zeShares(300)
el se
Set Posi ti onSi zeShares(200);
end;

Example

{ CMO Signals with Profit Target will open nultiple Positions, but wll
wait until the price is lower than the previously established

Position. }

var LOWESTPCSI TI ON: fl oat;

© 2003-2006 WL Systems, Inc.

93 WealthScript Function Reference, Wealth-Lab Developer 4.0

var NPANE, LASTBARBOUGHT, BAR, |: integer;

{ Plot 14 day CMO in new chart pane }

nPane : = CreatePane(60, TRUE, FALSE);

Pl ot Seri es(CMOSeries(#C ose, 20), nPane, 009, 0);
DrawText (' CMO 20', nPane, 4, 4, 006, 8);

Set PaneM nMax(nPane, -60, 60);
Dr awHor zLi ne(0, nPane, 666, 0);
Dr awHor zLi ne(50, nPane, 666, 1);
Dr awHor zLi ne(-50, nPane, 666, 1);
Set Bar Col ors(#Bl ack, #Bl ack);
Install ProfitTarget(10);

Last Bar Bought : = 0;
for Bar := 15 to BarCount - 1 do
begin

if CMC(Bar, #Close, 20) <= -50 then
Set Bar Col or (Bar, #Bl ue)

else if CMC(Bar, #C ose, 20) >= 50 then
Set Bar Col or (Bar, #Red);

Appl yAut oSt ops(Bar);

if CMJ) Bar, #Close, 20) > -50 then
if CMX Bar - 1, #C ose, 20) <= -50 then

begi n
Lowest Position := 9999. 9;
for i := 0 to PositionCount - 1 do

if PositionActive(i) then
if PositionEntryPrice(i) < LowestPosition then
Lowest Position := PositionEntryPrice(i);
if (LowestPosition = 9999.9) or (PriceCose(Bar) <
Lowest Position) then
if Bar >= (LastBarBought + 9) then

begin
BuyAt Market (Bar + 1, '');
Last Bar Bought := Bar + 1;
end;
end;

if CMC(Bar, #Close, 20) < 50 then
if CMC(Bar - 1, #Close, 20) >= 50 then

for i :=0 to PositionCount - 1 do
if PositionActive(i) then
Sel | At Market(Bar + 1, i, "');

end;

11.19 PositionExitBar
PositionExitBar(Position: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar number on which the specified Position was closed. If Position is still
active on the last bar of the chart, then PositionExitBar returns 0.

Example

{ Display the shortest and the |l ongest holding time }
var BAR, LOWBAR, HI GHBAR, P, BARSHELD: i nteger;
for Bar := 20 to BarCount - 1 do
begi n
i f not LastPositionActive then

© 2003-2006 WL Systems, Inc.

Position Management Functions 94

begi n
i f CrossUnderVal ue(Bar, RSISeries(#C ose, 10), 20) then
BuyAt Market (Bar + 1, '');
end
el se
begin
i f CrossOverVal ue(Bar, RSISeries(#C ose, 10), 60) then
Sel | At Market (Bar + 1, LastPosition, '');
end;
end;
LowBar := O;
H ghBar := 0;
for P:=0 to PositionCount - 1 do
begi n

BarsHeld := PositionExitBar(P) - PositionEntryBar(P);
if BarsHeld > Hi ghBar then
H ghBar := BarsHel d;
if (BarsHeld < LowBar) or (LowBar = 0) then
LowBar := BarsHel d;
end;
DrawLabel (' Longest Holding Tinme: ' + IntToStr(H ghBar), 0);
DrawLabel (' Shortest Holding Tinme: ' + IntToStr(LowBar), 0);

11.20 PositionExitPrice

PositionExitPrice(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Returns the exit price of the specified Position.

Example

{ This procedure reports on entry and exit levels of all trades
Note: #9 inserts a tab character and is equivalent to chr(9) }
procedure TradeReport;
begi n
var f, p: integer;
var s: string;

f := FileCreate('c:\trade report.txt');
for p :=0 to PositionCount - 1 do
begin
s :="Entry:'" + #9 + DateToStr(CetDate(PositionEntryBar(p)))
+ #9 + FloatToStr(PositionEntryPrice(p)) + #9;
s :=s + "Exit: ' + #9 + DateToStr(CetDate(PositionExitBar(p))
)
+ #9 + Float ToStr(PositionExitPrice(p));
FileWite(f, s);
end;
end;

11.21 PositionExitSignalName

PositionExitSignalName(Position: integer): string;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

95

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.22

Description

Returns the "Signal Name" of the exit signal for the specified Position. The Signal
Name is always the last parameter (SignalName) of the SellAt or CoverAt function
that closed the Position.

Tip: If your strategy has many different entries and exits, you use a Position's
entry or exit signal name as a condition for future trading decisions, if desired.

Example

var BAR i nteger;
I nstal |l StopLoss(20);
Install ProfitTarget(100);
Install TrailingStop(10, 50);
for Bar := 30 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);

i f CrossOverVal ue(Bar, RSISeries(#C ose, 20), 28) then

BuyAt Market (Bar + 1, '');

end;
if PositionCount > 0 then

DrawLabel (' Last Position was C osed by '

+ Posi tionExitSignal Name(LastPosition), 0);

PositionLong

PositionLong(Position: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the specified Position is long, and false if it is short.

Remarks

e To access the Position that the $imulator (or Portfolio Simulation) is currently
working with, use the special constant #Current.

e See also: PositionShort

Example
var BAR i nteger;
for Bar := 5 to BarCount - 1 do
begi n

i f LastPositionActive then
i f PositionLong(LastPosition) then
Sel | At Stop(Bar + 1, Lowest(Bar - 1, #lLow, 4), LastPosition,

i f not LastPositionActive then

Short At Stop(Bar + 1, Lowest(Bar - 1, #lLow, 4), '')
el se if LastPositionActive and not PositionLong(LastPosition) then
Cover At Stop(Bar + 1, Highest(Bar - 1, #Hi gh, 4), LastPosition,
)
i f not LastPositionActive then
BuyAt St op(Bar + 1, Highest(Bar - 1, #Hi gh, 4), "');
end;

© 2003-2006 WL Systems, Inc.

Position Management Functions 96

11.23 PositionMAE

PositionMAE(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Adverse Excursion of a closed Position. Max Adverse Excursion is the
worst loss that the Position experienced during its lifetime on an intraday basis. The
result is reported in dollars, but you can use PositionMAEPct to return the MAE in
percentage terms.

Remarks

e The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

e Do not use PositionMAE for Positions that are still active. To obtain the MAE for
an active Position, or the MAE for a particular bar, use the PositionOpenMAE
function.

¢ Use PositionMAE, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

e Commissions are not considered in the MAE calculation.

Warning! Because it is a cash-based function, PositionMAE cannot be employed in
a ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ftnp: float;

for Bar := 20 to BarCount - 1 do
begi n

{ Trading systemrules }

end;

{ Find the average PositionMAE }
for p :=0 to PositionCount - 1 do
ftmp := ftnp + Positi onMAE(p);

ftmp := ftnp / PositionCount;
ShowMessage(' Avg MAE = ' + FormatFloat('0.00', ftmp));

11.24 PositionMAEPCct

PositionMAEPct(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Adverse Excursion of a closed Position in percent. Max Adverse
Excursion is the worst loss that the Position experienced during its lifetime on an
intraday basis. Use PositionMAE to return the MAE in dollar terms.

© 2003-2006 WL Systems, Inc.

97 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

e The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

e Do not use PositionMAEPct for Positions that are still active. To obtain the
percentage MAE for an active Position, or the percentage MAE for a particular bar,
use the PositionOpenMAEPct function.

e Use PositionMAEPct, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

e Commissions are not considered in the MAEPct calculation.

Example

var Bar, p: integer;

var ftnp: float;

for Bar := 20 to BarCount - 1 do

begin

{ Trading systemrules }

end;

{ Find the average PositionMAEPct }

for p:=0 to PositionCount - 1 do

ftnmp := ftnp + PositionMAEPct(p);

ftnmp := ftnp / PositionCount;

ShowMessage(' Avg MAE (%9 ="' + FormatFloat('0.00% , ftnmp));
11.25 PositionMFE

PositionMFE(Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Favorable Excursion of a closed Position. Max Favorable Excursion is
the largest gain that the Position experienced during its lifetime on an intraday basis.
The result is reported in dollars, but you can use PositionMFEPct to return the MFE
in percentage terms.

Remarks

e The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

e Do not use PositionMFE for Positions that are still active. To obtain the MFE for an
active Position, or the MFE for a particular bar, use the PositionOpenMFE function.

e Use PositionMFE, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

e Commissions are not considered in the MFE calculation.

Warning! Because it is a cash-based function, PositionMFE cannot be employed in a
ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ftnp: float;

© 2003-2006 WL Systems, Inc.

Position Management Functions 98

for Bar := 20 to BarCount - 1 do
begi n

{ Trading systemrules }

end;

{ Find the average PositionVFE }
for p :=0 to PositionCount - 1 do
ftmp := ftnp + PositionMFE(p);

ftmp := ftnp / PositionCount;
ShowMessage(' Avg MFE = ' + FormatFloat('0.00', ftmp));

11.26 PositionMFEPct

PositionMFEPct(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Favorable Excursion of a closed Position in percent. Max Favorable
Excursion is the largest gain that the Position experienced during its lifetime on an
intraday basis. Use PositionMFE to return the MFE in dollar terms.

This function returns zero for Positions that are still active. To obtain the percentage
MFE for an active Position, or the percentage MFE for a particular bar, use the
PositionOpenMFEPct function.

Remarks

e The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

¢ Do not use PositionMFEPct for Positions that are still active. To obtain the
percentage MFE for an active Position, or the percentage MFE for a particular bar,
use the PositionOpenMFEPct function.

¢ Use PositionMFEPct, for example, at the end of a script in a PositionCount loop to
collect trading statistics.

e Commissions are not considered in the MFEPct calculation.

Example

var Bar, p: integer;
var ftnp: float;

for Bar := 20 to BarCount - 1 do
begin

{ Trading systemrules }

end;

{ Find the average PositionMrEPct }
for p :=0 to PositionCount - 1 do
ftmp := ftnp + PositionMFEPCt(p);

ftmp := ftnp / PositionCount;
ShowMessage(' Avg MFE (%9 ="' + FormatFloat('0.00% , ftnmp));

© 2003-2006 WL Systems, Inc.

99

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.27 PositionOpenMAE

PositionOpenMAE(Position: integer; Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Adverse Excursion of an open Position, or the MAE for a Position as of
the specified Bar. Max Adverse Excursion is the worst loss that the Position
experienced during its lifetime on an intraday basis. The result is reported in dollars
(negative), use PositionOpenMAEPct to return the MAE of an open Position in
percentage terms.

Remarks

e The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

e Commissions are not considered in the MAE calculation.

Warning! Because it is a cash-based function, PositionOpenMAE cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

Example

var Bar, p: integer;
var ePrice: float;

Pl ot St ops;
for Bar := 50 to BarCount - 1 do
begi n
i f LastPositionActive then
begin { Exit rules }
p := LastPosition;
ePrice := PositionEntryPrice(p);

{ Forget about profit and initiate a break-even stop when MAE exceeds
-$750 }
i f PositionOpenMAE(p, Bar) < -750 then
SellAtLimt(Bar + 1, ePrice, p, 'beStop')
el se
Sel lAtLimt(Bar + 1, ePrice * 1.25, p, 'Pft Tgt');
end
else { Entry rule }
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 50)) then
BuyAt Market (Bar + 1, '');
end;

11.28 PositionOpenMAEPCct

PositionOpenMAEPct(Position: integer; Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Adverse Excursion of an open Position, or the MAE for a Position as of
a specified Bar, in percent. Max Adverse Excursion is the worst loss that the Position
experienced during its lifetime on an intraday basis. Use PositionOpenMAE to return
the MAE of an open Position in dollar terms.

Remarks

© 2003-2006 WL Systems, Inc.

Position Management Functions 100

e The MAE calculation uses the low of the entry bar for market or stop orders only.
For limit and at close orders, MAE cannot be determined for the entry bar.

e Commissions are not considered in the MAEPct calculation.

Example

var Bar, p: integer;
var ePrice: float;

Pl ot St ops;
for Bar := 50 to BarCount - 1 do
begin
i f LastPositionActive then
begin { Exit rules }
p := LastPosition;
ePrice := PositionEntryPrice(p);

{ Forget about the 25% profit and initiate a break-even stop when
MAEPct drops -15% }
i f PositionOpenMAEPct (p, Bar) <= -15 then
Sel | AtLimt(Bar + 1, ePrice, p, 'beStop')
el se
Sel |AtLimt(Bar + 1, ePrice * 1.25, p, 'Pft Tgt');
end
else { Entry rule }
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 50)) then
BuyAt Market (Bar + 1, '');
end;

11.29 PositionOpenMFE
PositionOpenMFE(Position: integer; Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Max Favorable Excursion of an open Position, or the MFE for a Position as
of a specified Bar. Max Favorable Excursion is the largest gain that the Position

experienced during its lifetime on an intraday basis. The result is reported in dollars,
use PositionOpenMFEPct to return the MFE of an open Position in percentage terms.

Remarks

e The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

e Commissions are not considered in the MFE calculation.

Warning! Because it is a cash-based function, PositionOpenMFE cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

11.30 PositionOpenMFEPCct
PositionOpenMFEPct(Position: integer; Bar: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

101

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.31

Description

Returns the Max Favorable Excursion of an open Position, or the MFE for a Position as
of a specified Bar, in percent. Max Favorable Excursion is the largest gain that the
Position experienced during its lifetime on an intraday basis. Use PositionOpenMFE
to return the MFE of an open Position in dollar terms.

Remarks

e The MFE calculation uses the high of the entry bar for market or stop orders only.
For limit and at close orders, MFE cannot be determined for the entry bar.

e Commissions are not considered in the MFEPct calculation.

PositionOpenProfit
PositionOpenProfit(Bar: integer; Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the current profit level of the Position (in dollars) as of the specified Bar. If
the Position is closed, and the Bar number is on or before the Bar on which that the
Position was closed, this function returns the same value as PositionProfit.

Remarks

e The value reported for PositionOpenProfit reflects trading costs as of the specified
Bar, i.e, one-sided commissions and slippage are deducted from profit (or loss)
while the position is open.

Warning! Because it is a cash-based function, PositionOpenProfit cannot be
employed in a ChartScript's trading rules if destined for the $imulator.

Example

{ Record a position's open profit as a Price Series.
Thi s system buys on a crossover of a 30-period wei ghted
movi ng average and sells after 20 bars. }

var Bar, ProfitPane, hMA, hPftSer: integer;

var fPft: float;

hMVA = WVASeri es(#C ose, 30);

hPftSer := CreateSeries;

Instal |l Ti neBasedExit(20);

for Bar := 30 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);
if not LastPositionActive then
begin
if CrossOverVal ue(Bar, #C ose, @MA[Bar-1]) then
BuyAt Mar ket (Bar + 1, ' Xover');

end
el se
@PftSer[Bar] := PositionQpenProfit(Bar, LastPosition);
end;
ProfitPane := CreatePane(75, true, true);

Pl ot Seri esLabel (hPftSer, ProfitPane, 009, #Hi stogram 'Qpen Profit');

© 2003-2006 WL Systems, Inc.

Position Management Functions 102

Pl ot Series(hMA, 0, 909, #Thin);

11.32 PositionOpenProfitPct
PositionOpenProfitPct(Bar: integer; Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the current percentage profit level of the Position as of the specified Bar. If
the Position is closed, and the Bar number is on or before the Bar on which that the
Position was closed, this function returns the same value as PositionProfitPct.

Remarks

e The value reported for PositionOpenProfitPct reflects trading costs as of the
specified Bar, i.e, one-sided commissions and slippage are deducted from profit (or
loss) while the position is open.

Warning! For non-zero commissions, PositionProfitPct is not compatible with the
$imulator.

Example

{ Record a position's open profit percentage as a Price Series.
This system buys on a crossover of a 30-period weighted
novi ng average and sells after 20 bars. }

var Bar, ProfitPane, hMA, hPftSer: integer;

var fPft: float;

hMA = WVASeri es(#C ose, 30);
hPftSer := CreateSeries;

Instal |l Ti neBasedExit(20);
for Bar := 30 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

i f not LastPositionActive then

begin

if CrossOverVal ue(Bar, #Cl ose, @MA[Bar-1]) then
BuyAt Mar ket (Bar + 1, ' Xover');

end
el se
@PftSer[Bar] := PositionQpenProfitPct(Bar, LastPosition);
end;
ProfitPane := CreatePane(75, true, true);
Pl ot Seri esLabel (hPftSer, ProfitPane, 009, #Hi stogram 'Qpen Profit
Pct');

Pl ot Series(hMA, 0, 909, #Thin);

11.33 PositionOrderType

PositionOrderType(Position: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns an integer indicating the type of order used for the specified Position.

© 2003-2006 WL Systems, Inc.

103 WealthScript Function Reference, Wealth-Lab Developer 4.0

0 = Market

1 = Stop

2 = Limit

3 = Close
Remarks

e See CMOrderType for CommissionScripts.

Example
{ SimuScript:
Vary the nunber of shares purchased based on the PositionO derType }
case PositionOrder Type(#Current) of
0, 1: /1 At Market, AtStop
Set Posi ti onSi zeShares(500);
2: /1 AtLimt
Set Posi ti onSi zeShares(300);
el se
Set Posi ti onSi zeShares(100);
end;

11.34 PositionProfit
PositionProfit(Position: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the net profit in dollars of the specified closed Position. Use
PositionProfitPct to return the profit in percentage terms.
Remarks

e The value reported for PositionProfit is reduced by the trading costs, i.e,
commissions and slippage.

e Use PositionOpenProfit to return the current profit of an open Position at a
specific bar. The value reported by PositionProfit for an open Position is invalid.

Warning! Because it is a cash-based function, PositionProfit cannot be employed in
a ChartScript's trading rules if destined for the $imulator.

Example (SimuScript)

{ Use 20% si zing, but scale back to 10%if the |ast closed Position was
a loss }
var p: integer;
var x: float = 20;
for p := PositionCount - 1 downto O do
if not PositionActive(p) then

begin
if PositionProfit(p) < O then
x = 10;
br eak;
end;

Set Posi ti onSi zePct (x);

Example

© 2003-2006 WL Systems, Inc.

Position Management Functions 104

{ This function returns the average profit of the last "Nuni Positions
}
function AvgProfit(Bar, Num integer): float;
begi n
var p: integer;
var sunp: float;

sunp : = 0;
for p := PositionCount - 1 downto PositionCount - Num do
sunp := sunp + PositionProfit(p);
Result := sunp / Num
end;

{ Make some arbitrary trades and call the function }
var Bar: integer;
var pft: float;
Install ProfitTarget(5);
Install StopLoss(2.5);
for Bar := 20 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

if Bar Mbd 50 = O then

BuyAt Market (Bar + 1, '');

end;
pft := AvgProfit(BarCount - 1, PositionCount);
ShowMessage(' The avg profit of the |ast
+ IntToStr(PositionCount) + ' trades was '
+ Format Fl oat (' #, ###. 00", pft));

11.35 PositionProfitPct

PositionProfitPct(Position: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the percentage profit of the specified closed Position. Use PositionProfit to
return the profit in dollar terms.

Remarks

e The value reported for PositionProfitPct reflects trading costs, i.e, commissions
and slippage are deducted from profit (or loss).

e Use PositionOpenProfitPct to return the current percentage profit of an open
Position at a specific bar. The value reported by PositionProfitPct for an open
Position is invalid.

Warning! For non-zero commissions, PositionProfitPct is not compatible with the
$imulator.

Example

{ SinmuScript: Use average Position Profit to determ ne Position size }
var XSUM X: fl oat;
var N, P: integer;

Xxsum : = 0;
for p := PositionCount - 1 downto O do

© 2003-2006 WL Systems, Inc.

105 WealthScript Function Reference, Wealth-Lab Developer 4.0

if not PositionActive(p) then
begi n
n:=n+1;
Xsum : = xsum + PositionProfitPct(p);
if n =10 then
Br eak;
end;
end;
if xsum> 0 then
begin
X 1= Xxsum/ n;
if x < 10 then
x = 10;
end;
Set Posi ti onSi zePct (x);

11.36 PositionShares
PositionShares(Position: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Returns the number of shares (or contracts) in the specified Position.

Example

{ Wite nunber of shares of open Positions to debug w ndow }
procedure WiteQpenTrades;

begi n
var i: integer;
for i :=0 to PositionCount - 1 do

if PositionActive(i) then
Print(IntToStr(PositionShares(i)) + ' Shares ' + Get Synbol

)

end;

11.37 PositionShort

PositionShort(Position: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the specified Position is a short Position.

Remarks

e To access the Position that the $imulator (or Portfolio Simulation) is currently
working with, use the special constant #Current.

e See also: PositionLong

© 2003-2006 WL Systems, Inc.

Position Management Functions 106

The example shows how you can use this function in a SimuScript.

Example

{ Risk half as many shares for short positions }
if PositionShort(#Current) then

Set Posi ti onSi zeShares(100)
el se

Set Posi ti onSi zeShares(200);

11.38 PositionSignalName
PositionSignalName(Position: integer): string;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the "Signal Name" of the entry signal for the specified Position. The Signal
Name is always the last parameter (SignalName) of the BuyAt or ShortAt function
that opened the Position.

Remarks

e As shown in the example, you can use PositionSignalName to execute different
exit strategies based on the entry strategy that was used to open the Position.

e In a SimuScript, you can use the PositionSignalName to size a Position based on
the strategy that was used to open the Position, for example.

e By formatting a string with multiple delimited fields, you can pass many types of
data via SignalName, retrieve them with PositionSignalName, and parse the
result with GetToken.

Example
{ The follow ng script conbines an RSI and a CMO strategy into a single
system }
var Bar, p: integer;
for Bar := 20 to BarCount - 1 do
begin

{ Exit logic }
for p:=0 to PositionCount - 1 do
if PositionActive(p) then
begin
if PositionSignalNane(p) = '"RSI' then
begin
if CrossOverVal ue(Bar, RSISeries(#C ose, 20), 60) then
Sel | At Market(Bar + 1, p, "RSI');
end
el se if CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), 50) then
Sel | At Market(Bar + 1, p, 'CMO);
end;
{ Entry logic }
if CrossOverVal ue(Bar, RSISeries(#C ose, 20), 30) then
BuyAt Market (Bar + 1, "RSI');
if CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), -50) then
BuyAt Market (Bar + 1, 'CMO);
end;

© 2003-2006 WL Systems, Inc.

107

WealthScript Function Reference, Wealth-Lab Developer 4.0

11.39 PositionSymbol

11.40

PositionSymbol(Position): string;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the symbol of the selected Position.

Example
{ SimuScript:
Ensure only 1 trade per synbol }
var p: integer;
var s: string;
s := PositionSynbol (#Current);
Set Posi ti onSi zePct (10);
for p :=0 to PositionCount - 1 do
if PositionSynmbol(p) = s then
if PositionActive(p) then
Set Posi ti onSi zeFi xed(0);

SetPositionData

SetPositionData(Position: integer; Value: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you store user-specific data (a single floating point number), Value, for the
specified Position. You can obtain the Position data value using GetPositionData.
Use these functions if you need to track any additional information on Positions that
you need to act on in your script.

For instance, your trading system might take an initial trend-following position, and
then subsequent scalping positions to try and nab quick profits. You can use
SetPositionData to record which type of Positions were taken so that you could apply
the appropriate exit logic.

Remarks

e Although you may assign data to a Position at any time after it has been created,
the ChartScript must use SetPositionData on the signal bar if you plan to retrieve
the data using GetPositionData in a SimuScript. Otherwise, using
SetPositionData after the signal bar can result in a look-ahead (peeking) error
during $imulator processing.

e Wealth-Lab processes sizing before actually creating Positions in the ChartScript
Window and Scans, therefore Value (the data) from SetPositionData is not
available to SimuScripts in these tools. Instead, you can pass data using
SignalName and retrieve it with PositionSignalName in the SimuScript.
SignalName is the last string parameter in the BuyAt and ShortAt signals, and it
may contain all kinds of information, which you can parse using GetToken, if
required.

Example

{ This seasonal systemstores the nonth of entry for use later in a
Si muScript }

var BAR integer;

for Bar := 40 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

Position Management Functions 108

begi n
i f LastPositionActive then
Sel | AtLimt(Bar + 1, Highest(Bar, #H gh, 20), LastPosition, '')
el se
if BuyAtLinmt(Bar + 1, Lowest(Bar, #Low, 20), '') then
Set Posi ti onDat a(Last Position, GetMnth(Bar));
end;

11.41 SetPositionPriority

SetPositionPriority(Position: integer; Priority: float);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the Priority value of a Position. A Position's priority determines whether or not it
will be included by the Portfolio $imulator tool if there are more trades available than
capital for a specific bar. Positions with a higher value for Priority take precedence,
i.e., they are processed first. For example, a Position with Priority 10.5 will be
processed before any Position having Priority less than 10.5. In most cases, it's not
required to set priority, and in this case the priority is random. However, specifying
priority is useful, for example, to force the $imulator to choose a "most/least
condition", where condition may be oversold, lowest-priced, etc.

SetPositionPriority is designed for ChartScripts that use Buy/ShortAtMarket (or
AtClose) entries. For example, assume that your trading system generates 10
orders to place on the next bar, but you have cash enough for 4 orders only. Prior to
placing orders, you can decide which of the orders to place based on some indicator or
price.

AtLimit/AtStop Entry Orders

Generally speaking, you should not SetPositionPriority for ChartScripts that use
AtLimit/AtStop entries. Doing so may create a peeking effect since it's not possible to
know which limit (or stop) orders will execute first when orders are placed for multiple
instruments.

Exceptions:

1. If the ChartScript employs a "multi-dip buyer" strategy, use SetPositionPriority
to assign higher priority to AtLimit orders with higher limit prices, for example.
If you don't, the possibility exists for the the $imulator to execute orders with
lower limit prices first (and vice-versa for ShortAtLimit).

2. You can intentionally peek to determine if an AtLimit/AtStop order occurred at
the opening price, and in this case you could assign a priority of 1 to these
Positions. This is a valid backtesting method, demonstrated by the following
simple ChartScript.

Warning! You must employ SetPositionPriority in ChartScripts that use multiple
order-entry types, such as AtMarket and AtLimit orders. Since the
$imulator does not distinguish between the types, set a higher priority
for AtMarket entries so that they are processed before AtLimit/AtStop
orders on the same bar.

var Bar: integer;
var limtprice, priority: float;

Install Ti meBasedExit(5);
for Bar := 10 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

109 WealthScript Function Reference, Wealth-Lab Developer 4.0

begi n
Appl yAut oSt ops(Bar);
i f not LastPositionActive then
begi n
limtprice := Lowest(Bar, #Low, 10);
priority := 0O;
{ peek to check if limt order will be executed "at market" on the
open }
if Bar < BarCount - 1 then
if PriceQpen(Bar + 1) <= limtprice then
priority := 1;

if BuyAtLimit(Bar + 1, limtprice, '") then
SetPositionPriority(LastPosition, priority);
end;
end;
Remarks

e Use SetPositionPriority on the signal bar. Once you have assigned priority, it
should not be changed on subsequent bars.

e Use the boolean return value of entry signals (especially for AtLimit/AtStop
orders) as a condition to calling SetPositionPriority, e.g.,

{ After a limt buy, give priority to the position having the | owest
RSl }

if BuyAtLimt(Bar + 1, LimtPrice, '") then
SetPositionPriority(LastPosition, -1 * RSI(Bar, #C ose, 14));

e Use GetPositionPriority to obtain the priority of a Position.

e Position priority is used only in the $imulator and Portfolio $imulation Mode in the
Optimizer Control.

Example

{ Buy when CMO is oversold and assign the highest priority
to the nost oversold by nultiplying the CMO value by -1}

var BAR, hRSlI, hCMO, CP: integer;

hCMD : = CMOSeri es(#C ose, 20);

CP := CreatePane(75, true, true);

Pl ot Seri esLabel (hCMO, CP, #Blue, #Thin, 'CMJ(20)');

for Bar := 20 to BarCount - 1 do
begi n
i f not LastPositionActive then
begi n
if @CMJ Bar] < -55 then
begi n
i f BuyAtMarket(Bar + 1, 'CMJ) then
Set PositionPriority(LastPosition, -1 * @CMJ Bar]);
end;
end
else if @CMJ Bar] > 45 then
Sel | At Market (Bar + 1, LastPosition, 'CMO);
end;

© 2003-2006 WL Systems, Inc.

Position Management Functions 110

11.42 SetPositionRiskStop

SetPositionRiskStop(Position: integer; StopLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Note: SetRiskStopLevel supersedes the SetPositionRiskStop function. See
SetRiskStopLevel for information.

Description

Specifies the initial stop level, StopLevel, for the Position. This stop level is used in
the $imulator and other tools in Portfolio Simulation mode when you select the
Maximum Risk Pct Position Sizing option. When this option is selected, you tell the
Portfolio Simulation the percentage of capital you are willing to risk on the trade. The
Portfolio Simulation then uses the Position's RiskStop value to determine how many
shares to assign to the Position.

Important: When you use Maximum Risk Pct sizing, you're responsible for
actually exiting the Position at the stop level in your ChartScript code.

Example

{ Set our risk stop at 50 cents below the signal day's |ow }
var BAR i nteger;
Install ProfitTarget(50);
for Bar := 40 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);

i f LastPositionActive then

Sel | At Stop(Bar + 1, GetPositionRi skStop(LastPosition),

LastPosition, '')
el se
if BuyAtLinmt(Bar + 1, Lowest(Bar, #Low, 20), '") then

Set Posi ti onRi skSt op(LastPosition, PriceLow(Bar) - 0.50);
end;

11.43 SetRiskStopLevel

SetRiskStopLevel(StopLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Specifies the initial StopLevel (price) for the next Position to be created. This stop
level is used in the $imulator and other tools in Portfolio Simulation mode when you
select the Maximum Risk Pct Position Sizing option. When this option is selected,
you tell the Portfolio Simulation the percentage of capital you are willing to risk on the
trade. The Portfolio Simulation then uses the Position's RiskStop value to determine
how many shares to assign to the Position.

Remarks

e When you use Maximum Risk Pct sizing, you're responsible for actually exiting
the Position at the stop level in your ChartScript code.

e For automated trading, you can use SetRiskStopLevel to automatically activate a
stop loss order on the same bar on which a position is entered. See "Automated
Trading Options" in the User Guide for more information.

© 2003-2006 WL Systems, Inc.

111

WealthScript Function Reference, Wealth-Lab Developer 4.0

Note: SetRiskStoplLevel supersedes the original SetPositionRiskStop function.
The problem with SetPositionRiskStop is that the Position must already be
created. This is fine in the $imulator, which works on a list of trades, but is
not possible at the ChartScript level, where the initial stop level must be
known before the Position is created. Using Maximum Risk Pct position
sizing at the ChartScript level is new to Wealth-Lab Developer 3.0, so this
new function was introduced to support it.

Example

{ Set our risk stop at 50 cents below the signal day's |ow }
var BAR i nteger;
Install ProfitTarget(50);
for Bar := 40 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

i f LastPositionActive then

Sel | At Stop(Bar + 1, GetPositionRi skStop(LastPosition),

LastPosition, '')
el se
begin
Set Ri skSt opLevel (PriceLow(Bar) - 0.5);
BuyAtLimt(Bar + 1, Lowest(Bar, #Low, 20), '');
end;
end;

© 2003-2006 WL Systems, Inc.

Price Series Functions 112

12 Price Series Functions

12.1 Overview

There's no use in avoiding it. If you're going to deal with a technical application for
market analysis, you're going to be working with Price Series. Generally speaking a
Price Series refers to an array of values that has the same number of elements as bars
loaded in a chart. The Price Series category of functions allow you to create, analyze,
synchronize, change time frames, and otherwise manipulate an entire series of data
with a minimal amount of effort. Most of these functions automatically create a new
(result) Price Series and return a handle that you use to refer to the new series.

A subset of these functions (CrossOver/Under and TurnUp/Down) provide relative
information between two prices, or possibly between a Price Series and a fixed value.
In this sense, they act in an "indicative" fashion, though they are not what we
consider a true indicator.

12.2 AbsSeries
AbsSeries(Series: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns a new Price Series that contains the absolute values of the Price Specified in
the Series parameter.

Example

var DI FF, ABSDI FF, P: integer;

D ff := SubtractSeries(#Open, #C ose);
AbsDi ff := AbsSeries(Dff);

p := CreatePane(100, true, true);
PlotSeries(D ff, p, #Black, #Thin);

Pl ot Series(AbsDiff, p, #Red, #Thin);

12.3 AddCalendarDays

AddCalendarDays(Interpolate: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Adds all missing calendar days to the chart data, including weekends, holidays, and
any other non-trading day. Newly added bars are considered "synthetic", and these
bar numbers return true when SyntheticBar is called.

The value of the inserted bars depends on the Interpolate parameter. If Interpolate is
false, the new bars assume the OHLC values of the previous bar. If Interpolate is
true, the OHLC values of the new bars are calculated using linear interpolation
between the previous bar and the next actual bar. Note that interpolating values will
result in the bars being created based on future information (next bar's value) so be
careful if using these bars in trading system development.

© 2003-2006 WL Systems, Inc.

113

WealthScript Function Reference, Wealth-Lab Developer 4.0

12.4

Remarks

AddCalendarDays is compatible with the Daily scale only.

AddCalendarDays is not compatible with Real-Time Scans or Real-Time
ChartScript windows.

Example

var Bar: integer;
DrawLabel (' Bar Count Before: ' + IntToStr(BarCount), 0);
if IsDaily then

AddCal endar Days(fal se);
DrawLabel (' Bar Count After: ' + IntToStr(BarCount), 0);
for Bar := 0 to BarCount - 1 do

if SyntheticBar(Bar) then

Set Bar Col or (Bar, #Red);

AddFutureBars

AddFutureBars(Bars: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Adds the number of bars specified in the Bars parameter to the end of the chart. The
added bars are considered "synthetic", and calling SyntheticBar with these bar
numbers will return true. The OHLC values of the added bars are taken from the last
actual bar in the chart. You can change the values of these (or any) bars by using the
ChangeBar method.

Note: AddFutureBars is not currently compatible with Real-time Scans or
ChartScript windows.

If AddCalendarDays had previously been called, the future bars will include non-
trading days. If AddCalendarDays had not been called, the future bars will not
include weekend days (Saturday, Sunday).

Remarks

Functions that make changes to the Primary Data Series, such as ChangeBar and
AddFutureBars, should not be used in scripts opened for Optimization.

AddFutureBars is not available for use on the web site, only in Wealth-Lab
Developer 4.0.

Warning! Adding futures bars will affect when Alerts are issued for an established

trading system. Alerts are generated when a trading signal occurs after
the last bar of the chart, i.e., on bar number BarCount. This means that if
a system developer is using future bars, Alerts will also be projected into
the future by the number of bars added.

Example

var Bar: integer;
DrawLabel (' Bar Count Before: ' + IntToStr(BarCount), 0);
if IsDaily then

AddCal endar Days(fal se);
AddFut ureBars(20);
DrawLabel (' Bar Count After: ' + IntToStr(BarCount), 0);
for Bar := 0 to BarCount - 1 do

© 2003-2006 WL Systems, Inc.

Price Series Functions 114

if SyntheticBar(Bar) then
Set Bar Col or (Bar, #Red);

12.5 AddSeries

AddSeries(Seriesl: integer; Series2: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Adds the two specified Price Series, Series1 and Series2, and returns the handle to a
new Price Series.

Example

{ Plot the nean price }

var ADDED, MEAN: i nteger;

Added : = AddSeries(#Hi gh, #Low);
Mean : = DivideSeriesVal ue(Added, 2);
Pl ot Series(Mean, 0, #Blue, #Thick);

12.6 AddSeriesValue

AddSeriesValue(Series: integer; Value: float): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Adds a constant Value to each element of the Price Series, Series, and returns the
handle to a new Price Series.

Example

{ This script creates a nornalized MACD by adding the | owest val ue,
bringing all of values in the series above zero. }

var X float;

var MSER, MPANE: i nteger;

Mser := MACDSeries(#C ose);

X := Abs(Lowest(BarCount - 1, Mser, BarCount));

Mser := AddSeriesVal ue(Mser, x);

MPane : = CreatePane(100, true, true);

Pl ot Seri es(Mser, MPane, #Red, #Hi stogran);

12.7 AnalyzeSeries

AnalyzeSeries(PriceSeries: integer; Description: string);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Outputs the value of the Price Series defined by its handle, PriceSeries, to the Trade
Log at the time the trade was signaled. The PriceSeries is also available on the
"Analysis" tab of the ChartScript and $imulator windows for more detailed analysis.

Note: AnalyzeSeries is not compatible in the with ChartScripts that execute
trades on symbols other than the primary symbol, i.e., following a call to
SetPrimarySeries. Additionally and generally speaking, scripts with
WatchList loops should not be used in the $imulator.

© 2003-2006 WL Systems, Inc.

115

WealthScript Function Reference, Wealth-Lab Developer 4.0

12.8

You can use AnalyzeSeries to determine how an indicator might be applied to an
existing trading system to filter losing trades without having to actually incorporate
the indicator into the system. In the example below, trading signals are based solely
on the StochRSISeries indicator. At the end of the script, a CMOSeries indicator is
created for analysis.

Example

{ Buy when StochRSI turns up fromO and sell when turns down from 100 }
var Bar, StochRSIPane, hStRSl: integer;
var cnoSer, cnoPane: integer;

hSt RSI : = StochRSI Series(#C ose, 14);
I nstal | BreakEvenStop(5);

Pl ot St ops;

for Bar := 30 to BarCount - 1 do

begin

Appl yAut oSt ops(Bar);
i f LastPositionActive then
begin
if @StRSI[Bar - 1] >= 99.9 Then
if TurnDown(Bar, hStRSI) then
Sel | At Market(Bar + 1, LastPosition, '');
end
el se
if @StRSI[Bar - 1] <= 0.1 Then
if TurnUp(Bar, hStRSI) then
BuyAt Market (Bar + 1, '');
end;
St ochRSI Pane : = CreatePane(75, true, true);
Pl ot Seri esLabel (StochRSI Seri es(#C ose, 14), StochRSIPane, 411, 2,
' St ochRSI (14)");

cnoPane : = CreatePane(75, true, true);

cnoSer = CMCSeries(#C ose, 14);

Pl ot Seri esLabel (cnoSer, cnoPane, #G een, #Thin, 'CMO 14');
Anal yzeSeries(cnoSer, 'CMO 14");

ChangeBar

ChangeBar(Bar: integer; Date: integer; Time: integer; Open: float; High: float; Low: float; Close:
floaVolume: integer; Openlnterest: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Provides the capability to change all values for the specified Bar's properties: Date,
Time, Open, High, Low, Close, Volume, and Openlinterest. This is most useful in
assigning values to forecasted bars that have been added using the AddFutureBars
method.

The Date parameter should be a standard WealthScript date integer, e.g., 1/15/2003
= 20030115. Likewise, for intraday charts, the Time parameter should be a standard
WealthScript time integer, e.g. 14:00 = 1400. Otherwise, specify zero for Time when
using non-intraday charts.

Remarks

Functions that make changes to the Primary Data Series, such as ChangeBar and
AddFutureBars, should not be used in scripts opened for Optimization.

© 2003-2006 WL Systems, Inc.

Price Series Functions 116

Example

{ Add a copy of the last 10 bars to the end of the chart }
var Bar, Cbars, b: integer;

Cbars := 10;

AddFut ureBars(Chars);

for Bar := BarCount - Cbars to BarCount - 1 do
begin

b := Bar - Chars;

Set Bar Col or (Bar, #Blue);

ChangeBar(Bar, GetDate(b), GetTine(b), PriceOpen(b),
PriceH gh(b), PriceLow(b), PriceCose(b)),
Trunc(Volunme(b)), Trunc(Openlinterest(b)));

end;

12.9 ClearExternalSeries

ClearExternalSeries(Symbol: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Clears any external (secondary) price series from memory. External series are
obtained from calls to either GetExternalSeries or SetPrimarySeries. The Symbol
parameter is optional. If it is specified, only the external series of the specified
symbol will be cleared. If you pass a blank string instead, all external series accessed
so far will be cleared.

This function was introduced as a way to optimize scripts that process large lists of
symbols. These scripts can quickly bog down because all of the external series
accessed remain in memory until the script is completed. By calling
ClearExternalSeries, these scripts can free resources that are no longer being used,
resulting in better script performance.

Remarks

o Do not use ClearExternalSeries for a Symbol on which you've created trades.

Example
Cl ear External Series('');

12.10 Clearindicators

ClearIndicators;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Clears any indicators that have been created from memory. This function is useful for
scripts that cycle through all of the symbols in a WatchList and process each symbol in
turn, creating indicators for each symbol. Scripts like this can easily run out of
resources because the indicator series are being re-created, and the old series remain
in memory.

Example

var RSl Ser, w, Bar: integer;
for w:= 0 to WatchLi st Count - 1 do
begin

© 2003-2006 WL Systems, Inc.

117

WealthScript Function Reference, Wealth-Lab Developer 4.0

Print St at us(Wat chLi st Synbol (w));

Cl ear | ndi cat ors;

for Bar := 0 to BarCount - 1 do

begi n
Set Pri marySeri es(WatchLi st Synmbol (w));
RSI Ser := RSl Series(#C ose, 20);
{ ... do nore processing here ... }

end;

end;

12.11 CreateNamedSeries

12.12

CreateNamedSeries(SeriesName: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Creates a new blank price series and returns the new series as a PriceSeries variable,
like CreateSeries. You can use the FindNamedSeries function to locate a named
series that you previously created. This pair of functions is used internally by the New
Indicator Wizard.

Example

var n: integer;
n := CreateNanedSeries('MySeries');

CreateSeries

CreateSeries: integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Creates a new blank Price Series and returns the handle of the new Series. The new
Price Series contains the number of values equal to the ChartScript's BarCount. The
values in the Series are initially set to zero. Use SetSeriesValue to load values in the
new series and GetSeriesValue to read the values (or use the shorthand @ syntax).

Remarks

e Generally speaking, use CreateSeries outside of loops and then fill the series with
values in a loop as shown in the example.

Example

{ The followi ng script creates a new Price Series, and stores the
di fference between the 20 day high and the 20 day | ow. }

var X float;

var N, BAR, MYPANE: i nteger;

n := CreateSeri es;
for Bar := 20 to BarCount - 1 do
begi n

X := Highest(Bar, #H gh, 20) - Lowest(Bar, #Low, 20);
Set SeriesVal ue(Bar, n, x);

end;

MyPane : = CreatePane(100, true, true);

Pl ot Series(n, MyPane, #G een, #ThickH st);

© 2003-2006 WL Systems, Inc.

Price Series Functions 118

12.13 CreateSeriesLength

CreateSeriesLength(Length: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Creates a new Length-sized Price Series and returns the handle of the new Series.
The new Price Series contains the number of values equal to the Length parameter,
indexed from zero. The values in the Series are initially set to zero. Use
SetSeriesValue to set values and GetSeriesValue to read values (or use the
shorthand @ syntax).

CreateSeriesLength provides the ability to create a Length-sized array at run-time;
in other words, a pseudo-dynamic array.

Example

var x, hMSer, SerlLength: integer;
var f: float;

SerLength := StrTolnt(Input('Type in an integer nunber'));
hMySer := CreateSeriesLength(SerLength);

for x := 0 to SerLength - 1 do
begin

@MSer[x] :=x * 1.5;

Print(IntToStr(x) + #9 + FloatToStr(@MWSer[x]));
end;

12.14 CrossOver

CrossOver(Bar: integer; Seriesl: integer; Series2: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true when Series1 crosses above the Series2 at Bar.

Specifically, CrossOver triggers (true) if both of the following conditions are true:

@Series1[Bar] > @Series2[Bar], AND,
@Series1[Bar - 1] <= @Series2[Bar - 1]

Example

{ A sinple Wighted Mving Average Crossover System}
var BAR i nteger;
Install ProfitTarget(6);
Install StopLoss(4);
for Bar := 60 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);

if CrossOver(Bar, WWASeries(#Cl ose, 30), WVASeries(#C ose, 60))
t hen

BuyAt Market (Bar + 1, '');

end;

© 2003-2006 WL Systems, Inc.

119

WealthScript Function Reference, Wealth-Lab Developer 4.0

12.15 CrossOverValue

12.16

CrossOverValue(Bar: integer; Series: integer; Value: float): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Returns true when the Price Series crosses above the specified Value at Bar.
Specifically, CrossOver triggers (true) if both of the following conditions are true:

@Series[Bar] > Value, AND,
@Series[Bar - 1] <= Value

Example

{ ABasic "Extrene RSI" type System}
var BAR i nteger;
Install ProfitTarget(5);
I nstal |l StopLoss(20);
for Bar := 30 to BarCount - 1 do
begi n
Appl yAut oSt ops(Bar);
i f CrossOverValue(Bar, RSISeries(#C ose, 32), 24) then
BuyAt Market (Bar + 1, 'Extreme RSI');
end;

CrossUnder
CrossUnder(Bar: integer; Seriesl: integer; Series2: integer): boolean;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true when Series1 crosses below Series2 at Bar.

Specifically, CrossUnder triggers (true) if both of the following conditions are true:

@Series1[Bar] < @Series2[Bar], AND,
@Series1[Bar - 1] >= @Series2[Bar - 1]

Example
{ This system opens a new position whenever Stochastic crosses above
its signal line frombelow 20. It closes all positions when
St ochastic crosses below the signal line from above 80. }

var STOCHPANE, SIGNAL, BAR, P: integer;

St ochPane : = CreatePane(150, true, true);

Signal := EMASeries(StochDSeries(20, 3), 9);

Pl ot Seri es(StochDSeries(20, 3), StochPane, 009, #Thin);
Pl ot Seri es(Signal, StochPane, #Gay, #Thin);

for Bar := 30 to BarCount - 1 do
begin
if CrossUnder(Bar, StochDSeries(20, 3), Signal) then
if StochD(Bar - 1, 20, 3) > 80 then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
Sel | At Market(Bar + 1, P, 'Stoch');
if CrossOver(Bar, StochDSeries(20, 3), Signal) then
if StochD(Bar - 1, 20, 3) < 20 then
BuyAt Market (Bar + 1, 'Stoch');

© 2003-2006 WL Systems, Inc.

Price Series Functions 120

end;

12.17 CrossUnderValue

CrossUnderValue(Bar: integer; Series: integer; Value: float): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true when Price Series crosses below the specified Value at Bar.

Specifically, CrossUnder triggers (true) if both of the following conditions are true:

@Series[Bar] < Value, AND,
@Series[Bar - 1] >= Value

Example

{ This system buys as soon as DSS crosses bel ow 30 }
var DSSPANE, BAR: i nteger;
DSSPane : = CreatePane(100, true, true);
Pl ot Seri es(DSSSeries(10, 20, 5), DSSPane, 905, #Thick);
Instal | StopLoss(5);
Install ProfitTarget(15);
for Bar := 20 to BarCount - 1 do
begin
Appl yAut oSt ops(Bar);
i f CrossUnderVal ue(Bar, DSSSeries(10, 20, 5), 30) then
BuyAt Market (Bar + 1, 'DSS);
end;

12.18 DivideSeries

DivideSeries(Seriesl: integer; Series2: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Divides each element of Series1 by its corresponding element in Series2, and returns
the handle to the resulting Price Series.

Example

{ Display Relative Strength of DJIA to Nasdaqg }

var NAZ, DJ, RS, RSPANE: integer;

Naz := CetExternal Series(' XIC, #C ose);

D) := GetExternal Series('~DJI', #C ose);

RS := DivideSeries(DJ, Naz);

RSPane : = CreatePane(100, true, true);

Pl ot Series(RS, RSPane, #Bl ack, #Thick);

DrawLabel (" Strength Relative of DIJIA to Nasdaq', RSPane);

12.19 DivideSeriesValue

DivideSeriesValue(Series: integer; Value: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

121

WealthScript Function Reference, Wealth-Lab Developer 4.0

12.20

12.21

Description

Divides each element of the specified Price Series by a constant Value and returns the
handle to a new Price Series. You should ensure that Value is non-zero.

Example

{ Divide RSI by 100 to get it in the range of 0 to 1 }

var RSI RANGE, RSI PANE: i nteger;

RSI Range : = DivideSeriesVal ue(RSl Series(#C ose, 30), 100);
RSI Pane : = CreatePane(100, true, true);

Pl ot Seri es(RSI Range, RSl Pane, #Teal, #Thick);

DivideValueSeries

DivideValueSeries(Value: float; Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Divides a constant Value by the value of each element in the specified Price Series and
returns the handle to a new Price Series.

Note: Be careful not to confuse this with DivideSeriesValue.

EnableSynch

EnableSynch(Enable: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

If Enable is false, EnableSynch will turn off the default synchronization that occurs for
external series in a ChartScript. An external series is any series referenced through a
call to GetExternalSeries or SetPrimarySeries.

The default synchronization options are controlled via the Options Dialog. When
"Enable Automatic Date/Time Synchronization of External Series" is checked, the
synchronization process truncates any secondary series that has more bars than the
primary series (the symbol that was clicked to execute the script). For detailed
information on "How Secondary Data Series are Synchronized in Wealth-Lab", see the
article by the same name on the Wealth-Lab Articles page.

You can use EnableSynch to turn off the default synchronization behavior set in the
Options Dialog. If you do this, you should use the SynchAll or SynchSeries
statements in your script to perform synchronization manually. Manual
synchronization will perfectly align any secondary series to the primary, by removing
dates that don't exist in the primary, and inserting dates in the secondary that exist in
the primary but not the secondary. By calling SynchAll or SynchSeries after any
indicators are created on the secondary series, you can be sure that the series is
aligned correctly AND that the indicator values are calculated correctly, taking into
account all bars in the pre-aligned secondary series.

Example

{ Print the BarCount of each Synbol }
var w. integer;
Enabl eSynch(fal se);

© 2003-2006 WL Systems, Inc.

Price Series Functions 122

for w:= 0 to WatchListCount - 1 do
begi n

Set Pri marySeri es(WatchLi st Synmbol (w));

Print(WatchListSynbol(w) + #9 + IntToStr(BarCount));
end;

12.22 FindNamedSeries

FindNamedSeries(SeriesName: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the integer handle of the Price Series with the specified name, SeriesName. If
no PriceSeries with the given name was found, the function returns -1. This will be
the PriceSeries that was created in one of the following manners:

e by a corresponding call to CreateNamedSeries.

e by adding a Custom Field during the creation of an ASCII DataSource. Pass the
"Field Name" that you entered when creating the DataSource.

This function is used internally in the code created by the New Indicator Wizard, and,
unless you have additional names fields for ASCII DataSources, you should rarely
need to call this function yourself.

Remarks

e ASCII Custom Fields work only in the chart data's native time frame. For example,
if you have a daily ASCII DataSource, the Custom Field data is not available if you
switch to Weekly scale from the toolbar.

e The string passed at SeriesName is case sensitive. For example, if the custom field
was defined as 'PE_Ratio', passing 'PE_RATIO' will cause the function to fail. You
can review the actual field name by clicking the Properties button for the
DataSource in the DataSource Manager.

Example

var MySeries: integer;
MySeries := FindNanedSeries('SeriesNanme');

12.23 FirstActualBar

FirstActualBar: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

This function is useful in scripts that loop through and execute trades on all of the
symbols in a WatchList. In these cases, Wealth-Lab's synchronization feature (see
Tools|Options|Synchronization) will transform secondary data series so that they
synchronize with the Primary series, the one clicked to run the script. If a secondary
data series has a shorter history than the Primary series, data bars are appended to
the beginning of the secondary series so that it's BarCount equals that of the Primary
series. FirstActualBar will return the bar number that represents the first "real" bar
of the secondary series. You can use this value to make sure that you don't enter
trades on the symbol before its actual history began.

© 2003-2006 WL Systems, Inc.

123

WealthScript Function Reference, Wealth-Lab Developer 4.0

12.24

12.25

Example

var FIRST: integer;

Set PrimarySeries('ABGX);

First := FirstActual Bar;

Rest orePri marySeri es;

DrawLabel (' ABGX started trading on bar ' + IntToStr(First), 0);

GetDescription

GetDescription(Series: integer): string;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the internal description of the specified Price Series. This function is used in
the New Indicator Wizard to create a properly named Price Series for a new indicator
being created.

Example

var e: integer;

e := EMASeries(#C ose, 60);

Pl ot Series(e, 0, 009, #Thin);
DrawLabel (Get Description(e), 0);

GetExternalSeries

GetExternalSeries(Symbol: string; Series: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the requested Price Series for the specified Symbol. Series must be one of the
following Standard Price Series constants (only):

#Qpen, #Hi gh, #Low, #Cl ose, #Vol une, and #QOpenl nt er est

Remarks

e Wealth-Lab will first try to find the Symbol in the WatchList of the primary symbol,
which is the one that was clicked. If it doesn't exist in the primary symbol's
WatchlList, it will try to find it in other WatchLists/DataSources, top to bottom,
alphabetically. Use AllowSymbolSearch to limit symbol searches to specific
WatchLists.

¢ You cannot call GetExternalSeries after you have changed the Primary Series with
SetPrimarySeries, or after you have re-scaled the Primary Series with a Time
Frame function.

e GetExternalSeries generates an error at run time if the Series cannot be found. If
there's reason to suspect a Symbo/ will not be found, you can "catch" the error with
a try/except block as shown here:

var h: integer;

try

h := GetExternal Series('MSFT', #C ose);
except

Print('No data or could not find series');
end;

© 2003-2006 WL Systems, Inc.

Price Series Functions 124

e If you require access to an external symbol's Custom Field(s), do not use
GetExternalSeries. Instead, use SetPrimarySeries, followed by
FindNamedSeries, and finally RestorePrimarySeries.

e External Series functionality is not available for Tick or Second-based charts.

Example

{ Display price of this series relative to CSCO }
var CSCO, REL, RELPANE: i nteger;

CSCO : = GetExternal Series('CSCO, #C ose);

Rel := DivideSeries(#C ose, CSCO);

Rel Pane : = CreatePane(100, false, true);

Pl ot Series(Rel, Rel Pane, #Teal, #Thick);

12.26 GetSeriesValue

GetSeriesValue(Bar: integer; Series: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns a value at a specified Bar from the specified Price Series. Use this function to
return values from a Price Series that you create with CreateSeries, or the result of
any WealthScript function that returns a Price Series integer handle.

Remarks
Instead of using GetSeriesValue, you can use the @-symbol shorthand notation. In
the example below, the statement

Per := Round(Get SeriesValue(Bar, AdaptivePer));

is equivalent to
Per := Round(@\daptivePer[Bar]);

Note: The @ syntax is not compatible with Price Series whose handles are stored
in a declared array; e.g., @[i][Bar], where h[i] is an integer array of
Price Series handles, is not valid syntax. See the WealthScript Language
Guide for more information.

Example
{ Create an adaptive noving average by nultiplying a base period by R
Squar ed }
var ADAPTI VEPER, ADAPTI VEMA, BAR, PER: i nteger;
AdaptivePer := CreateSeries;

AdaptiveMA : = CreateSeries;
AdaptivePer := MiltiplySeriesVal ue(RSquaredSeries(#C ose, 30), 60);
for Bar := 60 to BarCount - 1 do
begi n

Per := Round(Get SeriesValue(Bar, AdaptivePer));

if Per < 5 then

Per :=5;

Set Seri esVal ue(Bar, AdaptiveMA, SMA(Bar, #C ose, Per));
end;
Pl ot Seri es(AdaptiveMA, 0, #Purple, #Thick);

© 2003-2006 WL Systems, Inc.

125 WealthScript Function Reference, Wealth-Lab Developer 4.0

12.27 MultiplySeries

MultiplySeries(Seriesl: integer; Series2: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Multiples each element of two Price Series, Series1 and Series2, returning the handle
to a new Price Series.

Example
var ROCPANE, ROCSMA, ROCSMALl, ROCSMA2, SMAMULT: i nteger;

{ Plot 30 Day SMA }
Pl ot Seri es(SMASeries(#C ose, 30), 0, 040, #Thick);
DrawText ('30 Day SMA', 0, 4, 46, 040, 8);

{ Create a De-Trended 30 Day SMA by accounting for SMA sl ope }
RocPane : = CreatePane(75, true, true);

RocSMA : = ROCSeries(SMASeries(#C ose, 30), 1);

Pl ot Seri es(RocSMA, ROCPane, 020, #ThickH st);

DrawText('1l Day ROC of 30 Day SMA', RocPane, 4, 4, 020, 8);

RocSMA1 : = MultiplySeriesValue(RocSMA, 0.1);
RocSMA2 : = AddSeriesVal ue(RocSMAL, 1.0);
SMAMUIt = MultiplySeries(SMASeries(#C ose, 30), RocSMA2);

Pl ot Series(SMAMUIt, O, 005, 2);
Dr awText (' Detrended 30 Day SMA', 0, 4, 56, 005, 8);

12.28 MultiplySeriesValue

MultiplySeriesValue(Series: integer; Value: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Multiplies the Price Series by a constant Value, and returns the integer handle to a
new Price Series. You can use this function to make a copy of a Price Series by
passing 1 as the Value parameter.

Example

{ Divide the stock value by the DJ Index to get a relative
strength rating, nultiple the result by 10000 for scaling }

var DJCLOSE, DI VSERI ES, DJPANE: i nteger;

Set PrimarySeries('~DJl");

DJC ose : = #d ose;

Rest orePri marySeri es;

DivSeries := DivideSeries(#C ose, DJC ose);

DivSeries := MultiplySeriesValue(D vSeries, 10000);

DJPane := CreatePane(150, true, true);

Pl ot Seri es(DivSeries, DJPane, 030, #Thick);

12.29 OffsetSeries
OffsetSeries(Series: integer; Bars: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

Price Series Functions 126

Description

Offsets the specified Price Series by a certain number of Bars and returns the handle
to a new Price Series. Use a negative offset value to shift the Price Series to the right
on the chart. Shifting a moving average to the right often leads to cleaner signals.

Example

{ Display a 60 day novi ng average, and the sane
average shifted to the right by 4 bars }

var SMASER, SMACFFSET: i nteger;

SMASer : = SMASeries(#C ose, 60);

SMAOf fset := OFfsetSeries(SMASer, -4);

Pl ot Seri es(SMASer, 0, #Navy, #Thick);

Pl ot Series(SMAOffset, O, #Blue, #Thin);

12.30 RestorePrimarySeries

RestorePrimarySeries;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Restores the primary data source after a call to SetPrimarySeries. You should
always call RestorePrimarySeries after accessing external data sources in your
ChartScript.

Example

{ Conpare the RSI of the stock with the RSI of the index }
var DJCLCSE, DJRSI, DJPANE: integer;

Set PrimarySeries('~DJl");

DJC ose : = #C ose;

DIRSI := RSl Series(DI ose, 30);

Rest orePri marySeri es;

DJPane := CreatePane(150, true, true);

Pl ot Seri es(DJRSI, DJPane, #Navy, #Thick);

Pl ot Series(RSI Series(#C ose, 30), DJPane, #Blue, #Thin);

12.31 SetDescription

SetDescription(Series: integer; Description: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Every Price Series is associated with an internal description. You normally don't need
to assign a description yourself, as this is usually done automatically.

SetDescription assigns the Description string of the specified Price Series that will be
returned by a call to GetDescription. The description is displayed in the Data
Window (Ctrl+Alt+V).

Remarks

e SetDescription is primarily intended to provide a description for Price Series
formed by CreateSeries.

e For custom indicators created from the result of another Price Series function such
as SubtractSeries, DivideSeries, etc., use SetDescription to change the Series'
internal description after calculating the indicator. FindNamedSeries will then be

© 2003-2006 WL Systems, Inc.

127

WealthScript Function Reference, Wealth-Lab Developer 4.0

able to identify the Series by its Description string.

Example

var Bar, hSer: integer;

{ A description is automatically assigned }
hSer := CreateSeries;

Print(GetDescription(hSer));

{ Assign your own description }
Set Description(hSer, 'MySeriesl);
Print(GetDescription(hSer));

{ Observe the description in the Data W ndow }
Pl ot Series(hSer, 0, 0, 0);

12.32 SetPrimarySeries

SetPrimarySeries(Symbol: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Use this function to temporarily set the default price data source to a different symbol.
After calling this function, any reference to a standard Price Series, such as #0pen,
#High, #Volume, etc, or the Data Access functions such as PriceClose will use the
data source specified by the Symbol parameter. You can also build indicators on the
newly selected data source.

Remarks

Wealth-Lab will first try to find the Symbol in the WatchList of the primary symbol,
which is the one that was clicked. If it doesn't exist in the primary symbol's
WatchlList, it will try to find it in other WatchLists/DataSources, top to bottom,
alphabetically.

Use AllowSymbolSearch to limit symbol searches to specific WatchLists.

After calling SetPrimarySeries, you can execute trades on other than the 'clicked’
symbol. This feature is available in the ChartScript Window and EOD Scans (must
select "Allow Complete Scan of Multi-Symbol Scripts") but will cause the $imulator
to terminate prematurely.

When finished using the external data source, be sure to call
RestorePrimarySeries.

External Series functionality is not available for Tick or Second-based charts.

Example

{ I like to see the DJ Index and its 200 day noving
average along with nmy chart }

var DJCLCSE, DJ200, DJPANE: i nteger;

Set PrimarySeries('~DJl");

DJC ose : = #C ose;

DJ200 : = SMASeries(DJO ose, 200);

Rest orePri marySeri es;

DJPane := CreatePane(150, true, true);

Pl ot Seri es(DJO ose, DJPane, 310, #Thick);

Pl ot Seri es(DJ200, DJPane, #Bl ack, #Dotted);

© 2003-2006 WL Systems, Inc.

Price Series Functions 128

12.33 SetSeriesValue

SetSeriesValue(Bar: integer; Series: integer; Value: float);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Assigns a value to a specific Bar in the specified Price Series. Use this function to set
values of a Price Series that you create with CreateSeries or CreateNamedSeries.

Remarks
Instead of using SetSeriesValue, you can use the @-symbol shorthand notation. In
the example below, the statement

Set Seri esVal ue(Bar, Vol Surge, pct);

is equivalent to
@/ol Surge[Bar] := pct;

Note: The @ syntax is not compatible with Price Series whose handles are stored
in a declared array; e.g., @[i][Bar], where h[i] is an integer array of
Price Series handles, is not valid syntax. See the WealthScript Language
Guide for more information.

Example

{ Below we create and plot an indicator that displays
percent age of Vol une above average }

var V, DI FF, PCT: float;

var VOLPANE, VOLSURGE, BAR: i nteger;

Vol Pane : = CreatePane(100, false, true);
Vol Surge := CreateSeries;
for Bar := 20 to BarCount - 1 do
begin
v := Volunme(Bar);

diff :=v - SMA(Bar, #Volune, 20);
pct := (diff / SMA(Bar, #Volune, 20)) * 100;
Set Seri esVal ue(Bar, Vol Surge, pct);

end;

Pl ot Seri es(Vol Surge, Vol Pane, 955, #ThickHi st);

12.34 SingleCalcMode

SingleCalcMode(Mode: boolean);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

When the Mode parameter is set true, selected indicators (see Remarks) will return
the value for the specified bar only.

Discussion

When you first call an indicator function, Wealth-Lab constructs the entire indicator
Price Series to optimize speed for accessing indicator values. However, this makes it
difficult to use indicators within a loop as you are populating the values of a custom
Price Series. SingleCalcMode allows you to use selected indicator functions
repetitively to recalculate a result based on the instantaneous values of the underlying
series.

© 2003-2006 WL Systems, Inc.

129 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

e SingleCalcMode will work with a subset of supported indicators:
SMA, EMA, LinearReg, RSquared, StdDev, Highest, Lowest

Check the Build descriptions on the Wealth-Lab site for the latest additions.

e Set SingleCalcMode true only for the lines of code where required. When not
required, set the Mode back to false.

e Some indicators do not lend themselves to bar by bar calculation, because their
values depend on the previous value, or they use other complex indicators as
components. If you try to call one of these indicators when SingleCalcMode is
turned on you will receive an error message as a notification that the script might
not be working as intended.

¢ Note that a call to SMASeries, for example, will create the complete Price Series as
normal, but you could still call SMA within SingleCalcMode to return a newly-
calculated value for a specific bar.

Example

{ Instructions: Load Fixed 100 Bars and conpare the results by
changi ng the Singl eCal cMode paraneter to true/false }
var n, MySeries, Pane: integer;

MySeries := CreateSeries;
for n:=0to 19 do

@& Series[n] := n;

{ Change the Mbde value here to see the effect }
Si ngl eCal cMbde(false);

for n := 20 to BarCount - 1 do
@¥Series[n] := SMA(n, MySeries, 20);

Si ngl eCal cMbde(fal se);
Pane := CreatePane(100, true, true);
Pl ot Series(MySeries, Pane, #Red, #Thin);

12.35 SubtractSeries

SubtractSeries(Seriesl: integer; Series2: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Subtracts each element of Series2 from its corresponding element in Series1, and
returns the handle to a new Price [difference] Series.

Example

{ Visualize the Difference between two Rate of Changes }
var ROC1, ROC2, ROCDI FF, ROCPANE: i nteger;

ROC1 : = RCCSeries(#C ose, 10);

ROC2 : = RCCSeries(#C ose, 30);

ROCDi ff := Subtract Series(ROC2, RCCl);

ROCPane : = CreatePane(100, true, true);

Pl ot Seri es(ROCDi ff, ROCPane, 012, #ThickHi st);

Pl ot Seri es(ROCl, ROCCPane, #Red, #Thin);

Pl ot Seri es(ROC2, ROCPane, #Blue, #Thin);

© 2003-2006 WL Systems, Inc.

Price Series Functions

12.36 SubtractSeriesValue

SubtractSeriesValue(Series: integer; Value: float

): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Subtracts a constant Value from each element of the specified Price Series, and

returns the handle of a new Price Series.

Example
{ By subtracting 50 fromthe RS

we can get an

i ndicator that oscillates around zero }

var RSl Ser, RSl Pane: integer;

RSI Pane : = CreatePane(75, true,
RSI Ser
RSI Ser
Pl ot Seri es(RSI Ser, RSIPane, 009,

12.37 SubtractValueSeries

true);

RSI Seri es(#C ose, 30);
Subt ract Seri esVal ue(RSI Ser, 50);

#Thin);

SubtractValueSeries(Value: float; Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Subtracts each element of a Price Series from the specified constant Value, and

returns the handle of a new Price Series.

Example

{ Create a mirror-inmage by flippi
var Pct RPane: integer;

Pct RPane := CreatePane(75, true,
Pl ot Series(WIIlianmsRSeries(30)
Pl ot Seri es(SubtractVal ueSeri es(
Pct RPane, 250, #Thick);

ng Wiliams %R }

true);
, PctRPane, 520, #Thick);
100, WIlianmsRSeries(30)),

DrawLabel ("W I liansR(30)', PctRPane);

12.38 SynchAll

SynchAll;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Synchronizes any Secondary data series that were used in the script (see

SynchSeries).

Example

{ The Oddball System requires syn
fromthe NYSE Advances, synbol
var ADV, ADVPANE, ADRCC, ROCPANE,

{ Opbtain the NYSE Advancing |ssue
ADV : = GetExternal Series('$ADV,
SynchAl | ;

Hi deVol une;

chroni zed data

$ADV }

BAR: i nteger;
s }

#Cl ose);

130

© 2003-2006 WL Systems, Inc.

131 WealthScript Function Reference, Wealth-Lab Developer 4.0

{ Plot it }

ADVPane := CreatePane(75, true, true);

Pl ot Seri es(ADV, ADVPane, 112, #Thick);
DrawLabel (' NYSE Advanci ng | ssues', ADVPane);

{ Get the 7 bar ROC of the NYSE Advances }
ADROC : = RCCSeries(ADV, 7);

{ Plot it }

ROCPane : = CreatePane(75, true, true);

Pl ot Seri es(ADROC, ROCPane, 224, #ThickHi st);

DrawLabel (' 7 bar ROC of NYSE Advancing |ssues', ROCPane);

{ (ddball Trading Rules }
for Bar := 20 to BarCount - 1 do
begin
if GetTime(Bar) <= 1500 then
begin
{ Currently in a long Position }
i f PositionShort(LastPosition) then

begin
if ROC(Bar, ADV, 7) > 3 then
begi n
Cover At Cl ose(Bar, LastPosition, '');
BuyAt Cl ose(Bar, '');
end;
end
el se
{ Currently in a short Position }
begi n
if ROC(Bar, ADV, 7) < 1 then
begin
Sel | At Cl ose(Bar + 1, LastPosition, "');
Short AtCl ose(Bar + 1, "');
end;
end;
end;

end;
{$! 'Profit Pane (Bottom'}

12.39 SynchSeries

SynchSeries(Symbol: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Synchronizes the data in a Secondary data series from Symbo/ (obtained from
GetExternalSeries or SetPrimarySeries) to the Primary data series, so that all bars
are perfectly aligned by date. There are two actions that SynchSeries can perform
on the Secondary Series (it never modifies the Primary Series). First, if the Secondary
Series contains dates that do not exist in the Primary Series, these bars are eliminated
from the Secondary Series. Next, if the Primary Series contains dates that do not
exist in the Secondary, synthetic bars of data are added to the Secondary Series to
make up the missing bars. These synthetic bars obtain their value from the previous
bar's data.

You should call SynchSeries only after creating any desired indicators from the
Secondary Series. The synchronization process is applied to all indicators created
from the Secondary Series, ensuring that they align properly with the dates in the

© 2003-2006 WL Systems, Inc.

Price Series Functions 132

Primary Series. If you create your indicators after calling SynchSeries, bars may be
removed or duplicated, and the indicators would be based on imperfect data.

However, if you want to perform operations that combine the Secondary Series and
the Primary (using DivideSeries for example), do so after the synchronization has
taken place.

Example

{ This script shows visually how data mi ght be ni saligned.
It obtains the Nasdaqg i ndex, then nakes a copy of the data.
The SynchSeries then synchroni zes the original data series.
The script then plots both the synchronized and the ori gi nal
Series so you can see if any data problens existed. }

var NAZ, NAZCOPY, NAZPANE: i nteger;

Naz := GetExternal Series("I XIC, #C ose);

NazCopy := MultiplySeriesValue(Naz, 1);

SynchSeries("M XIC);

NazPane := CreatePane(100, true, true);

Pl ot Seri es(Naz, NazPane, #Bl ack, #Thin);

Pl ot Seri es(NazCopy, NazPane, #Red, #Thin);

12.40 SyntheticBar

SyntheticBar(Bar: integer): boolean;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns true if the specified Bar number is a "synthetic" bar. A synthetic bar is a bar
that was added to the chart as a result of a call of AddCalendarDays or
AddFutureBars.

12.41 TurnDown

TurnDown(Bar: integer; Series: integer): boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the Price Series has turned down as of the specified Bar. A Price
Series has "turned down" if its value is less than its previous value, and its previous
value was greater than or equal to the value preceding it.

Specifically, given a Series D, TurnDown returns true if

@{Bar] < @[Bar - 1], and,
@[Bar - 1] >= @[Bar - 2]

Example

{ Buy when WIllianms %R turns down and is above 80 }

var Pct RPane: integer;

Pct RPane : = CreatePane(75, true, true);

Pl ot Series(WIliansRSeries(30), PctRPane, 009, #Thin);
var Bar: integer;

Install StopLoss(5);

Install ProfitTarget(10);

for Bar := 30 to BarCount - 1 do

begi n

© 2003-2006 WL Systems, Inc.

133 WealthScript Function Reference, Wealth-Lab Developer 4.0

Appl yAut oSt ops(Bar);
i f TurnDown(Bar, WIIliansRSeries(30)) then
if WIllianmsR(Bar, 30) > 80 then
BuyAt Market (Bar + 1, 'WR);
end;

12.42 TurnUp

TurnUp(Bar: integer; Series: integer): boolean;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the Price Series has turned up as of the specified Bar. A Price Series
"turns up" if its value is greater than its previous value, and its previous value was
less than or equal to the value preceding it.

Specifically, given a Series U, TurnUp returns true if

@JBar] > @JBar - 1], and,
@[Bar - 1] <= @JfBar - 2]

Example

{ Enter the nmarket when the slow stochastic turns up from bel ow 15 }
var Bar, StochPane: integer;

St ochPane : = CreatePane(100, true, true);

Pl ot Seri es(StochDSeries(60, 5), StochPane, 202, #Thick);

for Bar := 65 to BarCount - 1 do
begin
if not LastPositionActive then
begin

if StochD(Bar - 1, 60, 5) < 15 then
if TurnUp(Bar, StochDSeries(60, 5)) then
BuyAt Market (Bar + 1, 'StochasticD Turns Up');
end
el se
begin
if CrossOverVal ue(Bar, StochDSeries(60, 5), 80) then
Sel | At Market (Bar + 1, LastPosition, 'StochD Crosses 80");
end;
end;

© 2003-2006 WL Systems, Inc.

SimuScript Functions 134

13 SimuScript Functions

13.1 Overview

SimuScripts are an advanced feature of Wealth-Lab Developer 4.0 that let you
experiment with your very own position-sizing rules in the $imulator as well as in the
ChartScript, Rankings, and Scans tools when Portfolio Simulation mode is selected. A
SimuScript is a special type of ChartScript that must be stored in the "SimuScripts"
folder. For more information, see the chapter on SimuScripts in the WealthScript
Function Reference.

Generally speaking, besides the specific SimuScript-category functions, you can use
any of the functions in the other categories excluding the functions that appear in the
following categories:

Alerts

Cosmetic Charts
System

Time Frame
Trading System

13.2 BarCount

BarCount: integer;

MChartScripts M#SimuScripts MPerfScripts ©CMScripts

Description

Returns the total number of bars available at the time the current $imulator (or
Portfolio Simulation) trade was opened.

Example

{ See if we've had at least a 20% Equity rise in the last 100 Bars }
var CHANCE: fl oat;
var GAlI N20: bool ean;
Gai n20 : = fal se;
i f Bar Count > 100 then
begin
Change := Equity(BarCount - 1) - Equity(BarCount - 100);
Change := (Change / Equity(BarCount - 100)) * 100;
i f Change >= 20 then
Set Posi ti onSi zePct (50)
el se
Set Posi ti onSi zePct(5);
end;

13.3 BuyAndHold

BuyAndHold(Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Returns the Buy & Hold Equity curve value at the specified Bar.

© 2003-2006 WL Systems, Inc.

135 WealthScript Function Reference, Wealth-Lab Developer 4.0
Example

{ Use any surges in the Buy & Hold equity curve to
i ncrease out position size }

var xCurrent, xPast, xDiff, xPct: float;

Set Posi ti onSi zePct (10);

i f BarCount > 20 then

begin
xCurrent := BuyAndHol d(BarCount - 1);
xPast := BuyAndHol d(Bar Count - 20);
xDi ff := xCQurrent - xPast;
xPct := (xDiff / xCurrent) * 100;
if xPct > 0 then

Set Posi ti onSi zePct (10 + xPct);
end;
13.4 CandidateCount

CandidateCount: integer;

OChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns the number of potential Positions that are being processed for the bar on
which the SimuScript was called.

Remarks

e CandidateCount can be used, for example, to spread current cash or equity
equally over trading signals generated on the same bar in Portfolio $imulations only
(see warning).

Warning! Generally, use of CandidateCount should be restricted to testing
trading systems that use market order entries exclusively. If used in
conjunction with stop or limit entries a peeking effect can occur since
only the theoretical trades that actually take place are counted.

e CandidateCount returns the count of all Alerts for all order types
(Market/Limit/Stop/Close).

Example

{ Spread free cash equally over nultiple signals generated on the sane
bar if Cash > 10000. (No margi n assumned) }

const M NSI ZE = 10000;

var Bar: integer = BarCount - 1;

var Size: float;

if Cash(Bar) < MNSIZE then
Set Posi ti onSi zeShares(0)
el se if Candi dateCount = 1 then
Set Posi ti onSi zeFi xed(M NSI ZE)
el se
begi n
Size := Cash(Bar) / CandidateCount;
Set Posi ti onSi zeFi xed(Size);
end;

© 2003-2006 WL Systems, Inc.

SimuScript Functions 136

13.5 Cash
Cash(Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Returns the Cash level at the specified Bar. The Cash level is equal to Equity minus
current market Exposure.

Warning! The Cash function is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SimuScript: Don't take a new Position if our Cash reserve is |less
than $5, 000.

If this happens we need a vacation anyway. }
if Cash(BarCount - 1) < 5000 then

Set Posi ti onSi zeShares(0);

13.6 DrawDown

DrawDown(Bar: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the drawdown for the specified Bar. DrawDown is calculated on a closing
basis and is the dollar amount below the last peak in the equity curve.

Remarks:

e DrawDown retains its negative sign. For example, a drawdown of $5,000 is
returned as -5000.

e To obtain the DrawDown for the current bar in a SimuScript, pass BarCount - 1
as the Bar parameter.

Warning! DrawDown is also available for ChartScripts, but it cannot be employed in
a system's trading rules if destined for the $imulator.

Example

{ SimuScript sizing exanple based on drawdown }
var HighestEquity: float;

{ Use dobal Storage to track H ghest Equity }
if PositionCount = 0 then
begi n
ShowMessage('Init');
Set d obal (' Highest', Equity(0));
end;

H ghest Equity := Getd obal (' Highest');
if Equity(BarCount - 1) > Hi ghestEquity then
begi n
H ghest Equity := Equity(BarCount - 1);
Set d obal (' Highest', HighestEquity);
end;

© 2003-2006 WL Systems, Inc.

137

WealthScript Function Reference, Wealth-Lab Developer 4.0

13.7

13.8

{ Have we doubl ed account size? }
i f HighestEquity > Equity(0) * 2 then
begin
if -DrawbDown(BarCount - 1) > HighestEquity * 0.10 then
Set Posi tionSi zePct(0)
el se
Set Posi ti onSi zePct (10);
end
el se
Set Posi ti onSi zePct (25);

DrawDownPct

DrawDownPct(Bar: integer): float;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the percentage drawdown for the specified Bar. DrawDownPct is calculated
on a closing basis and represents the percent decrease in equity since the last peak in
the equity curve.

Remarks:

e DrawDownPct is reported in percentage terms, and, it retains its negative sign.
For example, a 5% drawdown is returned as -5.

e To obtain the DrawDownPct for the current bar in a SimuScript, pass BarCount -
1 as the Bar parameter.

Warning! DrawDownPct is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SinuScript: Preserve Capital by taking no trades during |arge
drawdown peri ods }
i f DrawDownPct (BarCount - 1) < -5 then
Set Posi ti onSi zeShares(0)
el se
Set Posi ti onSi zePct (10);

Equity
Equity(Bar: integer): float;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the total account value at the specified Bar. In Wealth-Lab, Equity refers to
the total Cash plus Market Exposure.

© 2003-2006 WL Systems, Inc.

SimuScript Functions 138

Remarks

e Do not use Equity in a ChartScript that is destined for the $imulator, which
processes Portfolio Equity while sizing Positions following ChartScript execution.
Search for the following articles in the Knowledge Base for more information:
Interacting Dynamically with Portfolio Level Equity and Understanding the
$imulator.

Warning! The Equity function is also available for ChartScripts, but it cannot be
employed in a system's trading rules if destined for the $imulator.

Example

{ SimuScri pt
Take the noney and run! }

if Equity(BarCount - 1) > 120000 then
Set Posi ti onSi zeShares(0);

13.9 SetPositionSizeFixed

SetPositionSizeFixed(Value: float);

OChartScripts MSimuScripts OPerfScripts ©CMScripts

Description
Instructs the $imulator (or Portfolio Simulation) to assign a fixed Position size, a dollar
Value, to the Position currently being processed by the SimuScript.

Example

{ Set a Position size of half current available cash }
Set Posi ti onSi zeFi xed(Cash(BarCount - 1) [/ 2);

13.10 SetPositionSizePct

SetPositionSizePct(Value: float);

OChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Instructs the $imulator (or Portfolio Simulation) to assign a percentage, Value, of the
total Equity size (the net value of the Portfolio, cash + equities) to the Position that is
currently being processed by the SimuScript.

Example

{ The ChartScript Code used SetPositionData to establish
the percentage of equity that should be used. The
"PositionData" nust be set in the ChartScript code. }

X := GetPositionData(#Current);

Set Posi ti onSi zePct (x);

13.11 SetPositionSizeShares

SetPositionSizeShares(Shares: integer);

OChartScripts MSimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

139 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Tells the $imulator (or Portfolio Simulation) to assign a fixed number of Shares to the
Position currently being processed.

Example

{ Set the value nunber of shares based on the position's basis price. }
var Basis: float;
var Shrs: integer;

Basis := PositionBasisPrice(#Current);
if Basis < 10 then
Shrs := 800
else if Basis < 20 then
Shrs := 500
else if Basis < 50 then
Shrs := 300
el se
Shrs := 200

Set Posi ti onSi zeShares(Shrs);

13.12 SortByEntryDate

SortByEntryDate;

OChartScripts XISimuScripts OPerfScripts ©CMScripts

Description

Instructs the SimuScript to access Positions in the order in which they were opened.
The sort order becomes important if you write SimuScripts that assign Position size
based on streaks.

Remarks

$imulator only. Not available for Portfolio Simulations ran from the
ChartScript window.

Example

{ Increase Position Size based on last 5 submitted trades }
var n, p: integer;
var x: float;
X = 1000;
n := 0;
Sort ByEnt r yDat e;
for p := PositionCount - 1 downto O do
if not PositionActive(p) then
begin
n:=n+ 1
if n>5 then
Br eak;
if PositionProfit(p) > 0 then
X =X * 2
end;
Set Posi ti onSi zeFi xed(x);

© 2003-2006 WL Systems, Inc.

SimuScript Functions 140

13.13 SortByExitDate

SortByExitDate;

OChartScripts XISimuScripts OPerfScripts ©CMScripts

Description

Instructs the SimuScript to access Positions in the order in which they were closed.
The sort order becomes important if you write SimuScripts that assign Position size
based on streaks.

Remarks

$imulator only. Not available for Portfolio Simulations ran from the
ChartScript window.

Example

{ I'ncrease Position Size as we get streaks of w nners }
var p: integer;
var x: float;
X = 1000;
Sor t ByExi t Dat e;
for p := PositionCount -
i f not PositionActive(
if PositionProfit(p
X 1= x + 1000
el se
Br eak
Set Posi ti onSi zeFi xed(x);

1 downto O do
p) then
) > 0 then

© 2003-2006 WL Systems, Inc.

141

WealthScript Function Reference, Wealth-Lab Developer 4.0

14

14.1

14.2

String Functions

Overview

To compare, parse, or otherwise manipulate string variables, the String category of
functions has what it takes.

CharAt

CharAt(Value: string; Index: integer): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns a single string character at the Index position from the Value string.

Remarks
e The Index of the first character in the Value string is 1.
e If the Index is invalid, CharAt returns "NUL", i.e., ASCII Code 0.

e To return a complete substring instead of just one character, use Copy.

Example

{ A re-useable vertical |abeling routine }
procedure Vertical Label (Bar: integer; str: string; AbovePrices:
bool ean; Color, Size: integer);
begi n
var n: integer;
i f AbovePrices then
begi n
for n := Length(str) downto 1 do
Annot at eBar (CharAt(str, n), Bar, AbovePrices, Color, Size);
end
el se
for n := 1 to Length(str) do
Annot at eBar (CharAt(str, n), Bar, AbovePrices, Color, Size);
end;

const Sl ' PEAK' ;
const S2 = ' TROUGH ;
var Bar, PB, TB: integer;

{ Make extra room for peak | abel }
H dePanelLi nes;
Creat ePane(20, true, false);

Bar := BarCount - 1,

PB : = PeakBar(Bar, #C ose, 5);
Vertical Label (PB, S1, true, #Blue, 8);
TB : = TroughBar(Bar, #Cl ose, 5);
Vertical Label (TB, S2, false, #Red, 8);

© 2003-2006 WL Systems, Inc.

String Functions 142

14.3 Chr

Chr(ASCIICode: integer): string;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns the string character of the specified ASCIICode, which may be a literal whole
number or integer variable.

Remarks

e Alternatively, you may use the shorthand "#asciicode" notation. In this case, you
must use a literal number from 0 to 255, inclusive, as shown in the example.

e See also: Ord

Example

{ Print alist of the ASCI| characters to the debug
wi ndow starting with printable characters }

var i: integer;

for i :=33 to 255 do

{ Separate the itens by a Tab character, ASCII 9 }
Print(IntToStr(i) + #9 + Chr(i));

14.4 CompareStr

CompareStr(s1: string; s2: string): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Compares two strings, s1 and s2, case sensitively. The function returns 0 if the two
strings are equal. If the first string is greater than the second (alphabetically), the
function returns a positive integer, and it returns a negative integer if the second
string is greater.

Example
var sl, s2: string;
sl :=Input('Enter First String);
s2 := Input('Enter Second String");

ShowMessage(' ConpareStr Result is:
+ IntToStr(ConpareStr(sl1, s2)));

145 CompareText

CompareText(s1: string; s2: string): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Compares two strings, s1 and s2, without case sensitivity. The function returns 0 if
the two strings are equal. If the first string is greater than the second
(alphabetically), the function returns a positive integer, and it returns a negative
integer if the second string is greater.

Example

© 2003-2006 WL Systems, Inc.

143 WealthScript Function Reference, Wealth-Lab Developer 4.0
var sl1, s2: string
sl :=1Input('Enter First String');
s2 := Input('Enter Second String');
ShowMessage(' ConpareText Result is:
+ IntToStr(ConpareText(sl1l, s2)));
14.6 Copy
Copy(String: string; Index: integer; Count: Integer): string;
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description
Returns a substring from the specified String. The substring begins at the position
specified in the Index parameter, and has a length specified by the Count parameter.
Example
function GetFirstWrd(s: string): string;
var n: integer;
begi n
Result :="";
n:=Pos("' ', s);
if n>2 then
Result := Copy(s, 1, n- 1);
end;
DrawLabel (GetFirstWrd(CGetSecurityNanme), 0);
14.7 Delete
Delete(String: string; Index: integer; Count: integer);
MChartScripts MSimuScripts MPerfScripts MCMScripts
Description
Removes a substring from the specified String. The substring that is removed begins
at the value of the Index parameter, and has a length specified by the Count
parameter.
Example
var s: string;
s := 'Honest Abe Lincoln';
Delete(s, 8, 4);
ShowMessage(s);
14.8 FloatToStr

FloatToStr(Value: float): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description
Converts the specified floating point Value to a string. For more control over the
conversion process, use the FormatFloat function.

Example
{ Display the change over a one year period }

© 2003-2006 WL Systems, Inc.

String Functions 144

var X, X2, XCHANGE, XPCT: fl oat;

X := PriceC ose(BarCount - 251);

x2 := PriceC ose(BarCount - 1);

xChange := x2 - Xx;

xPct := (xChange / x) * 100;

DrawLabel (' Net Change over a past year:
+ FloatToStr(xPct) + "%, 0);

14.9 FormatFloat

FormatFloat(FormatString: string; Value: float);

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the specified floating point value to a string, using the specified
FormatString. The following characters most commonly appear in the format string:

0 specifies a digit and forces leading/trailing zeroes if Value does not have a
digit that falls in the position appearing in FormatString

same as 0, but displays nothing if Value has no corresponding digit

’ (comma) digit grouping symbol (thousands only)

(period) decimal point

other Other printable characters are displayed as literals in the position where
they appear in the format string. You can add currency symbols ($, €, etc.)
or the percent sign (%), e.g., ' $#, ##0. 00" or ' 0. 0%

Remarks

e Using a comma "," in FormatString will add the Digit grouping symbol defined in
your Windows Regional Options Numbers tab. Regardless of the comma's position
in the format string, the grouping will be by thousands.

e Using a period "." in the format code will add a Decimal symbol defined in your
Windows Regional Options Numbers tab. Using more than one period in
FormatString will generate an error.

Example

{ Print a closing value to the debug w ndow }
var BAR i nteger;
Print(FormatFl oat('#, ##0.00', PriceC ose(Bar)));

14.10 GetToken

GetToken(String: string; TokenNum: integer; Delimiter: string): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Parses a String and returns an individual token. The String itself remains unaffected
by the function call. You specify a character to use as a Delimiter, and the token
number, TokenNum, to return. Pass 0 to return the first token, 1 for the second, etc.
Remarks

e GetToken returns a null string (ASCII Code 0) if the specified TokenNum does not

© 2003-2006 WL Systems, Inc.

145 WealthScript Function Reference, Wealth-Lab Developer 4.0

exist in the String.

Example

{ Return a token froma space-delinited string }
s :='This is a line of tokens';

sToken := Get Token(s, 5, ' ');

{ sToken now contains the string "tokens" }

14.11 Insert

Insert(Source: string; S: string; Index: Integer);

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description
Inserts a substring, Source, into a string S beginning at a point specified by the Index
parameter.

Example

var s: string;

s := 'Honest Lincoln';
Insert("Abe ', s, 8);
ShowMessage(s);

14.12 IntToStr

IntToStr(Value: integer): string;
MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Convert the integer value specified in the Value parameter to a string.

Example

{ Display the total nunber of bars in the chart }
DrawLabel (' The Chart has ' + IntToStr(BarCount) + ' Bars', 0);

14.13 Length

Length(String: string): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the length of the specified String.

Example

var s: string;
s := "Wealth-Lab';
n := Length(s); /Inis now 10

© 2003-2006 WL Systems, Inc.

String Functions 146

14.14 LowerCase

LowerCase(Value: string): string;

MChartScripts MSimuScripts MPerfScripts CMScripts

Description

Returns a lowercase copy of the specified string, Value.

Example

{ Capitalize the first letter of the nanme only }
var S, FIRSTLETTER string;
s := Lower Case(CetSecurityNane);
if s="" then
Exit;
FirstLetter := UpperCase(Copy(s, 1, 1));
s := FirstLetter + Copy(s, 2, Length(s));
ShowMessage(s);

14.15 Ord

Ord(Value: string): integer;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the ordinality (ASCII code) of the first character of the specified Value.

Remarks
e Value can be any sequence of characters, but must not be a blank string.

e See also: Chr

Example

{ Create a table of printable characters }
var c: integer;
for ¢ := 32 to 128 do
Print(IntToStr(¢) + #9 + Chr(¢)
+ #9 + IntToStr(Od(Chr(c))));

14.16 Pos

Pos(SubString: string; String: string): integer;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns the index value (position) of the first character in a specified Substring that
occurs in a given String.

Example

var s: string;
var n: integer;
s :=Ilnput('Gve ne a string!');
n:= Pos("A, UpperCase(s));
if n =20 then
ShowMessage('The letter '""A'" is not present.')

© 2003-2006 WL Systems, Inc.

147 WealthScript Function Reference, Wealth-Lab Developer 4.0

el se
ShowMessage(' The letter '""A" is at position ' + IntToStr(n) + '

)i

14.17 StrToFloat

StrToFloat(Value: string): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the specified string, Value, to a floating point value.

Example

{ Read a value froman external file and convert to floating point }
var f: integer;

var s: string;

var x: float;

f :=FileQpen('"MyFile.txt');
s = Fil eRead;
X := StrToFloat(s);

14.18 StrToFloatDef

StrToFloatDef(Value: string; Default: float): float;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the specified string, Value, to a floating point value. If the string does not
represent a valid floating point value, the function returns the value provided in the
Default parameter.

Example

{ Let the user specify the Standard Deviations to use for Bollinger
Bands }

var S: string;

var X: float;

s := lnput('Bollinger Band Std Dev?');

X := StrToFloatDef(s, 1.5);

Pl ot Seri es(BBandLower Series(#C ose, 10, x), 0, 009, #Thin);

Pl ot Seri es(BBandUpper Series(#C ose, 5, x), 0, 009, #Thin);

14.19 StrTolnt

StrTolnt(Value: string): integer;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the string specified in the Value parameter to an integer.

Example
function ConvertDate(Date: string): integer;
begi n
var y, m d: string;

© 2003-2006 WL Systems, Inc.

String Functions 148

m : = Get Token(Date, 0, '/"');
d := GetToken(Date, 1, '/');
y := CetToken(Date, 2, '/');
Result := StrTolnt(y) 10000
+ StrTolnt(m) * 100
+ StrTolnt(d);
end;

const MyDate = '5/18/2005";
Print('ConvertDate returns: ' + IntToStr(ConvertDate(MyDate)));

try

Print('StrToDate returns: ' + IntToStr(StrToDate(MyDate)));
except

Print(');

Print('Your conputer''s short date format is not mm dd/yyyy');
end;

14.20 StrTolntDef

StrTolntDef(Value: string; Default: integer): integer;
MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Converts the string specified in the Value parameter to an integer. If the string isn't a
valid integer, the function instead returns the value in the Default parameter.

Example

{ Let the user specify the period they want to use }
var S: string;

var N integer;

s := lnput('EMA Period?);

n:= StrTolntDef(s, 50);

Pl ot Seri es(EMASeries(#Cl ose, n), 0, 002, #Thick);

14.21 Trim

Trim(s: string): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns a copy of the specified string, s, with leading and trailing blanks trimmed off.

Example

{ Read a line froman external file }
var s: string;
var n: integer;

n:=FileOpen('"C\MFile.txt");
s := FileRead(n);
s :=Trinm(s);

14.22 TrimLeft

TrimLeft(s: string): string;
MChartScripts MSimuScripts MPerfScripts CMScripts

© 2003-2006 WL Systems, Inc.

149

WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Returns a copy of the specified string, s, with leading blanks trimmed off.

Example

{ CGet second word of conpany nane }
var s: string;

var n: integer;

s = Get SecurityNane;

n:=Pos("' ', s);

if n>0 then

begi n

s := Copy(s, n, Length(s));

S :
end;

Trinmeft(s);

14.23 TrimRight

14.24

TrimRight(s: string): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns a copy of the specified string, s, with trailing blanks trimmed off.

Example

{ Qutput contents of a file }
var s: string;
var f: integer;
f :=FileQpen("C\MWFile. txt');
while not FileEOF(f) do
Print(TrinRight(FileRead(f)));

UpperCase

UpperCase(s: string): string;

MChartScripts MSimuScripts MPerfScripts MCMScripts

Description

Returns an uppercase copy of the specified string, specified in the parameter s.

Example

{ Print the nanes of all your ChartBooks to the Debug w ndow }
var F. integer;
f := FileQpen('Nanespaces.txt');
while not FileEOF(f) do
Print(UpperCase(FileRead(f)));

© 2003-2006 WL Systems, Inc.

System Functions 150

15 System Functions
15.1 Overview

In the System category, you'll find a broad array of functions whose primary purpose
is to interact with the user and external objects or programs. They also provide a
manner to control and generate output for Scans, the Commentary Window, and chart
image files. Finally, a subset of the System Functions furnish methods to easily work
with an entire group of symbols - a WatchList.

Note: Generally speaking, the System category of WealthScript functions are not
available for SimuScripts.

15.2 Abort

Abort;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Causes a script to stop processing immediately. Wealth-Lab reports an error message
upon executing an Abort statement.

Remarks

e You can abort ChartScript processing manually by striking the Esc key.

e Use Exit instead of Abort to terminate/exit a procedure without error.

Example

i f BarCount < 100 then
Abort ;

15.3 AddCommentary

AddCommentary(Line: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Adds a Line of commentary to the ChartScript Commentary window. You can use any
valid HTML tags in your commentary (see the User Guide in the Help File for some
examples). To force a line break end your string with the tag '
".

Tip: To open the Commentary window, select View|Commentary Window
(Ctrl+Alt+C) from the main menu, or select its icon from the View toolbar.

Example

var Bar: integer;

var s: string;

var x1, x2, x: float;
const FMI = '#0.00'";

© 2003-2006 WL Systems, Inc.

151 WealthScript Function Reference, Wealth-Lab Developer 4.0
Bar := BarCount - 1;
s 1= '<hl1> + GetSynbol + '</hl>";
AddComentary(s);
if not (GetSecurityName = '') then
begi n
s 1= "'"<h2>('" + GetSecurityName + ')</h2>";
AddComentary(s);
end;
AddComent ary(' Dual Stochastic Sell Strategy
");
x1 := StochD(Bar, 45, 5);
s := "FastD(45): ' + FormatFloat(FMI, x1) + '
';
AddCommentary(s);
x2 := StochD(Bar, 7, 5);
s :="FastD(7): ' + FormatFloat(FMI, x2) + '
';
AddComentary(s);
x1 := Lowest(Bar, #Low, 10);
s := 'Lowest 10 Bar Low. $' + FormatFloat(FMI, x1) + '
';
AddCommentary(s);
15.4 AddScanColumn

AddScanColumn(Name: string; Value: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Adds a custom column, Name, to the Real-Time Scans and WatchList Scans tools, and

populates the column with the numeric value specified in the Value parameter. You

can sort the symbols in the Scan tools by clicking on the heading of your custom
columns.

Remarks

e The Value displayed in the custom column is fixed to 2 decimals of significance.
Use AddScanColumnStr to display more precision.

e Typically, you'll want to provide the value of one or more indicators on the final
bar of the chart, i.e. the signal bar. The data is displayed in the Custom Columns
View after running a WatchList Scan, or as a new column in the Scan Results for
Real-Time Scans.

e AddScanColumn should not be used conditionally. Since all scanned symbols are
always added to the Custom Columns view of the Scans tool, adding values
conditionally would create variable length records, which can cause printing
incompatibilities.

Example

{ Add the nost recent MACD as a custom colum in the WAtchLi st Scan
tool }
var BAR i nteger;
Bar := BarCount - 1;
AddScanCol um(' MACD , MACC(Bar, #C ose));
15.5 AddScanColumnStr

AddScanColumnStr(Name: string; Value: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

System Functions 152

Description

Adds a custom column, NAddame, to the Real-Time Scans and WatchList Scans tools,
and populates the column with the string specified in the Value parameter. You can
sort the symbols in the Scan tools by clicking on the heading of your custom columns.

Remarks

e Use AddScanColumnStr with FormatFloat to control the display precision of a
number.

e Typically, you'll want to provide a string message on the final bar of the chart, i.e.
the signal bar. The data is displayed in the Custom Columns View after running a
WatchList Scan, or as a new column in the Scan Results for Real-Time Scans.

e AddScanColumnStr should not be used conditionally. Since all scanned symbols
are always added to the Custom Columns view of the Scans tool, adding values
conditionally would create variable length records, which can cause printing
incompatibilities.

Example

var C float;

var S: string;

s : = Wat chLi st Nane;

AddScanCol umsStr('"List', s);

{ Show the final closing price with 3 decinmals of precision }
C := PriceC ose(BarCount - 1);
AddScanCol umsStr('C ose', FormatFloat('0.000", C));

15.6 AllowSymbolSearch

AllowSymbolSearch(DataSource: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Specifies the DataSource(s) that will be searched when an external symbol is
requested that is not within the same DataSource as the symbol being executed in the
chart. If you do not call AllowSymbolSearch, Wealth-Lab searches for the external
data in all of your DataSources in alphabetical order. Call AllowSymbolSearch one
or more times in the script to allow only certain DataSources to be searched.

Example

{ Allow the script to search these daily DataSources only and ignore
I ntraday DataSources }

Al | owSynbol Search(' Dow 30");

Al'l owSynbol Search(' Nasdaq 100");

15.7 CreateOleObject

CreateOleObject(ClassName: string): ComVariant;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

153 WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

Creates an instance of an OLE (Object/Linking and Embedding) object with the
specified COM ClassName. The return value of this function should be stored into a
variable of data type ComVariant. Once created, you can call any methods that are
available in the object.

Example

{ Interfacing to a Walth-Lab add-in witten as a COM DLL }

var |ib: ConVariant;

var CustonBeries: integer;

lib := Created eject(' AddOnLi b. W.AJdOn') ;

i b. ExecuteProc(123, |WalthLabAuto);

CustonBeries := CreateSeries;

I'ib. Custom ndi cator(CustontSeries, #C ose, 24, |WalthLabAuto);
Pl ot Seri es(Custonteries, 0, #Red, #Thick);

15.8 GetGlobal

GetGlobal(VariableName: string): Variant;

MChartScripts MSimuScripts OPerfScripts MCMScripts

Description

Retrieves a variant value from the variable VariableName in a global storage area,
which is available to all Wealth-Lab scripts, excluding PerfScripts. Assign values to
the global storage area by using SetGlobal.

Values assigned to the global storage area retain their values between script runs.
You can, for example, set a global variable in a ChartScript and then access the value
in a SimuScript.

Remarks
e If the global variable VariableName does not exist GetGlobal returns Null.

Note: In prior versions of Wealth-Lab, GetGlobal returned 0 for non-existent
global variables. This made it difficult to store strings in a global variables
and test for their existence.

Example

{ Retrieve the BarCount stored in d obal Storage. See Setd obal
exanple }

var MyVar: string;

if Getd obal (' AABarCount') = Null then

begi n
MyVar := Input('Enter a Value:');
Set d obal (' AABar Count', MVar);
end
el se

MyVar := Getd obal (' AABar Count');
ShowMessage(' The value is: ' + MyVar);

15.9 GetScriptName

GetScriptName: string;

MChartScripts XISimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

System Functions 154

Description

Returns the name of the ChartScript that is currently being executed.

Remarks
e In a SimuScript, GetScriptName returns the name of the ChartScript.

e Not valid for SimuScripts used by the $imulator.

Example

var s: string;
s := Get Scri pt Nane;
if s t hen
s = "'"Untitled;
Print('The ChartScript nane is ' + s);

15.10 GetTickCount

GetTickCount: integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the number of milliseconds that the operating system has been operating.
This value is used for benchmarking purposed. By taking the TickCount before and
after an operation, and then subtracting the difference, you can gauge how long an
operation is taking to complete.

Example

var Bar, nl, n2, r, i: integer;
var x: float;
nl := CetTickCount;
X 1= 0;
for i := 30 to BarCount - 1 do
X := X + RSI(Bar, #C ose, 30);
n2 := CetTickCount;
ShowMessage('Loop took ' + IntToStr(n2 - n1) +' nms to complete');

15.11 Input
Input(Caption: string): string;
MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Displays an input dialog where the user can enter a value, which is always returned as
a string type, that is returned by the function. The specified Caption is displayed as a
message to prompt the user for input.

Note: The Input function is not compatible with ChartScript Integrated Debugger
when Stepping.

Example
{ Get the period for an indicator each tinme the ChartScript is executed

}

var Period: integer;
var s: string;

© 2003-2006 WL Systems, Inc.

155

WealthScript Function Reference, Wealth-Lab Developer 4.0

15.12

15.13

s := lnput('Indicator Period?);

Period := StrTolnt(s);

Pl ot Seri esLabel (EMASeri es(#Cl ose, Period), 0, #Blue, #Thick, 'EMA('
+s +'));

IWealthLabAddOn3

IWealthLabAddOn3: COMVariant;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns an instance of Wealth-Lab Developer 4.0's COM Add-On Interface. You can
write add-ins to Wealth-Lab Developer 4.0 in any language capable of producing an
ActiveX (COM) DLL. Your add-ins should accept the IWealthLabAddOn3 interface as
a parameter to their function calls. They can then utilize the methods of the interface
to execute trades and create custom indicators.

For more information on the IWealthLabAddOn3 interface see the Add-On API
article on the Wealth-Lab.com web site.

Example

{ Interfacing to a Walth-Lab add-in witten in Visual Basic }

var |ib: ConVariant;

var CustonBeries: integer;

lib := Created ehject('VBW. VBW.Interface');

l'ib. Execute(|WalthLabAddOn3);

CustonBeries := CreateSeries;

i b. Custom ndi cator(#Cl ose, CustontSeries, 24, |WalthLabAddOn3);
Pl ot Seri es(Custonteries, 0, #Navy, #Thick);

IWealthLabAuto

IWeathLabAuto: COMVariant;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns an instance of Wealth-Lab Developer 2.1's COM Automation Interface. You
can write add-ins to Wealth-Lab Developer 2.1 in any language capable of producing
an ActiveX (COM) DLL. Your add-ins should accept the IWeathLabAuto interface as
a parameter to their function calls. They can then utilize the methods of the interface
to execute trades and create custom indicators.

For more information on the IWealthLabAuto interface see the COM Reference
article on the Wealth-Lab.com web site.

Example

{ Interfacing to a Wealth-Lab 2.1 add-in witten in Visual Basic }
var |ib: Comvariant;

var CustonBeries: integer;

lib := Created ebject('VBW. VBW.I nterface');

i b. Execute(|WalthLabAuto);

CustonBeries := CreateSeries;

I'ib. Custom ndi cator(#Cl ose, CustonSeries, 24, |WalthLabAuto);

Pl ot Seri es(CustonBeries, 0, #Navy, #Thick);

© 2003-2006 WL Systems, Inc.

System Functions 156

15.14

15.15

15.16

IsRealTime

IsRealTime: boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns boolean true if the script is accessing data from a Live Feed. Otherwise the
function returns false.

Example

{ For example, use IsReal Tine to disable LastBar |ogic }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begi n
i f LastPositionActive then
begin
if LastBar(Bar) and (not IsReal Tine) then
Sel | At Cl ose(Bar, LastPosition, 'EQD);
end
el se
begin
{ Entry logic }
end;
end;

Null

Null: variant;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
Returns a Variant "Null" value. See GetGlobal for more information.

PlaySound

PlaySound(FileName: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Plays the sound specified in the FileName parameter. FileName should be a fully-
qualified wave file (*.WAV).

For intraday trading systems that hold stop and/or limit exit signals open for multiple
bars, you may not want to hear an audible Alert for each new bar. Below, we
demonstrate how to play a sound for the entry signal and once only for the bracketed-
order exit signal(s).

Example

{ Be sure to turn off "Alert Triggered from ChartScript Wndow in

Tool s| Opti ons| Sounds }

var Bar, p: integer;

var EntryPrice: float;

const EntrySound = 'C:\Program Fil es\\Walth-Lab, |nc\Walth-Lab
Devel oper 3.0\ Al ert4.wav';

© 2003-2006 WL Systems, Inc.

157 WealthScript Function Reference, Wealth-Lab Developer 4.0

const ExitSound = 'C:\Program Fil es\Walth-Lab, |nc\Walth-Lab
Devel oper 3.0\Alertl.wav';

Pl ot St ops;
for Bar := 20 to BarCount - 1 do
begi n

i f LastPositionActive then

begi n

p := LastPosition;

EntryPrice := PositionEntryPrice(p);

{ Sound exit alert only if the first bar after entry is the last bar
in the chart }
if Bar = BarCount - 1 then
if Bar - PositionEntryBar(p) = 0 then
Pl aySound(Exit Sound);

if not Sell AtStop(Bar + 1, EntryPrice * 0.95, p, '5% StopLoss')

t hen
Sel |AtLimt(Bar + 1, EntryPrice * 1.08, p, '8% ProfitTarget')
end
el se
i f TurnUp(Bar, SMASeries(#Cl ose, 20)) then
begin
BuyAt Market (Bar + 1, '');
if Bar = BarCount - 1 then // Sound entry alert
Pl aySound(EntrySound);
end;
end;
15.17 Print

Print(Value: string);

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Prints the specified string Value into the Debug window.

Remarks

e All messages are printed to the Debug window upon completion of script
processing. Use PrintFlush to immediately force debug strings to appear in the
Debug window.

e The Debug window is cleared at the end of ChartScript processing prior to printing
messages from the queue. Consequently, the window displays only the results
from the most recent ChartScript run.

Example

{ Print the bars where there were SMA crossovers }
if CrossOver(Bar, SMASeries(#Cl ose, 20), SMASeries(#C ose, 60))
t hen

Print(IntToStr(Bar));

15.18 PrintFlush

PrintFlush;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

System Functions 158

Description

Causes any debug strings that have been issued via Print to be immediately displayed
in the Debug window, View|Debug Window (Ctrl+Alt+D). Normally, the debug
strings are visible only after the ChartScript run completes.

Remarks

e Repetitive use of PrintFlush can increase a ChartScript's execution time
significantly.

15.19 PrintStatus

PrintStatus(Value: string);

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Causes the specified string to be immediately displayed in the lower-left status bar of
Wealth-Lab Developer 4.0.

Remarks

e View | Status Bar must be selected from the main menu for the Status Bar to be
visible (default).

Example

var SSYM string;
var W., BAR i nteger;

for W := 0 to WatchLi stCount -1 do
begin
sSym : = Wat chLi st Synbol (W);

PrintStatus('Now Processing ' + sSym);
Set PrinmarySeries(sSym);
for Bar := 20 to BarCount - 1 do
begin
{ ... nore statenents ... }
end;
end;

15.20 RunProgram

RunProgram(ProgramName: string; Wait: boolean);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Executes the specified program, ProgramName. If the Wait parameter is true, the
script resumes executing only after the program terminates. Otherwise the script
continues executing immediately after the program is launched.

Example

ShowMessage(' About to [aunch Notepad ...');
RunProgran(' Notepad.exe', true);
ShowMessage(' Notepad Cl osed!');

© 2003-2006 WL Systems, Inc.

159

WealthScript Function Reference, Wealth-Lab Developer 4.0

15.21 SaveChartlmage

SaveChartlmage(FileName: string; Width: integer; Height: integer; ImageType: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Saves the current chart image to either a Bitmap or a GIF file. Specify the file name
in the first parameter, FileName. Specify how large the resulting image should be by
supplying values to the Width and Height parameters. The last parameter,
ImageType, should contain either 'BMP' or 'GIF' which specifies which image format to
save the chart.

Remarks
e Available from the ChartScript window only.

e Works for Real-Time ChartScript windows as well as for static data.

Saving Multiple Chart Images

The script below demonstrates how you can perform a batch job in WealthScript using
the WL3 COM Automation object ExecuteScript method. Open a new ChartScript
Window (Ctrl+N) and then copy, and paste the code into the Editor. When you click
on a symbol, the ChartScript specified in the ScriptName constant will be executed for
each symbol in the WatchList. Consequently, by placing SaveChartImage in the
ScriptName script ('Glitch Index' here), a chart image will be saved for each symbol.
The name of the resulting file should be variable by symbol so that the same file is not
continuously overwritten.

{ $NO_AUTO_EXECUTE}

const ScriptNane = "ditch Index';
var obj: COWari ant;

var w. integer;

var sym WatchList: string;

Wat chLi st : = Wat chLi st Nane;

obj := Created eObject('WalthLab. W3");
for w:= 0 to WatchLi st Count - 1 do
begi n

sym : = Wat chLi st Synbol (w);
obj . ExecuteScri pt (Scri pt Name, Wt chLi st Nane, sym);
end;

Example

{ Use "as is' or paste at the bottom of any script to enploy the batch
met hod above }

var str: string = GetSynbol + ' ' + IntToStr(CGetDate(BarCount - 1))
+ ' ' + CGetScriptNang;

{ Note! The folder specified here nust exist }
SaveChartlmage(' C:\Data\lmages\' + str + '.dF , 600, 400, '"GAF);

15.22 SetGlobal

SetGlobal(VariableName: string; Value: variant);

MChartScripts MSimuScripts OPerfScripts MCMScripts

Description

© 2003-2006 WL Systems, Inc.

System Functions 160

Allows you to store a variable, VariableName, and its Value in Wealth-Lab's global
storage area. Use GetGlobal to retrieve the Value of the global variable assigned by
SetGlobal.

Remarks

e Variables stored in the global storage area retain their values indefinitely, even
between script calls.

e The name of the variable is specified in the VariableName parameter. If the
variable already exists in the global storage area it will be overwritten.

e Specify the value in the Value parameter. Since the Value parameter is of type
Variant, you can store values of any type (integer, string, float or boolean) in
the global storage area.

Example

{ Store the BarCount by synbol }
var s: string;

s := Get Synmbol + 'Bar Count';
Set d obal (s, BarCount);

15.23 SetOptimizeValue

SetOptimizeValue(OptValue : float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

SetOptimizeValue accepts a single parameter, OptValue, which is used as the "User
Defined" optimization metric. Typically, following the trading loop, you will cycle
through the Positions to calculate some sort of trading metric and pass it as the
OptValue parameter. This calculated value is added to the Optimization Results
tabulations and graphs for both Exhaustive and Monte Carlo techniques, and, when
running MC optimizations you may choose User Defined as the optimization target.

In the example we demonstrate a simple long-only, weighted-moving average
crossover system with an 8% stop loss. The script is ready to optimize over the slow
and fast periods of the moving average, and at the end, it calculates the average
number of days in a trade for the User Defined metric.

Note: To see the optimization results, you must save this script and then Open the
ChartScript for Optimization, Ctrl+T. Then from the Optimization view,
select either Exhaustive or Monte Carlo methods. If Monte Carlo, you can
further choose User Defined as the Optimization Metric, or target. Finally,
click Begin to start the optimization process.

Remarks

e If a WatchList having more than one security is selected for a Portfolio $imulation
Mode optimization (Portfolio $imulation Mode checked in the Optimization Control
frame), the User-Defined value will be displayed as an average value.

Example

{#Opt Var 1 24; 20; 32; 4}

{#Opt Var 2 14; 10; 18; 2}

var Bar: integer;

var Sl owPer, FastPer, Sl owvA, FastMA: integer;

© 2003-2006 WL Systems, Inc.

161 WealthScript Function Reference, Wealth-Lab Developer 4.0

Sl owPer : = #Opt Var 1;

Fast Per := #Opt Var 2;

Sl owVA : = WWMASeri es(#C ose, Sl owPer);
Fast MA : = WMASeri es(#Cl ose, FastPer);
Install StopLoss(8);

Pl ot St ops;

for Bar := SlowPer to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);
i f not LastPositionActive then
begin
if CrossOver(Bar, FastMA, Sl owMA) then
BuyAt Mar ket (Bar + 1, 'CrossedOver');
end
el se
i f CrossUnder(Bar, FastMA, Sl owMA) then
Sel | At Market (Bar + 1, LastPosition, 'CrossedUnder');
end;

{ Calculate Avg Days in Trade as User Defined optimzation netric }
var p, Total Days: integer;

for p :=0 to PositionCount - 1 do

Tot al Days : = Total Days + PositionExitBar(p) - PositionEntryBar(p
)

if PositionCount = 0 then
Set Optim zeVal ue(0.0)
el se
Set Opt i m zeVal ue(Total Days / PositionCount);

15.24 SetPeakTroughMode

SetPeakTroughMode(Mode: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Specifies the way the Peak/Trough functions calculate a reversal amount. You can
base Peak/Trough calculations on a percentage reversal, or a raw value "point"
reversal. The Mode parameter can be one of the following constants:

#AsPercent - Peak/Trough reversals are expressed as percentages (default
behavior)

#AsPoint - Peak/Trough reversals values are calculated based on raw value, i.e.
points

For example, imagine you are calculating Peak/Troughs based on a reversal of 10. In
percentage mode, the underlying Price Series has to move 10 percent higher than the
lowest point in order for a Trough the be recorded. Likewise, prices must move 10
percent lower than a recent high for a Peak to be recorded. If you change the
Peak/Trough mode to #AsPoint the the underlying Price Series must move up or down
10 points rather than 10 percent.

Remarks

The #AsPoint mode is especially useful when calculating Peak/Troughs based on Price
Series that can have zero and negative values. Percentage Peak/Trough reversals
cannot be calculated on such Price Series.

© 2003-2006 WL Systems, Inc.

System Functions 162

Example
{ Draw Peaks/ Troughs of an indicator that can enter the negative range

}

var P, T:. float;
var REV, | NDI CATOR, PANE, PB_, PB, TB: integer;

Rev : = 5;

I ndicator := CMOSeries(#C ose, 20);

Pane := CreatePane(150, true, true);

Pl ot Seri es(Indicator, Pane, #Blue, #Thick);
PB_ := 0;

Set PeakTr oughMode(#AsPoint);
PB : = PeakBar(BarCount - 1, Indicator, Rev);
P := Peak(BarCount - 1, Indicator, Rev);
while (PB <> PB) and (PB > 0) do
begin

TB : = TroughBar(PB, Indicator, Rev);

T := Trough(PB, Indicator, Rev);

DrawLi ne(PB, P, TB, T, Pane, #Red, #Thick);

PB_ : = PB;

PB : = PeakBar(TB, Indicator, Rev);

P := Peak(TB, Indicator, Rev);

DrawLi ne(PB, P, TB, T, Pane, #Red, #Thick);
end;

15.25 ShowMessage

ShowMessage(Message: string);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Displays the specified Message in a dialog box. The ChartScript flow of execution is
suspended until the user clicks on the dialog.

Example

if PositionProfit(LastPosition) < 1000 then
begin
ShowMessage('Tinme to Throw in the Towel!"');
Abort;
end;

15.26 Sleep

Sleep(Milliseconds: integer);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Causes the script to pause processing for the specified number of Milliseconds. You
can abort a script that's sleeping by pressing the Esc key, or selecting Chart|Stop
Execution from the main menu.

Note: The Sleep function is not compatible with ChartScript Integrated Debugger.

Example
Sl eep(2000);

© 2003-2006 WL Systems, Inc.

163

WealthScript Function Reference, Wealth-Lab Developer 4.0

15.27 UseUpdatedEMA

15.28

UseUpdatedEMA(Use: boolean);

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

This function controls which exponent formula is used when computing an EMA
(Exponential Moving Average). By default, Wealth-Lab uses the following formula to
calculate the exponent:

(1/ Periods) * 2

Another common method of calculating the Exponent is:
2/ (1 + Periods)

Passing true as the Use parameter to UseUpdatedEMA will cause Wealth-Lab to use
the second form when computing EMA's. This also affects native indicators that are
based on EMA, such as CADO, DSS, TRIX, MACD, Volatility, etc.

Remarks

e EMA-based native indicators having the same parameters, e.g., EMASer i es(
#C ose, 100) and EMASeri es(#Cl ose, 100), will utilize the UseUpdatedEMA
setting that is active at the time of the first reference to the indicator only. If you
require both settings for the same EMA series, see the example for a solution.

e You can set the default preference for the EMA exponent calculation in the Options
Dialog (F12)|Indicator Calculations. UseUpdatedEMA overrides the default
setting.

Example

{ This script shows the difference between the 2 EMA exponent forns }
var EMASER, COPlI ED, EMASERZ2: i nteger;

UseUpdat edEMA(fal se);

EMASer := EMASeries(#C ose, 12);

Copi ed : = AddSeri esVal ue(#C ose, 0);

UseUpdat edEMA(true);

EMASer2 : = EMASeries(Copied, 12);

Pl ot Seri es(EMASer, 0, #Red, #Thin);

Pl ot Seri es(EMASer2, 0, #Blue, #Thin);

WatchListAddSymbol

WatchListAddSymbol(Name: string; DSName: string; Symbol: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Adds the specified Symbol to the WatchList specified in the Name parameter. The
DSName parameter is optional. If provided, it should contain the name of the
DataSource that contains the Symbol being added. If left blank, the value defaults to
the DataSource of the symbol that was clicked to execute the script.

Remarks

¢ Available from the ChartScript window only.

e The Symbol will not be added to the WatchlList if it already exists - even if it was

© 2003-2006 WL Systems, Inc.

System Functions 164

from a different DataSource.

e WatchListAddSymbol creates the WatchList specified in the Name parameter if it
does not already exist.

Example

{ Create a WatchList of the 5 npbst oversold synbols }
var w. integer;

var |st: TList;

var sym string;

var x: float;

I st := TList.Create;
Wat chLi st Cl ear(' Oversold');

for w:= 0 to WatchListCount - 1 do
begi n
sym : = Wat chLi st Synbol (w);
Set PrimarySeries(sym);
X := RSI(BarCount - 1, #C ose, 20);
| st. AddData(x, sym);
end;

| st. Sort Nuneri c;
for w:=0 to 4 do

begi n

sym:= |st.Data(w);

Wat chLi st AddSynbol (' Oversold', "', sym);
end;

15.29 WatchListClear

WatchListClear(Name: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Clears all of the symbols in the WatchList specified in the Name parameter.

Remarks
e Available from the ChartScript window only.

e The Name string is not case sensitive.

Example

{ Create a WatchList of all symbols where price is
above 200 day novi ng average }
var Bar, w integer;
var sym string;
Wat chLi st Cl ear (' Above 200 Day SMA');
for w:= 0 to WatchListCount - 1 do
begi n
sym : = Wat chLi st Synbol (w);
Set PrimarySeries(sym);
Bar := BarCount - 1,
if PriceCose(Bar) > SMA(Bar, #C ose, 200) then
Wat chLi st AddSynbol (' Above 200 Day SMA', "', sym);
end;

© 2003-2006 WL Systems, Inc.

165 WealthScript Function Reference, Wealth-Lab Developer 4.0

15.30 WatchListCount

WatchListCount: integer;
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Returns the number of symbols available in the currently selected WatchList.

Remarks
¢ Not compatible with real-time ChartScript mode.

e WatchList functions are generally intended for use in the ChartScript Window only.
Exceptions:

1. WatchListCount cannot be used with SetPrimarySeries in the $imulator if you
create trades before calling RestorePrimarySeries. This will cause the
$imulator to stop processing after the first symbol. A ChartScript that does not
trade on secondary symbols can call WatchListCount to create an index
indicator, for example.

2. If the ChartScript does create trades on secondary symbols, you can force End-
of-day Scans to complete an entire scan by selecting "Multi-Symbol Script
Scanning".

Example

{ Create an analysis file for all synbols in the WatchLi st.
Qutput the RSI |evel and net gain after 20 bars }

var n, f, Bar: integer;

var val, change: float;

f := FileCreate('WatchList RSI Analysis.csv');
for n := 0 to WatchLi st Count - 1 do
begin
Set PrimarySeries(WatchListSynbol(n));
Bar := 20;
whil e Bar < BarCount - 20 do
begin
val := RSI(Bar, #C ose, 20);
change := PriceC ose(Bar + 20) - PriceC ose(Bar);
change := (change / PriceClose(Bar)) * 100;
Filewite(f, GetSynbol + '," + IntToStr(Bar) + ',' +
Float ToStr(val) + ',' + FloatToStr(change));
Bar := Bar + 20;
end;
end;

15.31 WatchListDelete

WatchListDelete(Name: string);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description

Deletes the WatchList specified by the Name parameter completely. The Name string
is not case sensitive.

© 2003-2006 WL Systems, Inc.

System Functions 166

Remarks

e After running a ChartScript that contains WatchListDelete, to see the result in the
same ChartScript window you must refresh the DataSource tree by right clicking
within it and selecting Refresh.

e If the specified WatchList does not exist, no action is taken and the statement is
executed without error.

e WatchListDelete will not delete an actual DataSource. However, after passing a
DataSource Name, it will appear to be deleted after refreshing the DataSource tree
in the ChartScript window. This is because Wealth-Lab creates a mirrored
WatchList for each DataSource. You can recover such WatchLists by simply
restarting Wealth-Lab.

Example

{ Delete the WatchLi st created by the WatchLi st AddSynbol exanple }
Wat chLi st Del et e(' Oversol d');

15.32 WatchListName

WatchListName: string;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Returns WatchList name containing the symbol that was clicked to execute the script.

Example
DrawLabel (' The WatchList is: ' + WatchListName, 0);

15.33 WatchListRemoveSymbol

WatchListRemoveSymbol(Name: string; Symbol: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Removes the specified Symbol from the WatchList specified by the Name parameter.

Remarks

¢ Available from the ChartScript window only.

15.34 WatchListSelect

WatchListSelect(WatchList: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Executes the ChartScript on the specified WatchList. If the ChartScript is currently
being executed on a symbol in a WatchList different from the one specified in the
WatchList parameter, this function aborts the script processing, selects the first
symbol in the specified WatchList tree folder, and re-executes the script on this
symbol. If the script is already being executed on a symbol within the selected
WatchList, processing continues normally.

© 2003-2006 WL Systems, Inc.

167

WealthScript Function Reference, Wealth-Lab Developer 4.0

15.35

Remarks
¢ Available from the ChartScript window only.

e Not compatible with real-time ChartScript mode.

Example

{ Make sure the script executes in a specific Intraday WatchLi st }
Wat chLi st Sel ect (' QCharts 15 M nute');

WatchListSymbol
WatchListSymbol(n: integer): string;
MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the specified symbol from the currently selected WatchList. You can use this
function, combined with WatchListCount, to write ChartScripts that act on all of the
symbols in a WatchList.

Remarks

e Not compatible with real-time ChartScript mode.

e WatchList functions are generally intended for use in the ChartScript Window only.
Exceptions:

1. WatchListSymbol cannot be used with SetPrimarySeries in the $imulator if
you create trades before calling RestorePrimarySeries. This will cause the
$imulator to stop processing after the first symbol.

2. If the ChartScript does create trades on secondary symbols, you can force End-
of-day Scans to complete an entire scan by selecting "Multi-Symbol Script
Scanning".

Example
{ The follow ng script executes for each synbol in the WatchList }
var n: integer;
for n := 0 to WatchLi st Count - 1 do

begi n
Set PrimarySeries(WatchListSynbol (n));
{ ...}

end;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 168

16 Technical Indicator Functions

16.1 Overview

Technical Indicators make technical analysis possible. The indicators found in this
reference are native to WealthScript, but by no means include all of the indicators
available to Wealth-Lab users! You have the ability to create your own Custom
Indicators, and many such indicators are uploaded by Wealth-Lab users every week.
These will be downloaded directly to your Studies folder when you perform the
Community|Download ChartScripts action.

To use either native or custom indicators in your ChartScripts, you can use the
QuickPlot utility by dragging and dropping them right from the main Indicators tool
bar. You can also use the Include Manager, Tools|Include Manager (F6), to make
a reference to a custom indicator yourself, although Quickplot adds these references
automatically.

Indicators have two syntax forms. The first form returns the value of the indicator at
a specific Bar number, and the second syntax form returns an integer handle
reference to the indicator's entire Price Series. See Working with Technical Indicator
Functions in the WealthScript Guide.

16.2 AccumbDist

AccumbDist(Bar: integer): float;
AccumDistSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Accumulation/Distribution (created by L. Williams) uses the closing price's proximity
to the high or low to determine if accumulation or distribution is occurring in the
market. The proximity value is multiplied by volume to give more weight to moves
with higher volume.

You can often spot divergences between price action and the AccumDist indicator. For
example, if prices make a new high but the move is not accompanied by sufficient
volume, AccumbDist will fail to make a new high. Divergences can be a sign the trend
is nearing completion.

Interpretation

© 2003-2006 WL Systems, Inc.

169

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.3

The actual value of the AccumDist is unimportant, concentrate on its direction.

e When both price and AccumDist are making higher peaks and higher troughs, the
up trend is likely to continue.

e When both price and AccumDist are making lower peaks and lower troughs, the
down trend is likely to continue.

e When price continues to make higher peaks and AccumDist fails to make higher
peak, the up trend is likely to stall or fail.

e When price continues to make lower troughs and AccumbDist fails to make lower
troughs, the down trend is likely to stall or fail.

e If during a trading range, the AccumbDist is rising then accumulation may be taking
place and is a warning of an upward break out.

e If during a trading range, the AccumbDist is falling then distribution may be taking
place and is a warning of an downward break out.

Calculation

AccunDi st = (((C ose-Low) - (H gh-dose)/(H gh-Low)) x Volune) + |
| = yesterday's AccunDi st val ue

Example

{ Look for a diverging slope of AccunDi st and price }
var BAR i nteger;
for Bar := 10 to BarCount - 1 do
begin
if AccunDist(Bar) > AccunDist(Bar - 10) then
if PriceClose(Bar) < PriceC ose(Bar - 10) then
Set Bar Col or (Bar, #Red);
end;
var AccunDi st Pane: integer;
AccunDi st Pane : = CreatePane(100, false, true);
Pl ot Seri es(AccunDi st Series, AccunDi st Pane, 202, #Thick);
DrawLabel (' AccunDi st', AccunDi st Pane);

ADX

ADX(Bar: integer; Period: integer): float;
ADXSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

ADX stands for Average Directional movement Index and is used to measure the
overall strength of the trend. The ADX indicator is an average of DX values, see DX.
The ADX is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative direction using the DIPlus and DIMinus indicators along with the ADX.

Interpretation
e The ADX is an excellent indicator for showing trend strength. The larger its value

the stronger the current trend. A value above 25 is considered to be a trending
market.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 170

e When the ADX turns down from high values, then the trend maybe ending. It
might be a good time to start closing open positions.

e If the ADX is declining, then the market is becoming less directional, the current
trend is weakening. You should not be trading a trend system.

e When the ADX stays at a low value, the market is considered to be flat or dull. The
longer the ADX stays at a low value the more likely a strong trending move will
occur.

o If after staying low for a lengthy time, the ADX rises by 4 or 5 units, (for example,
from 15 to 20), it gives a strong signal to trade the current trend.

e If the ADX is rising then the market is showing a strengthening trend. The value of
the ADX is proportional to the slope of the trend. The slope of the ADX line is
proportional to the acceleration of the price movement (changing trend slope). If
the trend is a constant slope then the ADX value tends to flatten out.

Calculation

ADX is equivalent to the Wilder's moving average (see WilderMA) of the direction
movement (DX) over the specified Period.

Example

{ Use ADX to determ ne how nuch prices are trending, color bars
accordingly }
var BAR, n: integer;
var x: float;
for Bar := 20 to BarCount - 1 do
begi n
X := ADX(Bar, 20);
n := Round(x / 5);
Set Bar Col or (Bar, n * 100);
end;

16.4 ADXR

ADXR(Bar: integer; Period: integer): float;
ADXRSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts
Description

ADXR stands for Average Directional Movement Index Rating, and is a component of
the Directional Movement System developed by Welles Wilder. This system attempts
to measure the strength of price movement in positive and negative directions, as well
as the overall strength of the trend. The ADXR component is simply a special type of
moving average (WilderMA) applied to the ADX indicator.

The ADXR can be used to determine if price movement is sufficiently directional to be
worth trading. In other words, use the ADXR as a filter to trade with trend following
tools.

Interpretation

¢ ADXR is sometimes used as a signal line. A buy signal occurs when ADX crosses
above ADXR, and a sell occurs when ADX crosses below ADXR.

© 2003-2006 WL Systems, Inc.

171

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.5

e Welles Wilder's rule is to use trend follow systems when ADXR is above 25 and
when ADXR drops below 20 then do not use a trend following system.

e ADXR behaves like an Averaged ADX. See ADX. The ADXR is a lagging indicator
and will give signals after the ADX.

e The ADXR can be used in place of the ADX in the Directional Movement system. It
results in more conservative trading signals.

Calculation

ADXR = (ADX(today) + ADX(n days ago)) / 2

Example

{ Flag ADX/ ADXR CrossOvers }
var BAR i nteger;
for Bar := 20 to BarCount - 1 do
if CrossOver(Bar, ADXSeries(14), ADXRSeries(14)) then
Set Backgr oundCol or (Bar, #RedBkg);

AroonDown

AroonDown(Bar: integer; Series: integer; Period: integer): float;
AroonDownSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Aroon indicator developed by Tushar Chande, indicates if a price is trending or in
range trading. It can also reveal the beginning of a new trend, its strength and also
allows you to anticipate changes from trading ranges to trends. AroonDown and the
AroonUp indicators are used together and combined are called the Aroon indicator.

AroonUp measures how long it has been since prices have recorded a new high within
the specified period. If the current price is higher then the user defined number of
periods before it, then the AroonUp value is %100. In other words, it's a new high for
that period. If a new low occurred during the period then AroonDown will be zero.
Otherwise it returns a percent valve indicating the time since the new high occurred.

AroonDown measures how long it has been since prices have recorded a new low
within the specified period. If the current price is lower then the user defined number
of periods before it, then the AroonDown value is %100. In other words, it's a new low
for that period. If a new high occurred during the period then AroonDown will be zero.
Otherwise it returns a percent valve indicating the time since the new low occurred.

Another indicator, the Aroon Oscillator, can be constructed by subtracting AroonDown
from AroonUp.

Interpretation

Weakness in the market is indicated when AroonDown remains between 0 and 30 for
an extended period of time. If AroonDown and AroonUp follow similar movement
patterns, this is a sign of consolidation. Finally, AroonDown crossing below AroonUp is
considered a bearish sign.

¢ When AroonUp is at 100, a new uptrend may have begun. If it remains persistently
between 70 and 100, and the AroonDown remain between 0 and 30, then a new
uptrend is underway. If AroonUp dips below 50 then the trend as lost momentum.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 172

e When AroonDown is at 100, a new downtrend may have begun. If it remains
persistently between 70 and 100, and the AroonUp remain between 0 and 30, then
a new downtrend is underway. If AroonDown dips below 50 then the trend as lost
momentum.

e Trading ranges and consolidation. When AroonUp and AroonDown move in parallel
(horizontal, sloping up or down) with each other at roughly the same level, then
price is range trading or consolidating.

e New Trend, if the AroonUp crosses above the AroonDown, then a new uptrend may
soon start. Conversely, if AroonDown crosses above the AroonUp, then a new
downtrend may soon start.

Calculation

AroonUp:
100 * (n - (Num of bars since highest high in the last n periods)
)/ n

AroonDown:
100 * (n - (Num of bars since lowest lowin the last n periods))/
n

n = number of periods or bars

Example

{ Flag Bearish Aroon Crossovers }

var Bar: integer;

for Bar := 20 to BarCount - 1 do

begin

if CrossUnder(Bar, AroonDownSeries(#C ose, 20),

AroonUpSeries(#C ose, 20)) then

Set Bar Col or (Bar, #Red);

end;

16.6 AroonUp

AroonUp(Bar: integer; Series: integer; Period: integer): float;
AroonUpSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

See AroonDown 171

Example

{ Flag Bullish Aroon Crossovers }

var Bar: integer;

for Bar := 20 to BarCount - 1 do

begi n

if CrossOver(Bar, AroonDownSeries(#C ose, 20),

AroonUpSeries(#C ose, 20)) then

Set Bar Col or (Bar, #Line);

end;

© 2003-2006 WL Systems, Inc.

173

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.7

ATR

ATR(Bar: integer; Period: integer): float;
ATRSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

The Average True Range is the average of the true ranges over the specified Period.
WealthScript uses the moving average as formulated by Welles Wilder, the indicator's
inventor (see WilderMA and TrueRange). The ATR is a measure of volatility and it
takes into account any gaps in the price movement. Typically the ATR calculation is
based on 14 periods, this can be intraday, daily, weekly or monthly. To measure
recent volatility use a shorter average, 2 to 10 periods. For longer term volatility use
20 to 50 periods.

Interpretation

e An expanding ATR indicates increased volatility in the market. The range of each
bar is getting larger. ATR often peaks at major tops and bottoms. High ATR values
usually result from a sharp advance or decline and are unlikely to be sustained for
extended periods.

e A low average true range value indicates a series of periods with small ranges
(quiet days). These low ATR values are often found during extended sideways price
action, thus lower volatility. A prolonged period of low ATR values may indicate a
consolidation area and the beginning of a continuation move or reversal.

e ATR is very useful for stops or entry triggers, as it allows for changes in volatility.
Whereas fixed dollar, points or percentage stops will not allow for volatility. The
ATR stop will adapt to sharp price moves or consolidation areas, and trigger on an
abnormal price movement in either area. Use a multiple of ATR, such as 1.5 x
ATR(5 period) to catch these abnormal price moves.

Calculation

Average True Range is calculated by applying Wilder's Moving Average to True Range
over the period specified , see WilderMA indicator for more information:

ATR = (Previous ATR* ((n- 1) +TR) / n
where,

ATR = Average True Range
n = number of periods or bars
TR = True Range, (see TrueRange indicator)

Example

{ Plot ATRs in decreasing length if increasing blue intensity }
var i, ATRPane: integer;
ATRPane := CreatePane(100, TRUE, TRUE);
for i :=1to 9 do

Pl ot Series(ATRSeries(i * 2), ATRPane, 10 - i, #Thin);
DrawText('ATR from2 to 18, ATRPane, 4, 4, 006, 8);

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 174

16.8 ATRP
ATRP(Bar: integer; Period: integer): float;
ATRPSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

ATRP expresses the Average True Range, or ATR, as a percentage of the closing price
of the specified Bar. ATRP provides a good picture of current volatility.

Calculation
ATRP(Bar, Period) = 100 * ATR(Bar, Period) / Priced ose(Bar)

where,
ATR = Average True Range (see indicator)

Example

{ Short when price hits the H gh of the previous bar * (1 + ATRP/ 100)
Cover on trailing stop of the sane series }
var Bar, hATRP, hATRP_H, p: integer;

{ Convert to fractional percentage, e.g., 3.5%-> 0.035 }
hATRP : = Divi deSeriesVal ue(ATRPSeries(5), 100);

hATRP : = AddSeriesVal ue(hATRP, 1.0);

hATRP_H : = Ml tiplySeries(#H gh, hATRP);

{ Delay indicator plot by 1 bar to observe crossovers }
Pl ot Seri esLabel (O fsetSeries(hATRP_H, -1), 0, #Blue, #Dotted, 'ATRP_H

+ 2%);
Pl ot St ops;
for Bar := 5 to BarCount - 1 do
begin
i f LastPositionActive then
begin
p := LastPosition;
CoverAtTrailingStop(Bar + 1, @ATRP_H Bar], p, '')
end
el se
ShortAtLimt(Bar + 1, @ATRP H Bar], '');
end;

16.9 BBandLower

BBandLower(Bar: integer; Series: integer; Period: integer; StdDev: float): float;
BBandLowerSeries(Series: integer; Period: integer; StdDev: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Bollinger Bands are a type of price envelope developed by John Bollinger. Bollinger
Bands are envelopes that are plotted at a standard deviation level above and below a
simple moving average of the price. Because the distance of the bands is based on
standard deviation, they adjust to volatility swings in the underlying price.

Bollinger Bands accept 2 parameters, Period and Standard Deviations, StdDev. The
recommended values are 20 for period, and 2 for standard deviations, although other
combinations offer effective results as well.

© 2003-2006 WL Systems, Inc.

175

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.10

Bollinger bands help determine whether prices are high or low on a relative basis.
They are used in pairs, both upper and lower bands and in conjunction with a moving
average. Further, the pair of bands are not intended to be used on their own. Use
them to confirm signals given with other indicators. For example, RSI and Bollinger
bands are a good combination.

Interpretation

e When the bands tighten as volatility decreases, expect a sharp move in price. This
may begin a trending move. Watch out for a false move in opposite direction which
reverses before the proper trend begins.

e When the bands separated by an unusual large amount, volatility increases and any
trend that may be in place may be ending.

e Prices normally have a tendency to bounce within the bands envelope, touching one
band then moving to the other band. You can use this for profit targets. For
example, if prices bounces of the lower band then cross above the moving average
the upper band then becomes the profit target.

e Price can exceed or hug a band envelope for prolonged periods during strong
trends. On divergence with a momentum oscillator you should consider taking
profits.

e A strong trend continuation can be expected when the price moves out of the
bands. However if prices move immediately back inside the band, then the
suggested strength is negated.

Calculation

First calculate and plot a simple moving average. Calculate the standard deviation
using the same data used in the simple moving average. For the upper band, add the
standard deviation to the moving average, for lower band, subtract the standard
deviation from the moving average.

Typical values used:

Short term: 10 day moving average, bands at 1.5 standard deviations.
Medium term: 20 day moving average, bands at 2 standard deviations.
Long term: 50 day moving average, bands at 2.5 standard deviations.

Example

{ Flag bars that have penetrated the | ower BBand }
var Bar: integer;
Pl ot Seri es(BBandLower Series(#C ose, 10, 1.50), 0, 205, #Thick);
for Bar := 10 to BarCount - 1 do
if PriceLow Bar) < BBandLower(Bar, #C ose, 10, 1.50) then
Set Bar Col or (Bar, #Red);

BBandUpper

BBandUpper(Bar: integer; Series: integer; Period: integer; StdDev: float): float;
BBandUpperSeries(Series: integer; Period: integer; StdDev: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description
See BBandLower/i74

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 176

Example

{ Flag bars that have penetrated the upper BBand }
var Bar: integer;
Pl ot Seri es(BBandUpper Series(#C ose, 10, 1.50), 0, 205, #Thick);
for Bar := 10 to BarCount - 1 do
if PriceH gh(Bar) > BBandUpper(Bar, #C ose, 10, 1.50) then
Set Bar Col or (Bar, 050);

16.11 BOP

BOP(Bar: integer): float;
BOPSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Balance of Power, created by Igor Livshin, is an indicator that captures the struggles
of bulls vs. bears throughout the trading day. It assigns scores to both bulls and bears
based on how much they were able to move prices throughout the trading day.

Interpretation

e Balance of Power is normally smoothed with a moving average. Livshin
recommends a 14 bar simple moving average, but different periods and moving
average types can be used for different markets.

e During Bull markets, the indicator's tops usually cluster around the upper level of
the range. This is reversed during Bear markets.

e You can look for divergences between the indicator and the underlying price to
spot potential trend reversals.
Calculation
Balance of Power is the result of the following simple formula:
BOP = (C- O/(H- L)
where,
C = Close, O = Open, H = High and L = Low

Example

{ Plot a snpothed Bal ance of Power bel ow Vol une }
var BOPSnoot hed, BOPPane: i nteger;

BOPSnmoot hed : = SMASeri es(BOPSeries, 20);
BOPPane : = CreatePane(80, false, true);

Pl ot Seri es(BOPSnmpot hed, BOPPane, 642, #Thick);

16.12 CADO

CADO(Bar: integer): float;
CADOQSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

177

WealthScript Function Reference, Wealth-Lab Developer 4.0

The Chaikin Oscillator allows us to analyze accumulation and distribution in the
convenient form of an oscillator. The principle behind this oscillator is the nearer the
close is to the high, the more accumulation taken place. Conversely the nearer the
close is to the low, the more distribution is taken place. Further, healthy rallies and
declines are accompanied by increasing volume levels, conversely price tends to
decline as volume dries up. The Chaikin Oscillator allows you to compare price action
to volume flow, to help determine market tops and bottoms.

Interpretation

e The best Chaikin Oscillator sell signal is when price action develops a higher high
into overbought zones and the Chaikin Oscillator diverges with a lower high and
begins to fall. Price may remain in overbought zones during strong trends.

e The best Chaikin Oscillator buy signal is when price action develops a lower low into
oversold zones and the Chaikin Oscillator diverges with a higher low and begins to
rise. Price may remain in oversold zones during strong trends.

e You can also use the Chaikin Oscillator to assist entry into existing trends. In this
case you look for a change of direction of the oscillator for buy or sell signal. For
example, if you have confirmed strong uptrend and the Chaikin Oscillator turns up
from a negative value, then buy the dip in price action.

Calculation

The Chaikin Oscillator is created by subtracting a 10-period EMA of
Accumulation/Distribution from a 3-period EMA of Accumulation/Distribution.

CADO = 3 period EMA(AccunDist()) - 10 period EMA (AccunDist())

where,

CADO = Chaikin Oscillator
EMA = Exponential Moving Average
AccumDist = Accumulation/Distribution indicator

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
CADO at runtime. Choose the default method for calculating the EMA
exponent in the Indicator Calculations section of the Options dialog.

Example

{ Use RSI to |look for divergences between price and CADO }
var Bar, Diff, CADOPANE, RSIPANE, RSIPRICE, RSICADO, DiffPane: integer;

CADOPane : = CreatePane(80, true, true);
Pl ot Seri es(CADCSeri es, CADOPane, 520, #ThickHi st);
DrawLabel (' CADO , CADOPane);

RSI Pane : = CreatePane(100, true, true);

RSI Price := RSI Series(#C ose, 10);

RSI Cado : = RSI Series(CADOSeries, 10);

Pl ot Series(RSIPrice, RSIPane, #Teal, #Thin);
Pl ot Seri es(RSI Cado, RSl Pane, 520, #Thin);
DrawLabel (' RSI of Price and CADO , RSl Pane);

Diff := SubtractSeries(RSIPrice, RSICado);
D ff Pane : = CreatePane(100, true, true);
PlotSeries(Diff, DiffPane, #G ay, #Hi stogran);

for Bar := 10 to BarCount - 1 do
begi n

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 178

if GetSeriesValue(Bar, Diff) > 30 then
Set Bar Col or (Bar, #Red)
else if CGetSeriesValue(Bar, Diff) < -30 then
Set Bar Col or (Bar, 050);
end;

16.13 CCI

CCI(Bar: integer; Period: integer): float;
CCISeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

The Commodity Channel Index (CCI) developed by Lambert, is designed to identify
and trade cyclical turns in commodities. It assumes the commodity or stock moves in
cycles. Lambert recommends using 1/3 of the cycle as the calculation period. The
cycle is considered an interval of low-to-low or high-to-high. Commodities can cycle
around 60 days, thus the period would be 20 days. Signals are given when CCI moves
into the +100 or -100 regions.

Interpretation

e When the CCI moves above +100, then a new strong uptrend is beginning, buy
here, close the position on CCI falling below +100. Use trending indicators or other
technical analysis methods to confirm.

e When the CCI moves below -100, then a new strong downtrend is beginning, sell
here, close the position on CCI rising above -100. Use trending indicators or other
technical analysis methods to confirm.

e If underlying prices make a new high or low that isn't confirmed by the CCI, this
divergence can signal a price reversal. CSI divergences from price indicates very
strong buy or sell signal.

e Look for oversold levels below -100 and overbought levels above +100. These
normally occur before the underlying price chart forms a top or a bottom.

Calculation

The Commodity Channel Index (CCI) is calculated by determining the difference
between the mean price of a security and the average of the means over the period
chosen. This difference is compared to the average difference over the time period.
Comparing the differences of the averages allows for the commodities volatility. The
result is multiplied by a constant to ensure that most values fall within the standard
range of +/- 100.

Ca = (AveP - SMA of AveP) / (0.015 * Mean Deviation)

where,

CCI = Commodity Channel Index
AveP = Average Price = (High + Low + Close) / 3

The 0.015 constant ensures 70 to 80 percent of CCI values fall within the +100 to -
100 range.

Example

{ Col or bars oversol d/ overbought based on CCl |evel }
var Bar, CClPane: integer;

© 2003-2006 WL Systems, Inc.

179 WealthScript Function Reference, Wealth-Lab Developer 4.0

CCl Pane : = CreatePane(80, true, true);
Pl ot Series(CCl Series(10), CCl Pane, 505, #Hi stogran);
DrawLabel (' CClI (10)', CClPane);
for Bar := 10 to BarCount - 1 do
begi n

if CCl(Bar, 10) > 100 then

Set Bar Col or (Bar, #Red)

else if CCl(Bar, 10) < -100 then

Set Bar Col or (Bar, #Geen);
end;

16.14 CMF

CMF(Bar, Period: integer): float;
CMFSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Chaikin Money Flow (CMF) is a volume weighted average of Accumulation/Distribution
over the specified period. The standard CMF period is 21 days. The principle behind
the Chaikin Money Flow, is the nearer the close is to the high, the more accumulation
has taken place. Conversely the nearer the close is to the low, the more distribution
has taken place. If the price action consistently closes above the bar's midpoint on
increasing volume then the Chaikin Money Flow will be positive. Conversely, if the
price action consistently closes below the bar's midpoint on increasing volume, then
the Chaikin Money Flow will be a negative value.

Interpretation

e A CMF sell signal occurs when price action develops a higher high into overbought
zones and the CMF diverges with a lower high and begins to fall.

e A CMF buy signal occurs when price action develops a lower low into oversold zones
and the CMF diverges with a higher low and begins to rise.

¢ A CMF value above the zero line is a sign of strength in the market, and a value
below the zero line is a sign of weakness in the market.

e The Chaikin Money Flow provides excellent breakout confirmation. Wait for the CMF
to confirm the breakout direction of price action through trendlines or support and
resistance lines. For example, if price breaks upwards through resistance then wait
for the CMF to have a positive value, thus confirming the break out direction.

Calculation

CW = n-day Sumof ((((C-L) - (H-CQ)/ (H- L)) x Vol) /I n-
day Sum of Vol

where,
n = number of periods, typically 21
H = high
L = low
C = close

Vol = volume

Example

{ Use strength of CMF above zero to color bars }
var Bar, CMFPane: integer;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 180

var x: float;
CVFPane : = CreatePane(80, true, true);
Pl ot Series(CMFSeries(20), CMFPane, 509, #Histogram);
DrawLabel (' CVF(20)', CMFPane);
for Bar := 20 to BarCount - 1 do
begin
x := CVF(Bar, 20) * 20;
if x>0 then
Set Bar Col or (Bar, Round(x));
end;

16.15 CMO

CMO(Bar: integer; Series: integer; Period: integer): float;
CMOSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Chande Momentum Oscillator is similar to RSI or Stochastics. It is calculated by
dividing the sum of up day and down day activity into the difference of up day and
down day activity. The result is then multiplied by 100 to arrive at an indicator that
oscillates between -100 and 100. A typical value for number of periods, Period, for
the CMO is 20.

Interpretation

e CMO reaches extreme levels at 50 for overbought and -50 for oversold. You can
also look for signals based on the CMO crossing above and below a signal line
composed of a 9 period moving average of the 20 period CMO.

e CMO measures the trend strength, the higher the CMO value the stronger the
trend, whereas low CMO values indicate sideways trading ranges.

e If underlying prices make a new high or low that isn't confirmed by the CMO this
divergence can signal a price reversal.

e CMO often forms chart patterns which may not show on the underlying price chart,
such as double tops and bottoms and trendlines. Also look for support or resistance
on the CMO.

Calculation
CMO =100 * ((Su - Sd)/(Su+ sd))

where,

Su = Sum of prices on up days for the specified Period
Sd = Sum of prices on down days for the specified Period

Example

{ This sinple system buys when CMO i s oversold,
and sells when CMO i s overbought }
var Bar: integer;

for Bar := 20 to BarCount - 1 do
begi n
if not LastPositionActive then
begi n

if CMC(Bar, #Close, 20) < -55 then
BuyAt Market (Bar + 1, 'CMO);
end

© 2003-2006 WL Systems, Inc.

181

WealthScript Function Reference, Wealth-Lab Developer 4.0

el se
begi n
if CMC(Bar, #Close, 20) > 45 then
Sel | At Market (Bar + 1, LastPosition, 'CMO);
end;
end;

16.16 CumDown

CumbDown(Bar: integer; Series: integer; Period: integer): float;
CumbDownSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

CumDown lets you test whether a specific number of consecutive bars have elapsed
where the prices are less than their value a certain number of bars ago. It was created
to make it easier to implement systems such as TD Sequential (by Thomas Demark).
The TD Sequential setup requires 9 consecutive bars where the closing price is lower
than the closing price 4 bars ago.

The complete TD system encompasses both entry and exit strategies and an extensive
number of TD indicators. The CumUp and CumDown indicators are use to find setup
conditions indicating overbought and oversold market conditions. They are designed
to anticipate trend reversals. The CumUp looks for a number new high periods with
only few low periods. The CumDown looks for a number of new low periods with only a
few high periods.

In Candles sticks a new high or low is called Record Sessions. Candle theory, suggest
if you have 8 to 10 near record sessions then the proceeding trend is due for a
reversal. Record sessions count the bars slightly different to CumbDown and CumUp.

Interpretation

There are three stages to a TD Sequential system, the Setup, the Intersection, and
the Count down. After each stage is triggered move onto the next stage. The following
for is for oversold markets.

e The buy Setup consist of a series of at least nine consecutive closes less than the
close four trading bars earlier. This indicates a possible oversold market.

e The buy Intersection, look for the high of bar 8 of the buy setup to be greater than
or equal to the low of bars 5, 4, 3, 2 or 1 of the buy setup. If this is not fulfilled,
then each successive price bar is compared until its high is greater than or equal to
the low of the price bar three or more price bars earlier back to bar 1 of the buy
setup. Protects against run away price action.

e The buy Countdown consists of a series of 13 successive closes less than or equal to
the low two price bars earlier. Once that has been accomplished, the market
generally is in a low-risk buy entry zone. Good time to go long.

In a similar manner, use CumUp to detect overbought conditions.

Calculation

CumDown is a running count of the number of bars whose Series value is below its
delayed Series; in other words, Series offset forward by the Period. The count is reset
to zero when the Series is above its offset series. Run the following ChartScript for a
visual clarification:

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 182

{ CumDown cal cul ati on deno }
const L = 5;
var Bar, n: integer;

DrawLabel (' CumDown(#Low,' + IntToStr(L) + ")", 0);
Pl ot Seri esLabel (O fset Series(#Low, -L), 0, #Blue, #Dotted,
"Offset(#Low, -' + IntToStr(L) + ')");
for Bar := L to BarCount - 1 do
begin
n := Trunc(CumDown(Bar, #lLow, L));
Annot ateBar(IntToStr(n), Bar, false, 0, 8);
end;

Notice that as long as the Series, #Low, is below its CumDown-period offset series,
CumbDown is incremented. It is reset to 0 as soon as the Series rises above its offset.

Example

{ Highlight extrene noves down }
var Bar, n: integer;

for Bar := 0 to BarCount - 1 do

begin
n := Trunc(CumDown(Bar, #Close, 3));
if n>9 then

n:=9;

Set Bar Col or (Bar, n * 100);

end;

16.17 CumUp

CumUp(Bar: integer; Series: integer; Period: integer): float;
CumUpSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

CumUp lets you test whether a specific number of consecutive bars have elapsed
where the prices are greater than their value a certain number of bars ago. Refer to
CumbDownlsl for additional information.

Calculation

CumUp is a running count of the number of bars whose Series value is above its
delayed Series; in other words, Series offset forward by the Period. The count is reset
to zero when the Series is below its offset series. Run the following ChartScript for a
visual clarification:

{ Cump cal cul ati on deno }
const L = 5;
var Bar, n: integer;

DrawLabel (' CumJp(#High,' + IntToStr(L) + ')', 0);
Pl ot Seri esLabel (O fsetSeries(#H gh, -L), 0, #Blue, #Dotted,
"Offset(#Hi gh, -' + IntToStr(L) + ")");
for Bar := L to BarCount - 1 do
begin
n := Trunc(CumJp(Bar, #H gh, L));
Annot ateBar(IntToStr(n), Bar, true, 0, 8);
end;

Notice that as long as the Series, #High, is above its CumUp-period offset series,

© 2003-2006 WL Systems, Inc.

183 WealthScript Function Reference, Wealth-Lab Developer 4.0
CumUp is incremented. It is reset to 0 as soon as the Series falls below its offset.
Example

{ Highlight extrene noves up }
var Bar, n: integer;
for Bar := 0 to BarCount - 1 do
begin
n := Trunc(CumJp(Bar, #Close, 3));
if n>9 then
n:=9;
Set Bar Col or (Bar, n * 10);
end;
16.18 DIMinus

DIMinus(Bar: integer; Period: integer): float;
DIMinusSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

DIMinus is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative directions, as well as the overall strength of the trend. DIPIus is normally
used with the DIMinus, DX and ADX indicators and typically uses 14 periods.

The DIMinus value represents downward price movement as a percentage of true
range. The more each down bar's price is equal to the true range, the larger the value
of the DIMinus. The DIPlus and the DIMinus are not mirror images.

Interpretation

e DIMinus measures a market's negative directional movement. If DIMinus is greater
then DIPlus, prices have a stronger negative directional movement.

e If prices fall for the number of periods specified then the DIMinus would be a high
value and the DIPlus value would be near zero.

e If prices rise for the number of periods specified then the DIMinus value would be
near zero and DIPlus would have a high value.

e If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values.

e The greater the difference between the DIPlus and DIMinus the stronger the trend.
The DX indicator takes advantage of this.

Calculation
-DI = Round((-DM/ TR)* 100)
where,
-DI = DIMinus
TR = True Range of current bar
The -DI is then smoothed over the Period specified, the same way as a simple moving
average, and, -DM is calculated as follows:

(i) For up trending days, -DM = zero
(ii) For down trending days, -DM = yesterday's low - today's low

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 184

(iii) For inside days, -DM = zero

(iv) For outside days, if yesterday's low - today's low, is greater than today's high-
yesterday's high, then -MD = yesterday's low - today's low, otherwise -DM =
zero

(v) For upwards gap days, -DM = zero

(vi) For downwards gap days, -DM = yesterday's low - today's low

Example

{ Color bars green when DI+ > DI-, otherwi se color themred }
var Bar: integer;
var ADXPane: i nteger;
ADXPane := CreatePane(100, true, true);
Pl ot Series(DI M nusSeries(14), ADXPane, 900, #Thick);
DrawLabel ("'DIM nus(14)', ADXPane);
Pl ot Series(DI PlusSeries(14), ADXPane, 050, #Thick);
DrawLabel ("DIPlus(14)', ADXPane);
for Bar := 14 to BarCount - 1 do
begin

if DIPlus(Bar, 14) > DIMnus(Bar, 14) then

Set Bar Col or (Bar, #G een)

el se

Set Bar Col or (Bar, #Red);
end;

16.19 DIPlus

DIPlus(Bar: integer; Period: integer): float;
DIPlusSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

DIPlus is a component of the Directional Movement System developed by Welles
Wilder. This system attempts to measure the strength of price movement in positive
and negative directions, as well as the overall strength of the trend. DIPIus is normally
used with the DIMinus, DX and ADX indicators and typically uses 14 periods.

The DIPlus value represents upward price movement as a percentage of true range.
The more each up bar's price is equal to the true range, the larger the value of the
DIPlus. The DIPlus and the DIMinus are not mirror images.

Interpretation

e DIPlus measures a market's positive directional movement. If DIPlus is greater then
DIMinus, prices have a stronger positive directional movement.

e If prices rise for the number of periods specified then the DIPlus would be a high
value and the DIMinus value would be near zero.

e If prices fall for the number of periods specified then the DIPlus value would be
near zero and DIMinus would have a high value.

e If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values.

e The greater the difference between the DIPlus and DIMinus the stronger the trend.
The DX indicator takes advantage of this.

Calculation

© 2003-2006 WL Systems, Inc.

185

WealthScript Function Reference, Wealth-Lab Developer 4.0

+Dl = Round((+DM/ TR) * 100)

where,

DI+ = DIPlus
TR = True Range of current bar

The +DI is then smoothed over the period specified, the same way as a simple moving
average, and +DM is calculated as follows:

(i) For up trending days, +DM = today's high - yesterday's high

(ii) For down trending days, +DM = zero

(iii) For inside days, +DM = zero

(iv) For outside days, if today's high - yesterday's high, is greater than yesterday's
low- today's low, then +MD = today's high - yesterday's high, otherwise +DM
= zero

(v) For upwards gap days, +DM = today's high - yesterday's high

(vi) For downwards gap days, +DM = zero

Example

{ Flag bars with dotted |ines when D + is above 40 }
var Bar: integer;
var ADXPane: i nteger;
ADXPane := CreatePane(100, true, true);
Pl ot Series(DI PlusSeries(14), ADXPane, 050, #Thick);
DrawLabel ("DIPlus(14)', ADXPane);
for Bar := 14 to BarCount - 1 do
begin

if DIPlus(Bar, 14) > 40 then

DrawLi ne(Bar, PriceLow Bar), Bar, 0, 0, #G een, #Dotted);

end;

16.20 DSS

DSS(Bar: integer; Periodl: integer; Period2: integer; StochPeriod: integer): float;
DSSSeries(Periodl: integer; Period2: integer; StochPeriod: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

The Double Smoothed Stochastic indicator was created by William Blau. It applies
Exponential Moving Averages (EMAs) of two different periods to a standard Stochastic
% K (StochK). The components that construct the Stochastic Oscillator are first
smoothed with the two EMAs. Then, the smoothed components are plugged into the
standard Stochastic formula to calculate the indicator.

Interpretation

DSS ranges from 0 to 100, like the standard Stochastic Oscillator. The same rules of
interpretation that you use for Stochastics can be applied to DSS, although DSS offers
a much smoother curve than the raw Stochastic.

Calculation

HH = Hi ghest High in Look back Period
LL = Lowest Low in Look back Peri od
CL =dCdose mnus LL

HL = HH mnus LL

CL(2) = EMA(CL, Period2)

HL(2) = EMA(HL, Period2)

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 186

CL(1) = EMA(CL(2), Periodl)
HL(1) + EMA(HL(2), Periodl)

DSS = (GL(1) / HL(1)) * 100
Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as DSS.

Example

{ Buy when DSS turns up from an oversold |evel }

var Bar, DSSPane: integer;

DSSPane : = CreatePane(100, true, true);

Pl ot Seri es(DSSSeries(10, 20, 5), DSSPane, 905, #Thick);
DrawLabel (' DSS(10, 20, 5)', DSSPane);

for Bar := 20 to BarCount - 1 do
begin
if not LastPositionActive then
begin

if TurnUp(Bar, DSSSeries(10, 20, 5)) then
if DSS(Bar - 1, 10, 20, 5) < 24 then
BuyAt Market (Bar + 1, 'DSS);
end
el se
begin
i f TurnDown(Bar, DSSSeries(10, 20, 5)) then
Sel | At Mar ket (Bar + 1, LastPosition, 'DSS);
end;
end;

16.21 DX

DX(Bar: integer; Period: integer): float;
DXSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

DX is a component of the Directional Movement System developed by Welles Wilder.
This system attempts to measure the strength of price movement in positive and
negative directions, as well as the overall strength of the trend. The DX is used in
calculating the ADX indicator which is normally used with the DIPlus and DIMinus
indicators. Typically it uses 14 periods in its calculations. Normally you would not use
the DX indicator as it whipsaws, use the ADX or ADXR.

Interpretation

e DX measures the trendiness of a market, and ranges from 0 to 100. If the Trend is
strong then the spread between the two smoothed directional lines, (DIPlus and
DIMinus) increases and the DX value increases. The higher the DX, the more
directional movement present in the market.

e If prices rise for the number of periods specified then the DIMinus value would be
near zero and DIPlus would have a high value. This very directional upwards price
movement results in a high DX value.

e If prices fall for the number of periods specified then the DIMinus would be a high
value and the DIPlus value would be near zero. This very directional downwards
price movement result in a high DX value.

e If prices fluctuate for the number of periods specified, like in a trading range, then
DIPlus and DIMinus will have similar values. This non-directional sideways price
movements results in a low DX value.

© 2003-2006 WL Systems, Inc.

187 WealthScript Function Reference, Wealth-Lab Developer 4.0

Calculation
DX = Round(100 * |DIPlus - DOMnus| / |DIPlus + DI Mnus|)

Example
{ Show how Average Directional Mvenent (ADX) relates to DX on the
chart }
var ADXPane: i nteger;
ADXPane := CreatePane(100, true, true);
Pl ot Series(DXSeries(20), ADXPane, 555, #ThickH st);
DrawLabel ("DX(20)', ADXPane);
Pl ot Seri es(ADXSeries(20), ADXPane, 009, #Thick);
DrawLabel (" ADX(20)', ADXPane);

16.22 EMA

EMA(Bar: integer; Series: integer; Period: integer): float;
EMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

EMA returns the Exponential Moving Average of the specified Period. EMA is similar to
Simple Moving Average (SMA), in that it averages the data over a period of time.
However, whereas SMA just calculates a straight average of the data, EMA applies
more weight to the data that is more current. The most weight is placed on the most
recent data point. Because of the way it's calculated, EMA will follow prices more
closely than a corresponding SMA.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
CADO, EMA, TRIX, etc.

Interpretation

Use the same rules that we apply to SMA when interpreting EMA. Keep in mind,
though, that EMA is generally more sensitive to price movement. This can be a
double-edged sword. On the one hand, it can get you into trends a bit earlier than
an SMA would. On the other hand, the EMA will probably experience more
whipsaws than a corresponding SMA.

Use the EMA to determine trend direction, and trade in that direction. When the
EMA rises then buy when prices dip near or a bit below the EMA. When the EMA
falls then sell when prices rally towards or a bit above the EMA.

Moving averages can also indicate support and resistance areas. A rising EMA
tends to support the price action and a falling EMA tends to provide resistance to
price action. This reinforces the idea of buying when price is near the rising EMA or
selling when price is near the falling EMA.

All Moving Averages, including the EMA are not designed to get you into a trade at
the exact bottom and out again at the exact top. They tend to ensure your trading
in the general direction of the trend, but with a delay at the entry and exit. The
EMA has a shorter delay than the SMA with the same period.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 188

Calculation

You should notice how the EMA use the previous value of the EMA in its calculation,
this means the EMA includes all the price data within its current value. The newest
price data has the most impact on the Moving Average and the oldest prices data has
only a minimal impact.

EMM=(Kx (C-P)) +P

where,

C = Current Price
P = Previous periods EMA (A SMA is used for the first periods calculations)
K = Exponential smoothing constant

The smoothing constant K, applies appropriate weight to the most recent price. It uses
the number of periods specified in the moving average. With wealth Lab you have a
choice of two methods for calculating the smoothing constant.

Two similar but not equivalent formulas are available for calculating the exponent;
Wealth-Lab's original method (from Pring's Technical Analysis Explained):

K=(1/ Periods) * 2

and perhaps a more common method, which is referred to as the "Updated Method":
K=21/ (1+ Periods)

You can choose which is the default method in the Indicator Calculations section of the
Options dialog. Additionally, by passing true or false to the UseUpdatedEMA
function you can control which method is used at runtime. Note that the formula in
effect also affects native indicators that are based on EMA, such as CADO, TRIX, etc.

Example

{ Dual EMA CrossOver System}

var BAR, P: integer;

{ UseUpdat edEVMA(true); } {Aternate snpothing exponent}
Pl ot Seri es(EMASeries(#Cl ose, 60), 0, 002, #Thick);
DrawLabel (" EMA(Close, 60)', 0);

Pl ot Seri es(EMASeries(#C ose, 120), 0, 202, #Thin);
DrawLabel (' EMA(O ose, 120)', 0);

for Bar := 120 to BarCount - 1 do

begi n
i f not LastPositionActive then
begi n
if CrossOver(Bar, EMASeries(#Cl ose, 60), EMASeries(#C ose, 120
)) then
BuyAt Market (Bar + 1, '');
end
el se
begin
i f CrossUnder(Bar, EMASeries(#Cl ose, 60), EMASeries(#C ose, 120
)) then
Sel | At Market (Bar + 1, LastPosition, '');
end;
end;

© 2003-2006 WL Systems, Inc.

189 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.23 EMMinus

EMMinus(Bar: integer; Series: integer; Period: integer): float;
EMMinusSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Markets that are experiencing rising trends frequently make new highs, and those in
falling trends new lows. The Extreme Motion Index is a way of measuring a market's
trend strength by counting the frequency of new highs and lows in a given period.
EM- is the percentage of bars that have made new lows within the specified Period.

Interpretation

e When EM- rises from zero this is an indication that a worthwhile downtrend may be
in the making. You can take a trend-following position at this point and exit once
the indicator reaches a predetermined overbought level.

e Once EM- crosses 20 prices tend to follow through and a profit target or trailing
stop (for short orders) often works well to capture gains.

e The crossover of EM+ and EM- can also be used as trend confirmation indicators.

Calculation

EMMinus is simply the percentage of bars that have achieved new lows within the
specified lookback period. Consider, for example, the EMMinus with a period of 40.
Within the past 40 bars there have been 10 bars that have reached a 40 bar low. The
EMMinus indicator value for this bar would be 25, because 25% of the bars have
reached new lows in the period.

Example

{ Enter short when EMM nus turns up and start a trailing
stop when it crosses 19 }
var Bar, EMPane, hEMM nus: integer;
var TStopOn: bool ean;
EMPane : = CreatePane(75, true, true);
hEMM nus := EMM nusSeries(#C ose, 40);
Pl ot Seri esLabel (hEMM nus, EMPane, 900, #Thin, 'EMM nus(#d ose, 40)");

Instal |l StopLoss(8);
I nstal | BreakEvenStop(5);
Pl ot St ops;
for Bar := 40 to BarCount - 1 do
begi n
Appl yAut oSt ops(Bar);

i f LastPositionActive then
begi n
i f CrossOverVal ue(Bar, hEMM nus, 19) then
TSt opOn : = true;

if TStopOn then
Cover At Trai l i ngSt op(Bar, PriceH gh(Bar - 3) + 0.1,
Last Position, 'TStop');
end
el se
if (@EMM nus[Bar - 1] < 0.01) and TurnUp(Bar, hEMM nus) then
begi n
Short At Market (Bar + 1, 'Bear');
TSt opOn : = fal se;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 190

end;
{ Looks like a bear trend has forned }
end;

16.24 EMPlus

EMPIus(Bar: integer; Series: integer; Period: integer): float;
EMPIlusSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

EM+ is the percentage of bars that have made new highs within the specified Period.
See EMMinus|9 for additional information.

Interpretation

e When EM+ rises from zero this is an indication that a worthwhile uptrend may be in
the making. You can take a trend-following position at this point and exit once the
indicator reaches a predetermined oversold level.

e Once EM+ crosses 20 prices tend to follow through and a profit target or trailing
stop often works well to capture gains.

e The crossover of EM+ and EM- can also be used as trend confirmation indicators.

Calculation

EMPIlus is simply the percentage of bars that have achieved new highs within the
specified lookback period. Consider, for example, the EMPlus with a period of 40.
Within the past 40 bars there have been 20 bars that have reached a 40 bar high.
The EMPIus indicator value for this bar would be 50, because 50% of the bars have
reached new highs in the period.

Example

var Bar, EMPane, EMPIusl: integer;

EMPane : = CreatePane(75, true, true);

EMPl usl := EMPlusSeries(#C ose, 40);

Pl ot Seri esLabel (EMPl usl, EMPane, 009, #Thin,
" EMPl us1=EMPI| us(#d ose, 40)');

Install TrailingStop(2, 25);
Install StopLoss(6);
Pl ot St ops;
for Bar := 40 to BarCount - 1 do
begi n
Appl yAut oSt ops(Bar);
{ Looks like a bull trend has forned }
i f CrossOverVal ue(Bar, EMPlusl, 20) then
BuyAt Market (Bar + 1, 'Bull"');
end;

16.25 FAMA

FAMA(Bar: integer; Series: integer; FastLimit: float; SlowLimit: float): float;
FAMASeries(Series: integer; FastLimit: float; SlowLimit: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

191 WealthScript Function Reference, Wealth-Lab Developer 4.0

FAMA stands for Following Adaptive Moving Average. It was developed by John Ehlers
of Mesa Software, and presented in the September 2001 issue of Stocks &
Commodities magazine. FAMA is a complimentary indicator to MAMA (see MAMA
indicator for more details).

The FAMA indicator uses an alpha (a) value that is half of its corresponding MAMA
indicator. This results in an indicator that is synchronized to MAMA, but with vertical
movement that is not as great. Consequently, MAMA and FAMA do not cross unless
there has been a major change in market direction.

In addition to Price Series, FAMA accepts two additional parameters, FastLimit and
SlowLimit. These control the maximum and minimum alpha (@) value that should be
applied to the most recent bar of data when calculating FAMA.

You can learn more about the Mesa Adaptive Moving Average at the
www.mesasoftware.com web site.

Interpretation

FAMA is used in conjunction with its complimentary MAMA indicator. Long signals
occur when MAMA crosses above FAMA, and short signals when MAMA crosses below
FAMA.

Calculation
FAMA = 0.5 * alpha * MMAMA + (1 - 0.5 * alpha) * Previous FAMA

Example

var Bar: integer;
Pl ot Seri es(MAMASeries(#Cl ose, 0.5, 0.05), 0, #Red, #Thin);
Pl ot Seri es(FAMASeries(#Cl ose, 0.5, 0.05), 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do
begin
if CrossOver(Bar, MAMASeries(#C ose, 0.5, 0.05),
FAMASeri es(#Cl ose, 0.5, 0.05)) then
BuyAt Mar ket (Bar + 1, "'
else if CrossOver(Bar, FAMASeries(#C ose, 0.5, 0.05),
MAMASeri es(#Cl ose, 0.5, 0.05)) then
Sel | At Market(Bar + 1, LastPosition, '');
end;

16.26 FIR

FIR(Bar: integer; Series: integer; Filter: string): float;
FIRSeries(Series: integer; Filter: string): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

FIR stands for Finite Impulse Response Filter. This is a type of smoothing filter that
assigns different weights to price data a number of bars in the past. Pass the Price
Series you want to apply the filter to in the first parameter. The second parameter of
the FIR is a string that describes the weights that will be applied to the bars of data
that compose the filter. The string is formatted as a series of numbers separated by
commas.

Interpretation

FIR filters are nothing more than another type of weighted moving average, with

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 192

different weight levels applied to the various components of the average. As such,
you can apply any of the various interpretations of moving averages to FIR.

Calculation

A simple example will make this concept easier to explain. Assume we pass the string
value of '4,3,2,1' as the second parameter to FIR, and apply it to closing prices. The
function will perform the following calculation:

((4 xcurrent Closing Price) + (3 * Cosing Price 1 bar back) + (
2 * dosing Price 2 bars back) + (1 * Cosing Price 3 bars back)) /
10

As you can see, each successive weight value is applied to the previous bar back in
the price history. The final sum of the weighted price values is divided by the sum of
the weights.

Example

{ AFIRIis used as a signal line for a 200 day novi ng average }
var SMASer: i nteger;

SMASer : = SMASeries(#Cl ose, 200);

Pl ot Series(SMASer, 0, #Oive, #Thick);

Pl ot Series(FIRSeries(SMASer, '1,2,2,1'"), 0, #Black, #Thin);

16.27 Highest

Highest(Bar: integer; Series: integer; Period: integer): float;
HighestSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the highest value of a Price Series within the specified look back Period.

Highs and lows are found in all markets, and, they are fundamentally important to
technical analysis. Uptrends are defined by a succession of higher highs and higher
lows, whereas downtrends are characterized by a succession of lower highs and lower
lows. Support and resistance is often defined at significant high and low points.
Pattern formations are shaped by highs and lows such as double tops and bottoms,
head and shoulder formations, rectangles, triangles, flags, consolidations and other
formations. Use Wealth-Lab functions: Highest, Lowest, HighestBar and
LowestBar, for finding and analyzing these market opportunities.

Interpretation

e Uptrends are formed by a succession of higher highs and higher lows, failure to
make a new higher high or higher low means the trend has ended.

e Downtrends are formed by a succession of lower highs and lower lows failure to
make a new lower high or lower low means the trend has ended.

e Divergence occurs when price action and indicators move in different directions and
commonly occur before a stock or a market changes direction. During an uptrend, if
a new high appears in the price action and a lower high develops in the indicator,
then the trend maybe ending. See RSI for more information on divergence.

e Useful for stops loss calculations such as when taking short positions, or buy order
triggers. Add an amount to the last highest value, this can be a fixed amount like a
percentage of current closing price. A better method is to allow for volatility, use a
multiple of ATR for this. For example, Highest high plus, half times ATR of last 20

© 2003-2006 WL Systems, Inc.

193

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.28

bars.

e Entry filters, buy if today prices is higher than high for past two days. This can be
useful to ensure you start your trade in the right direction.

e Past highs can represents significant resistance to price action. Look for single or
multiple highs forming at both technical and psychological levels. (Gann, Fibonacci,
whole numbers, and the like).

e Many chart patterns are defined by recent high and lows.

Calculation

Looks back the specified number of periods from the specified Bar and returns the
highest price within that Period.

Example

{ Have we rmade a 100 bar high? }
var BAR integer;
for Bar := 100 to BarCount - 1 do
if PriceH gh(Bar) = Highest(Bar, #H gh, 100) then
AnnotateBar('NH , Bar, true, #Black, 8);

HighestBar

HighestBar(Bar: integer; Series: integer; Period: integer): integer;
HighestBarSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar in which highest value of the Price Series for the specified Period was
recorded. Refer to Highesthed for more information.

Interpretation
(See Highest/%)

Remarks

e If more than one bar has precisely the same Highest value, then HighestBar
returns the most recent bar, i.e., the bar with the latest date/time.

Calculation

Looks back the specified number of periods from the specified Bar and returns the Bar
number with the highest price within that period.

Example

{ Has the 200 day high ocurred within the past 20 bars? }
var N float;
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begi n
n := HighestBar(Bar, #Hi gh, 200);
if Bar - n <= 20 then
Set Backgr oundCol or (Bar, 888);
end;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 194

16.29 HTDCPhase

HTDCPhase(Bar: integer; Series: integer): float;
HTDCPhaseSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Hilbert Transform is a technique used to generate Inphase and Quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. Itis
meaningful only during a cyclic period of the analytic signal waveform (price series)
being measured. Its transition from 360 degrees to 0 degrees can be used to
designate the start of a new cycle. It can also be utilized to signal the start or end of
trending or cyclic periods. Departure from a constant rate change of phase is a
sensitive way to detect the end of a cycle mode. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Phase as part of the computation of the Dominant Cycle is:

Compute the Hilbert Transform

{Detrend Price}

{Compute InPhase and Quadrature components}
Compute the Period of the Dominant Cycle

{Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta
phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous
period.}

{Resolve Instantaneous Period errors and smooth}
Compute Dominant Cycle Phase
Return the Dominant Cycle Phase at the current bar of the Hilbert Transform Period
measured at that bar

Example

{ Exanple - Make bars nore solid as the dom nant cycl e phase approaches
360 }
var DCPHASEPANE, ht DCP, BAR, N: integer;

DCPhasePane : = CreatePane(100, true, true);
ht DCP : = HTDCPhaseSeri es(#Average);
Pl ot Seri es(ht DCP, DCPhasePane, 520, #Thick);
for Bar := 0 to BarCount - 1 do
begi n

n:=9 - (Round(@tDCP[Bar] / 360 * 9));

© 2003-2006 WL Systems, Inc.

195 WealthScript Function Reference, Wealth-Lab Developer 4.0
SetBarColor(Bar, n * 100 + n * 10 + n);
end;
{ Also see ChartScript 'RocketScience vl' }
16.30 HTInPhase
HTInPhase(Bar: integer; Series: integer): float;
HTInPhaseSeries(Series: integer): integer;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTInPhase
returns the Hilbert Transform generated InPhase component of the input Price Series.
Interpretation
The InPhase component is used in conjunction with the Quadrature component to
generate the phase of the analytic signal (using the ArcTan function) at a specific bar
or for the entire Price Series.
Calculation
More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe
The basic flow for the computation for the InPhase component is:
Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}
Return the InPhase component at the current bar of the Hilbert Transform computed
at that bar
Example
{ Color bars based on relative positions of Quadrature and | n-Phase }
var HTQUADPANE, BAR: i nteger;
HTQuadPane : = CreatePane(100, true, true);
Pl ot Seri es(HTI nPhaseSeri es(#Average), HTQuadPane, 025, #Thick);
Pl ot Seri es(HTQuadratureSeries(#Average), HTQuadPane, 559, #Thick);
for Bar := 0 to BarCount - 1 do
begin
i f HTQuadrature(Bar, #Average) > HTlInPhase(Bar, #Average) then
Set Bar Col or (Bar, 559)
el se
Set Bar Col or (Bar, 025);
end;
16.31 HTLeadSin

HTLeadSin(Bar: integer; Series: integer): float;
HTLeadSinSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 196

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees. The Hilbert Transform Lead Sine is just
the sine of the DC Phase advanced by 45 degrees.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. The
HTLeadSin is the sine of the DC Phase at a specific bar. It is most often used in
conjunction with the HTSin indicator to identify cyclic turning points. Quoting from
Market Mode Strategies.doc by John Ehlers from MESA Software, "A clear, unequivocal
cycle mode indicator can be generated by plotting the Sine of the measured phase
angle advanced by 45 degrees. This leading signal crosses the sinewave 1/8th of a
cycle BEFORE the peaks and valleys of the cyclic turning points, enabling you to make
your trading decision in time to profit from the entire amplitude swing of the cycle. A
significant additional advantage is that the two indicator lines don't cross except at
cyclic turning points, avoiding the false whipsaw signals of most "oscillators" when the
market is in a Trend Mode. The two lines don't cross because the phase rate of
change is nearly zero in a trend mode. Since the phase is not changing, the two lines
separated by 45 degrees in phase never get the opportunity to cross." See the
examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow and simplified pseudo code for the computation for the HTLeadSin is:

Compute the Hilbert Transform

{Detrend Price}

{Compute InPhase and Quadrature components}
Compute the Period of the Dominant Cycle

{Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta
phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous
period.}

{Resolve Instantaneous Period errors and smooth?}
Compute Dominant Cycle Phase
Compute the Sine of the Dominant Cycle Phase
Advance the Sine by 45 degrees to compute the HT Lead Sine
Return the Lead Sine of the Dominant Cycle Phase at the current bar of the Hilbert
Transform Period measured at that bar

Example

{ Flag bars where Hilbert Transform Sin/Lead Sin cross }
var HTSI NPANE, BAR, HTLead, HT: i nteger;

HT := HISi nSeri es(#Average);

HTLead : = HTLeadSi nSeri es(#Average);

HTSi nPane : = CreatePane(100, false, true);

Pl ot Seri es(HTLead, HTSi nPane, 009, #Thin);

Pl ot Seri es(HT, HTSi nPane, 900, #Thin);

© 2003-2006 WL Systems, Inc.

197

WealthScript Function Reference, Wealth-Lab Developer 4.0

for Bar := 2 to BarCount - 1 do
begi n
if CrossOver(Bar, HT, HTLead) then
Set Bar Col or (Bar, #Red)
else if CrossUnder(Bar, HT, HTLead) then
Set Bar Col or (Bar, #Blue);
end;

16.32 HTPeriod

HTPeriod(Bar: integer; Series: integer): float;
HTPeriodSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Hilbert Transform is a technique used to generate Inphase and Quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTPeriod (or
MESA Instantaneous Period) returns the period of the Dominant Cycle of the analytic
signal as generated by the Hilbert Transform. The Dominant Cycle can be thought of
as being the "most likely" period (in the range of 10 to 40) of a sine function of the
Price Series.

Interpretation

The HTPeriod at a specific bar gives the current Hilbert Transform Period as
instantaneously measured at that bar in the range of 10 to 40. It is meaningful only
during a cyclic period of the analytic signal waveform (price series) being measured.
The HTPeriod, or one of its sub-periods, is often used to adjust other indicators; for
example, Stochastics and RSIs work best when using a half cycle period to peak their
performance. Similarly other indicators can be made to be adaptive by using the
HTPeriod, or one of its sub-periods, as the period of the indicator. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Period is:

Compute the Hilbert Transform

{Detrend Price}

{Compute InPhase and Quadrature components}
Compute the Period of the Dominant Cycle

{Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta
phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous
period.}

{Resolve Instantaneous Period errors and smooth?}
Return the Hilbert Transform Period measured at the current bar

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 198

Example

{ This code creates an adaptive nobving average.
The period of the MA is based on the HTPeriod for the bar }
var HTPERI ODPANE, DYNSMA, BAR, N:. integer;
HTPeri odPane : = CreatePane(50, true, true);
Pl ot Seri es(HTPeri odSeries(#Average), HTPeri odPane, 161, #Thick);
DrawLabel (' HTPeri od(Average)', HTPeriodPane);
DynSMA : = CreateSeri es;

for Bar := 40 to BarCount - 1 do
begin

n := Round(HTPeriod(Bar, #Average));

if n< 2 then

n .= 2

Set Seri esVal ue(Bar, DynSMA, SMA(Bar, #Average, n));
end;

Pl ot Series(DynSMA, 0, #Navy, #Thick);

{ Exanple - An alternative nethod of conputing the HT Period using a
Honodyne Di scrimnator can be used which denonstrates different
sensitivity than the Phase Accunul ati on approach. See ChartScript -
MesaPeri odCheck V2, http://ww. weal th-1ab.confcgi-

bi n/ Weal t hLab. DLL/ edi t syst en®?i d=4805) by ttcrep for a conparison of the
two wavef or ns}

{ Exanple - Here the HTPeriod is used to nake the acceleration of a
Par abol i c SAR adaptive. From Parabolic SAR Cycl ePeri od,

http://ww. weal t h-1ab. con cgi - bi n/ Weal t hLab. DLL/ edi t syst en?i d=2815, by
WIllibald. Adapted and declarations and nost of script omtted.}

16.33 HTQuadrature

HTQuadrature(Bar: integer; Series: integer): float;
HTQuadratureSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.
HTQuadrature returns the Hilbert Transform generated Quadrature component of the
input Price Series.

Interpretation

The Quadrature component is used in conjunction with the InPhase component to
generate the phase of the analytic signal (using the ArcTan function) at a specific bar
or for the entire Price Series.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow for the computation for the InPhase component is:

Compute the Hilbert Transform
{Detrend Price}
{Compute InPhase and Quadrature components}
Return the Quadrature component at the current bar of the Hilbert Transform

© 2003-2006 WL Systems, Inc.

199 WealthScript Function Reference, Wealth-Lab Developer 4.0

computed at that bar

Example

{ Exanple - Use HTInPhase and HTQuadrature to conpute
the Signal-to-Noise Ratio (SNR) for a Price Series }

var X1, X2, X4, X3, X5: float;

var RANGE, TEMP1, TEMP2, AMPLI TUDE, BAR, NPANE: i nteger;

Range : = CreateSeries();

Tenpl := CreateSeries();

Tenp2 := CreateSeries();

Anplitude := CreateSeries();

FOR Bar := 2 to BarCount - 1 do

BEG N
x1 := HTlnPhase(Bar, #Average);
X2 := HTQuadrature(Bar, #Average);

{Conput e "Noi se" as average range. x4 = Current Bar range}
x4 := 0.1 * (PriceH gh(Bar) - PriceLow(Bar)) + (0.9 *
Get Seri esVal ue(Bar - 1, Range));
Set Seri esVal ue(Bar, Range, x4);
{Conput e snoot hed signal anplitude - x3 = Current Bar Tenpl}
x3 := (0.2 * ((x1 * x1) + (x2 * x2))) + (0.8 * Get SeriesVal ue(Bar -
1, Tenpl));
I F x3 < 0.001 THEN
x3 := 0.001;
Set Seri esVal ue(Bar, Tenpl, x3);
{Conput e snmoot hed SNR in dB guardi ng agai nst divide by zero}
IF x4 > 0.0 THEN
x5 :=0.25* (10.0 * LoglO(x3 / (x4 * x4)) + 1.9) + 0.75 *
Get Seri esVal ue(Bar - 1, Tenmp2);
Set Seri esVal ue(Bar, Tenp2, x5);
Set Seri esVal ue(Bar, Anplitude, x5);
ENC;

{Plot SNR in dB}
nPane : = CreatePane(150, true, true);
Pl ot Seri es(Anplitude, nPane, #Red, 0);

16.34 HTSin

HTSin(Bar: integer; Series: integer): float;
HTSinSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude.. HTDCPhase
returns the Hilbert Transform Phase of the Dominant Cycle. The Dominant Cycle
Phase lies in the range of 0 to 360 degrees. The Hilbert Transform Sine is just the
sine of the DC Phase.

Interpretation

The DC Phase at a specific bar gives the phase position from 0 to 360 degrees within
the current Hilbert Transform Period instantaneously measured at that bar. The HTSin
is the sine of the DC Phase at a specific bar. It is most often used in conjunction with
the HTLeadSin indicator to identify cyclic turning points. Quoting from Market Mode
Strategies.doc by John Ehlers from MESA Software, "A clear, unequivocal cycle mode

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 200

indicator can be generated by plotting the Sine of the measured phase angle
advanced by 45 degrees. This leading signal crosses the sinewave 1/8th of a cycle
BEFORE the peaks and valleys of the cyclic turning points, enabling you to make your
trading decision in time to profit from the entire amplitude swing of the cycle. A
significant additional advantage is that the two indicator lines don't cross except at
cyclic turning points, avoiding the false whipsaw signals of most "oscillators" when the
market is in a Trend Mode. The two lines don't cross because the phase rate of
change is nearly zero in a trend mode. Since the phase is not changing, the two lines

separated by 45 degrees in phase never get the opportunity to cross." See the
examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe

The basic flow and simplified pseudo code for the computation for the Dominant Cycle
Phase as part of the computation of the Dominant Cycle is:

Compute the Hilbert Transform

{Detrend Price}

{Compute InPhase and Quadrature components}
Compute the Period of the Dominant Cycle

{Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta
phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous
period.}

{Resolve Instantaneous Period errors and smooth}
Compute Dominant Cycle Phase
Compute the Sine of the Dominant Cycle Phase
Return the Sine of the Dominant Cycle Phase at the current bar of the Hilbert
Transform Period measured at that bar

Example

{ Flag bars where Hilbert Transform Sin/Lead Sin cross }
var HTSI NPANE, HTSI NSer, BAR i nteger;
HTSI NSer : = HTSi nSeries(#Average);
HTSi nPane : = CreatePane(100, false, true);
Pl ot Seri es(HTSINSer, HTSi nPane, 009, #Thin);
Pl ot Seri es(HTLeadSi nSeri es(#Average), HTSI nPane, 900, #Thin);
for Bar := 2 to BarCount - 1 do
begin

if CrossOver(Bar, HTSINSer, HTLeadSi nSeries(#Average)) then

Set Bar Col or (Bar, #Red)

el se if CrossUnder(Bar, HTSINSer, HTLeadSi nSeries(#Average)) then
Set Bar Col or (Bar, #Blue);
end;

16.35 HTTrendLine

HTTrendLine(Bar: integer; Series: integer): float;
HTTrendLineSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

201

WealthScript Function Reference, Wealth-Lab Developer 4.0

Description

The Hilbert Transform is a technique used to generate inphase and quadrature
components of a de-trended real-valued "analytic-like" signal (such as a Price Series)
in order to analyze variations of the instantaneous phase and amplitude. HTTrendline
(or MESA Instantaneous Trendline) returns the Price Series value after the Dominant
Cycle of the analytic signal as generated by the Hilbert Transform has been removed.
The Dominant Cycle can be thought of as being the "most likely" period (in the range
of 10 to 40) of a sine function of the Price Series.

Interpretation

The HTTrendline at a specific bar gives the current Hilbert Transform Trendline as
instantaneously measured at that bar. In its Series form, the Instantaneous Trendline
appears much like a Moving Average, but with minimal lag compared with the lag
normally associated with such averages for equivalent periods. The HTTrendline is
formed by removing the Dominant Cycle from the Price Series. See the examples.

Calculation

More detailed information concerning the calculation of the Hilbert Transform related
functions can be found in this document and others on the Mesa Software site:
http://www.mesasoftware.com/pub/concepts.exe. Quoting from MarketMode
Strategies.doc, "A simple average taken over the period of the dominant cycle has as
many sample points above the average as below it, with the result that the dominant
cycle component is removed at the output of the filter. The filtered residual is the
Instantaneous Trendline." The basic flow and simplified pseudo code for the
computation for the Dominant Cycle Period is:

Compute the Hilbert Transform

{Detrend Price}

{Compute InPhase and Quadrature components}
Compute the Period of the Dominant Cycle

{Use ArcTangent to compute the current phase}

{Resolve the ArcTangent ambiguity}

{Compute a differential phase, resolve phase wraparound, and limit delta
phase errors}

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous
period.}

{Resolve Instantaneous Period errors and smooth}
Compute the Instantaneous Trendline

{Average over the period of the Dominant Cycle at each bar}
Return the Hilbert Transform Trendline measured at the current bar

Example

{ We focus here on the relationship between the I|nstantaneous Trendline
and a Zero Lag Kalman Filter. Quoting from Tutorial.doc by John Ehlers

of MESA Software: "If we use a Zero Lag Kalman Filter, this filter
line will cross the Instantaneous Trendline every half cycle when the
market is in a Cycle Mode. |If the Zero Lag Kalman filter fails to

cross the Instantaneous Trendline within the last half cycle period,
then this is another way of declaring a Trend Mode is in force. The
Trend Mode ends when the Zero Lag Kalman Filter |ine again crosses the
I nst ant aneous Trendline." }

var PERI ODPANE: i nt eger;

Pl ot Seri es(HTTrendLi neSeri es(#Average), 0, 732, #Thick);

Pl ot Seri es(Kal manSeri es(#Average), 0, 000, #Dotted);

Peri odPane := CreatePane(80, true, true);

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 202

Pl ot Seri es(HTPeri odSeri es(#Average), PeriodPane, #Red, #Thick);

16.36 HV

HV(Bar: integer; Series: integer; Period: integer; Span: integer): float;
HVSeries(Series: integer; Period: integer; Span: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Historical Volatility of the selected Price Series. Historical Volatility is the
standard deviation of the logarithm of the price ratio, i.e.

HvV = Standard Deviation (In(Price(Bar) / Price(Bar-1)))

Series Specifies which Price Series to use, for example #Close, #Average, etc.
Series can also be a technical indicator series, or a Price Series created
within the script.

Period e.g. 20, specifies how many bars HV shall use. The real number of
periods that HV will use is Period - 1, because if for example you use 20
price bars, there are 19 periods in between and 19 returns.

Span Used to convert the historical volatility to a different time scale. If the
Chart has weekly bars and annualized historical volatility is required, use
52 for Span because there are 52 weeks in a year.

Interpretation

A sharp increase in HV will alert you to unusual volatility in the markets. This is often
an ideal time to monitor the market for entry in the opposite direction of the panic.

Calculation
HV = Sgrt(SSD/ (Period - 1)) * Sgrt(Span)

where,
SSD = Sun{(LOGSi - ALOGS)2] over Period bars

LOGSi = Logarithm of Price - Previous Price
ALOGS = Sum(Logarithms of Price Change over Span) / Span

Example

var Bar: integer;
var HvPane: integer;
HVPane := CreatePane(75, true, true);
var HV1: integer;
HV1 := HVSeries(#Average, 20, 262);
Pl ot Seri esLabel (HV1, HVPane, 905, #Thick, 'HV1=HV(#Average, 20, 262)"');
Install ProfitTarget(15);
I nstal | StopLoss(40);
for Bar := 262 to BarCount - 1 do
begin
i f not LastPositionActive then
begin
if @vi[Bar] > 100 then
begin
if ROC(Bar, #Close, 30) > 0 then
Short At Market (Bar + 1, "')

© 2003-2006 WL Systems, Inc.

203 WealthScript Function Reference, Wealth-Lab Developer 4.0

el se
BuyAt Market (Bar + 1, '');
end;
end
el se
Appl yAut oSt ops(Bar);
end;
16.37 Kalman

Kalman(Bar: integer; Series: integer): float;
KalmanSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The Kalman Filter is based on the concept of optimum estimation, first introduced by
Dr. R. E. Kalman in 1960. It has generally been used in terrestrial and space-based
navigation and tracking systems. In general, it can be thought of as generating an
optimal (in a linear, white noise, mean-square-error sense) estimate of a future
position based on the current position of a target and an estimate of its velocity and
acceleration and their uncertainties.

Interpretation

Where Price Series are involved as in trading systems the mathematics can be
simplified considerably and a (nearly) zero lag filter produced very straightforwardly.
For further information see: Optimal Tracking Filters.doc by John Ehlers of MESA
Software, here: http://www.mesasoftware.com/pub/TRACKINGFILTERS.EXE. Note
that Kalman filters can be applied to any Price Series, not just ticker prices. See
Examples.

Calculation

The basic pseudo computation for the Kalman Filter value at a specific bar for a Price

Series is:
ZerolLagVal ue at Bar = Weightl * PriceSeriesValue at Bar + Wight2
(PriceSeriesValue at Bar - PriceSeriesValue at
Bar - 3)

ZerolLagVal ue at Bar = ZeroLagValue at Bar + Weight3 * LastZerolLagVal ue
Last Zer oLagVal ue = ZerolLagVal ue at Bar

Save Kal manSeri esVal ue at Bar = ZerolLagVal ue at Bar

Ret urn Kal manSeri esVal ue at Bar

Example

{ This systemuses the Kalman Filter as a signal line for the
CMO Gscillator to tinme position entries }

var CMOPANE, BAR, hCMO i nteger;

hCMD : = CMOSeri es(#Average, 14);

CMOPane : = CreatePane(80, true, true);

Pl ot Seri es(hCMO, CMOPane, 009, #Thick);

Pl ot Seri es(Kal manSeries(hCMD), CMOPane, #Bl ack, #Thin);

for Bar := 14 to BarCount - 1 do
begi n
if LastPositionActive then
begin

i f CrossOverValue(Bar, hCMO, 0) then

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 204

Sel | At Market (Bar + 1, LastPosition, 'CMO Q');
end
el se
begi n
if CMX Bar - 1, #Average, 14) < -50 then
if CrossOver(Bar, hCMO, Kal manSeries(hCMO)) then
BuyAt Mar ket (Bar + 1, 'CMO Kal man');
end;
end;

16.38 KAMA

KAMA(Bar: integer; Series: integer; Period: integer): float;
KAMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns Kaufman's Adaptive Moving Average for the Price Series specified in the
Series parameter. KAMA is an adaptive moving average, and uses the noise level of
the market to determine the length of the trend required to calculate the average.
The more noise in the market, the slower the trend used to calculate the average.
The Period parameter control how much data is used by KAMA to calculate its
efficiency ratio (signal/noise). A value of 8 to 10 is recommended.

Interpretation

e You can base trading signals on whether KAMA turns down or up, indicating a
potential trend reversal. Kaufman suggests using a small band around the KAMA
indicator as a way to filter out whipsaws.

e Since KAMA is a type of moving average, you can use the same interpretation
techniques used for Simple Moving Averages (SMA).

Calculation

{ The Weal thScri pt code bel ow duplicates the KAMA indi cator
calculation: }

var AMA, SIGNAL, DI FF, NO SE, EFRATI O, SMOOTH. fl oat;

var MYKAMA, BAR, J, Period: integer;

Period := 10;
M/KAMA : = CreateSeries;
{ initialize the starting period, anma }

for Bar := 0 to Period do
@NYKAVA[Bar] := Priced ose(Bar);
ama = PriceC ose(Period);
for Bar := Period + 1 to BarCount - 1 do
begi n
signal := s(PriceClose(Bar) - PriceC ose(Bar - Period));
noi se : = 0;
for j :=0to Period - 1 do
begi n
diff := Abs(PriceC ose(Bar - j) - PriceCose(Bar - j - 1));
noise := noise + diff;
end;
if noise <> 0 then
efratio := signal / noise
el se
efratio : = 0;

snnoth::.efra',[io*(2/3-2/31)+2/31;

© 2003-2006 WL Systems, Inc.

205 WealthScript Function Reference, Wealth-Lab Developer 4.0

smooth : = smooth * snoot h;
ama := ama + smooth * (PriceCl ose(Bar) - ama);
@Y KAMVA[Bar] := amg;
end;
Pl ot Series(MyKAMA, 0, #Red, #H stogram);
Pl ot Seri es(KAMASeries(#Cl ose, Period), 0, #Black, #Thin);

Example
var K1, K2, BAR integer;
Kl := KAMASeries(#Cl ose, 8);
K2 := KAMASeries(#Cl ose, 16);
Pl ot Seri esLabel (K1, 0, #Red, #Thin, 'KAMA(8)');
Pl ot Seri esLabel (K2, 0, #Maroon, #Thin, 'KAMA(16)');
for Bar := 18 to BarCount - 1 do
begin
i f LastPositionActive and CrossUnder(Bar, K1, K2) then
Sel | At Market(Bar + 1, LastPosition, '')
else if CrossOver(Bar, K1, K2) then
BuyAt Market (Bar + 1, '');
end;

16.39 KeltnerLower

KeltnerLower(Bar: integer; Periodl: integer; Period2: integer): float;
KeltnerLowerSeries(Periodl: integer; Period2: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Keltner Bands are a type of price channel first described by Chester W. Keltner in his
book How to Make Money in Commodities. They are fixed bands that are plotted
above and below a simple moving average of average price.

The Keltner indicators in Wealth-Lab take two parameters. Period1 specifies the
period to smooth highs - lows, and Period2 specifies the period to use to smooth
Average Price in the calculation (see below). Note that because Keltner Bands are
defined to use average price, and highs minus lows, the indicator does not take a Price
Series parameter like many other indicator functions.

Interpretation

e The classic interpretation of Keltner band is to go long when the upper band is
penetrated, and reverse position and enter short when the lower band is
penetrated.

e Keltner Bands can also be used to define "normal"” trading ranges for markets.
Price movement outside of the bands can be considered an anomaly, and therefore
a trading opportunity.
Calculation
Average Price (AP) = (Close + High + Low)/ 3
Band Moving Average = Period1 bar Simple Moving Average (SMA) of (High - Low)
Center Line = Period2 bar SMA of AP
Upper Band = Center Line + Band MA

Lower Band = Center Line - Band MA

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 206

16.40

16.41

Example

var BAR integer;
Pl ot Seri es(Kel tnerLower Series(10, 10), 0, 151, #Thick);
Pl ot Seri es(Kel tnerUpperSeries(10, 10), 0, 151, #Thick);
for Bar := 30 to BarCount - 1 do
begin
if CrossOver(Bar, #C ose, KeltnerUpperSeries(10, 10)) then
begin
i f not PositionLong(LastPosition) then
begin
Cover At Market (Bar + 1, LastPosition, '');
BuyAt Market (Bar + 1, '');
end;
end
el se if CrossUnder(Bar, #C ose, KeltnerLowerSeries(10, 10)) then
begin
i f PositionLong(LastPosition) then
begin
Sel | At Market(Bar + 1, LastPosition, '');
Short At Market (Bar + 1, '');
end;
end;
end;

KeltnerUpper

KeltnerUpper(Bar: integer; Periodl: integer; Period2: integer): float;
KeltnerUpperSeries(Periodl: integer; Period2: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

See KeltnerLower/25

LinearReg

LinearReg(Bar: integer; Series: integer; Period: integer): float;
LinearRegSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Linear Regression value for the specified Series and Period. LinearReg
gathers the prices for the number of specified periods and finds a straight line (see
LinearReglLine) which best fits all the prices using a linear regression model. The
procedure is reinitialized and repeated for each bar in the Price Series. Since a new
value is calculated at each Bar, the result is not a straight linear regression trendline;
rather, it is an indicator which loosely tracks the price action.

LinearReg is a statistical indicator. Other indicators in the same class are
LinearRegSlope, StdErr, RSquared and StdDev.

Interpretation

e Since the Linear Regression indicator displays the statistically-predicted price value,
you can look for cases where price veers sharply from the predicted value. Use
RSquared to determine significant weakness in the trend and if due for a return to
the predicted value.

© 2003-2006 WL Systems, Inc.

207 WealthScript Function Reference, Wealth-Lab Developer 4.0

Calculation

Linear Regression is a rather complex statistical calculation. It uses the least square
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. LinearReg returns the final value of the
LinearRegline, recalculated for each bar over the regression Period to complete
indicator.

Example

{ Report on how far closing prices are away from predicted val ue }
var S: string;

var DI FF: float;

var BAR i nteger;

Pl ot Seri es(LinearRegSeries(#C ose, 20), 0, 002, #Thick);

Bar := BarCount - 1;

Diff PriceC ose(Bar) - LinearReg(Bar, #C ose, 20);

Diff Diff / PriceCose(Bar) * 100;

if DIff > 0 then

s := 'Price closed above '
el se
s := '"Price closed below ';

Diff := Abs(Diff);
s :=s + 'the Regression Line by ' + FormatFloat('#0.00%, D ff);
DrawLabel (s, 0);

16.42 LinearRegPredict

LinearRegPredict(Bar: integer; Series: integer): float;
LinearRegPredictSeries(Series: integer): integer;

OChartScripts ©SimuScripts MPerfScripts ©CMScripts
Description

Calculates a linear regression on a complete Price Series and returns the predicted
value at a specific Bar.

Remarks:
¢ LinearRegPredict is designed for use in scriptable Performance Reports.

e Do not use the result of LinearRegPredict in a ChartScript for trading system
rules.

Example
var h: integer;

h := Linear RegPredictSeries(#C ose);
Pl ot Series(h, 0, #Blue, #Thick);

16.43 LinearRegSlope

LinearRegSlope(Bar: integer; Series: integer; Period: integer): float;
LinearRegSlopeSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Linear Regression Slope returns the slope of the Linear Regression line (see

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 208

LinearRegline) of the specified period. It looks at the prices for the number of
specified periods and finds a straight line which best fits all the prices. The slope of
this straight line is returned. Use the slope to determine if the trend is up (positive
value) or down (negative value), as well as the general strength of the trend. It shows
how much the prices are expected to change over time.

Linear Regression Slope indicator is a statistical indicator. Other indicators in the
same class are LinearReg, StdErr, RSquared and StdDev.

Interpretation

e An up-sloping Linear Regression line (LinearRegSlope > 0) indicates that prices
have been rising within the regression period, you could open a long position if the
rising trend is significant. Use RSquared to determine trend significances.

¢ A down-sloping line (LinearRegSlope < 0) indicates prices have been falling within
the regression period, you could open a short position if the decline is significant.
Use RSquared to determine trend significances.

e You can open a contrary short-term position to the prevailing trend when the Linear
Regression Slope begins to round off at extreme levels.

Calculation

Linear Regression is a rather complex statistical calculation. It uses the least square
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. The slope of this Linear Regression trendline (given
by LinearRegLine) is the value return by the LinearRegSlope indicator.

Example

{ Mnor up and down trends highlighted by confirmation of 2 |inear
regression lines }

var Bar: integer;

var LinRegSl opePane: integer;

Li nRegSl opePane : = CreatePane(100, true, true);

Pl ot Seri es(Li near RegSl opeSeries(#C ose, 20), LinRegSl opePane, 205,
#Thin);

DrawLabel (' Li near RegSl ope(Close, 20)', LinRegSlopePane);

Pl ot Seri es(Li near RegSl opeSeries(#C ose, 10), LinRegSl opePane, 509,

#Thin);

DrawLabel (' Li near RegSl ope(Close, 10)', LinRegSl opePane);
for Bar := 20 to BarCount - 1 do

begi n

i f LinearRegSl ope(Bar, #Cl ose, 20) > 0 then
i f LinearRegSl ope(Bar, #Cl ose, 10) > 0 then
Set Bar Col or (Bar, #Blue);
i f LinearRegSl ope(Bar, #Cl ose, 20) < 0 then
i f LinearRegSl ope(Bar, #Cl ose, 10) < 0 then
Set Bar Col or (Bar, #Red);
end;

16.44 Lowest

Lowest(Bar: integer; Series: integer; Period: integer): float;
LowestSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Returns the lowest value of a Price Series within the specified look back Period.

© 2003-2006 WL Systems, Inc.

209 WealthScript Function Reference, Wealth-Lab Developer 4.0

See Highest@% for more information.

Calculation

Looks back the specified number of periods from the specified Bar and returns the
lowest price within that Period.

Example

{ Plot the nost recent 40 bar |low as dots on the chart }
Pl ot Seri es(Lowest Series(#Low, 40), 0, #Maroon, #Dots);
DrawLabel (' Lowest(Low, 40)', 0);

16.45 LowestBar

LowestBar(Bar: integer; Series: integer; Period: integer): integer;
LowestBarSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar in which lowest value of the Price Series for the specified Period was
recorded.

See Highest@% for more information.

Remarks

e If more than one bar has precisely the same Lowest value, then LowestBar
returns the most recent bar, i.e., the bar with the latest date/time.

Calculation

Looks back the specified number of periods from the specified Bar and returns the Bar
number with lowest price within that Period.

Example

{ Color areas of the chart where the 200 day | ow has occurred within
the past 20 bars }
var N float;
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begi n
n := LowestBar(Bar, #Low, 200);
if Bar - n <= 20 then
Set Backgr oundCol or (Bar, #RedBkg);
end;

16.46 MACD

MACD(Bar: integer; Series: integer): float;
MACDSeries(Series: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

MACD returns the Moving Average Convergence Divergence indicator. MACD is a
momentum oscillator, yet its primary use is to trade trends. Although it is an
oscillator is not used as an over brought or oversold indicator. It appears on the chart

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 210

as two lines which oscillates without boundaries. The crossover of the two lines give
trading signals similar to a two moving average system.

The two lines are called, MACD Line or fast line and MACD Signal or slow line. The
MACD line is displayed as a solid line on the chart, and the MACD signal line is
displayed as a dashed line on the chart.

Interpretation

e MACD crossing above zero is considered bullish, and crossing below zero bearish.
Secondly, when MACD turns up from below zero it is considered bullish. When it
turns down from above zero this is considered bearish.

e Enter a long position and close any short positions when the MACD fast line crosses
from below to above the signal line. The further below the zero line the stronger
the signal.

e Enter a short position and close any long positions when the MACD fast line crosses
from above to below the signal line. The further above the zero line the stronger
the signal.

e Divergence between the MACD and the price action is a strong signal when it
confirms the crossover signals.

e During trading ranges the MACD will whipsaw, the fast line crosses back and forth
across the signal line. Avoid trading or cut your losses very quickly.

Calculation

An approximated MACD can be constructed by subtracting the value of a 26 day
Exponential Moving Average (EMA) from a 12 period EMA. The shorter EMA is
constantly converging toward, and diverging away from, the longer EMA. This causes
MACD to oscillate around the zero level.

MACD | i ne = EMA(12, close) - EMA(26, close), and
MACD Si gnal = EMA(9, MACD Line)
where,

EMA= Exponential Moving Average

MACD line = MACD fast line, displayed as a solid line on the chart

MACD Signal = MACD signal line or slow line, displayed as a dashed line on the
chart

The classical MACD calculation, Wealth-Lab's MACD indicator, is based on 2 EMAs with
exponents 0.075 and 0.15. A 26 period EMA has an exponent of 0.074074 and the 12
has 0.153846. If you want to use approximate MACD instead of the classical indicator
you can use MACDEX, a custom indicator that lets you provide 2 periods for EMA.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
MACD. Choose the default method for calculating the EMA exponent in the
Indicator Calculations section of the Options dialog.

Example
{ This system buys a new position whenever MACD crosses the signal |ine
from bel ow 0.
It sells all open positions when MACD crosses bel ow the signal line

from above 0.
The trading |oop starts at Bar 60 in order to give the 26-period EVA
used in the MACD calculation tine to stabilize.

}
var MACDPANE, MACDSI GNAL, BAR, P: integer;

© 2003-2006 WL Systems, Inc.

211 WealthScript Function Reference, Wealth-Lab Developer 4.0
MACDPane : = CreatePane(100, true, true);
Pl ot Seri es(MACDSeries(#C ose), MACDPane, 500, #Hi stogranm);
MACDSI gnal := EMASeries(MACDSeries(#Cose), 9);
Pl ot Seri es(MACDSi gnal, MACDPane, #Bl ack, #Thin);
for Bar := 60 to BarCount - 1 do
begi n
if CrossOver(Bar, MACDSeries(#C ose), MACDSi gnal) then
if MACD(Bar, #Cose) < O then
BuyAt Market (Bar + 1, '');
i f CrossUnder(Bar, MACDSeries(#C ose), MACDSignhal) then
if MACD(Bar, #Close) > 0 then
Sel | At Market (Bar + 1, #All, 'MACD);
end;
16.47 MAMA

MAMA(Bar: integer; Series: integer; FastLimit: float; SlowLimit: float): float;
MAMASeries(Series: integer; FastLimit: float; SlowLimit: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

MAMA stands for MESA Adaptive Moving Average. It was developed by John Ehlers of
Mesa Software, and presented in the September 2001 issue of Stocks & Commodities
magazine. MAMA is an adaptive exponential moving average. The EMA's alpha (a) is
related to the phase rate of change (the degree to which the phase of the market
cycle changes from bar to bar).

In addition to Price Series, MAMA accepts two additional parameters, FastLimit and
SlowLimit. These control the maximum and minimum alpha (a) value that should be
applied to the most recent bar of data when calculating MAMA.

You can learn more about the Mesa Adaptive Moving Average at the
www.mesasoftware.com web site.

Interpretation

e MAMA is a type of moving average. You can use the it in place of any other moving
average, and apply the same interpretations, such as price crossovers, crossovers
of short and long period averages, etc. MAMA crossovers typically exhibit fewer
whipsaws than traditionally moving averages.

e MAMA is also used in conjunction with its complimentary FAMA indicator. Trading
signals occur when MAMA crosses over and under FAMA.

Calculation
MAMA = alpha * Price + (1 - alpha) * Previous MAMA val ue

This is a typical exponential moving average calculation. The difference is that the
alpha value changes bar by bar, and is based on the following formula:

Al pha = FastLimt / DeltaPhase

DeltaPhase is the rate of change of the Hilbert Transform homodyne discriminator.
The alpha value is kept within the range of FastLimit and SlowLimit.

Example

var Bar, hMA, hFA: integer;
hMA = MAMASeries(#C ose, 0.5, 0.05);

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 212

hFA : = FAMASeries(#C ose, 0.5, 0.05);
Pl ot Series(hMA, 0, #Red, #Thin);
Pl ot Series(hFA, 0, #Blue, #Thin);
for Bar := 40 to BarCount - 1 do
begi n
if CrossOver(Bar, hMA, hFA) then
BuyAt Mar ket (Bar + 1,
else if CrossOver(Bar, hFA, hMA) then
Sel | At Market (Bar + 1, LastPosition, '');
end;

16.48 Median

Median(Bar: integer; Series: integer; Period: integer): float;
MedianSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Median returns the Median value of a Series based on the specified Period. Median
sorts the values and returns the value occupying the "middle" slot of the group. When
there is an odd number of values, the median is simply the middle value. For
example, the median of 2, 4, and 7 is 4. When there is an even number of values, the
median is the average of the two middle numbers. Thus, the median of the numbers
2,4,7,12is (4+7)/2 = 5.5.

Example
var Bar, hMedFast, hMedSl ow. i nteger;
hMedFast := Medi anSeries(#C ose, 13);

hMedSl ow : = Medi anSeri es(#C ose, 25);
Pl ot Seri es(hMedFast, 0, 520, #Thick);
DrawLabel (' Medi an(Cl ose, 13)', 0);
Pl ot Seri es(hMedSl ow, 0, 200, #Thick);
DrawLabel (' Medi an(Cl ose, 25)', 0);

for Bar := 25 to BarCount - 1 do
begin
if CrossOver(Bar, hMedFast, hMedSlow) then
BuyAt Market (Bar + 1, '')
el se if CrossUnder(Bar, hMedFast, hMedSl ow) then
Sel | At Market(Bar + 1, LastPosition, '');
end;
16.49 MFI

MFI(Bar: integer; Period: integer): float;
MFISeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Money Flow Index measures the flow of money into and out of a security over the
specified Period. Its calculation is similar to that of the Relative Strength Index (RSI),
but takes volume into account in its calculation. The indicator is calculated by
accumulating positive and negative Money Flow values (see Money Flow indicator),
then creating a Money Ratio. The Money Ratio is then normalized into the MFI
oscillator form.

Interpretation

© 2003-2006 WL Systems, Inc.

213

WealthScript Function Reference, Wealth-Lab Developer 4.0

e Look for oversold levels below 20 and overbought levels above 80. These normally
occur before the underlying price chart forms a top or a bottom. Levels may change
depending on market conditions. Ensure that the level lines cut across the highest
peaks and the lowest troughs. During strong trends the MFI may remain in
overbought or oversold for extended periods.

e If underlying price makes a new high or low that isn't confirmed by the MFI, this
divergence can signal a price reversal. MFI divergences from price indicates very
strong buy or sell signal.

e The mid point level of 50 will often act as support or resistance if the FMI bounce
off the 50 level. Crosses of the 50 level can be used as a buying or selling signal.
When MFI cross above then buy, when FMI crosses below then sell.

Calculation

The follow steps are used to calculate Money Flow Index. See MoneyFlow Indicator
for an excellent example script showing the construction of the MFI.

Average Price = #AverageC = (High + Low + Close) / 3
Money Flow = Vol ume x Average Price

Money Flow direction: if today's average price is greater than yesterday's, then it is
considered positive money flow, otherwise it is negative money flow.

Positive Money Flow = Sum all the Positive Money Flows day over specified periods.
Negative Money Flow = Sum all the Negative Money Flows day over specified periods.
Money Ratio = Sum of Positive Money Flow / Sum of Negative Money Flow

Money Flow Index (MFI) = 100 - (100 / (1 + Money Ratio))

Example

{ The trading system bel ow buys a position whenever M-I
crosses below 20. It sells all open positions as soon
as MFl crosses above 80. The ChartScript also colors
MFl bars red and green to show oversol d/ over bought |evels. }

var M-I PANE, Ml Ser, BAR, P: integer;

M-I Ser = MFl Series(14);

M-l Pane : = CreatePane(100, true, true);

Pl ot Seri es(Ml Ser, M-l Pane, #Bl ack, #Thick);
DrawLabel (" MFI Ser = MFI(14)', Ml Pane);

for Bar := 14 to BarCount - 1 do
begin
i f CrossUnderVal ue(Bar, M-I Ser, 20) then
BuyAt Market (Bar + 1, '');

if CrossOverValue(Bar, M-I Ser, 80) then

for P:=0 to PositionCount - 1 do

if PositionActive(P) then
Sel | At Market(Bar + 1, P, "MFI');

if MFI(Bar, 14) < 20 then

Set Seri esBar Col or (Bar, Ml Ser, #Red);
if MFI(Bar, 14) > 80 then

Set Seri esBar Col or (Bar, Ml Ser, #G een);

end;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 214

16.50 Momentum

Momentum(Bar: integer; Series: integer; Period: integer): float;
MomentumSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Momentum is the difference between current price and the price a specified number of
bars ago, Period. The momentum indicators shows the speed at which price changes
from one period to another. It give a excellent indication of the market participants
commitment to the current trend. When the momentum begins to slow or turn, it
indicates diminishing commitment and a loss of momentum. This indicator is a leading
or coincidental indicator. A momentum value above zero indicates that prices are
moving up, and below zero moving down.

The momentum indicator has overbought and oversold zones. These zones are defined
by lines that are placed so the Momentum indicator spends about 5% of its time
within the zones. The lines should be adjust according to market conditions.

Interpretation

e In ranging markets, go long when the indicator falls below the oversold line then
rises back above the oversold line.

¢ In ranging markets, go short when indicator rises above the overbought line the
falls back below the overbought line.

¢ In ranging markets, go long on bullish divergences, if the indicator's first trough is
in the oversold zone.

e In ranging markets, go short on bearish divergences, if the indicator's first peak is
in the overbought zone.

e An uptrend can be confirmed using a trend following indicator. Go long when the
momentum indicator turns up from below the center line. Exit using the trend
following indicator. Divergences of the momentum and price in during the trend can
be misleading.

e A downtrend can be confirmed using a trend following indicator. Go short when the
indicator turns down from above the center line. Exit using the trend following
indicator. Divergences of the momentum and price in during the trend can be
misleading.

Calculation
Momentum = (Price today) - (Price n periods ago)

Typically, the closing Price Series, #Close, is used.

Example

{ This ChartScript plots absolute nmonentum and cal cul ates nonmentum as
a percentage of current price. }

var MOMPANE, MOWPCTPANE, MOWPCT: i nteger;

MonmPane : = CreatePane(100, true, true);

MonPct Pane : = CreatePane(100, true, true);

Pl ot Seri es(MonmentunSeries(#C ose, 30), MnPane, 202, #ThickHist);
DrawLabel (' Standard Monentum , MonPane);

MonmPct : = DivideSeries(MpnentuntSeries(#C ose, 30), #C ose);
MonmPct = MultiplySeriesVal ue(MonPct, 100);

Pl ot Seri es(MonPct, MnPct Pane, 022, #ThickH st);

DrawLabel (' Percentage Mnentunm, MnPct Pane);

© 2003-2006 WL Systems, Inc.

215

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.51 MomentumPct

16.52

MomentumPct(Bar: integer; Series: integer; Period: integer): float;
MomentumPctSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

MomentumPct is the current price divided by the price of a previous Period. Further,

the quotient is multiplied by 100. The result is an indicator that oscillates around 100.
Values less than 100 indicate negative momentum, or decreasing price, and vice
versa.

Interpretation

e MomentumPct can be interpreted in a similar way as the standard Momentum
indicator. However, MomentumPct has the additional advantage of indicating the
amount of commitment to the current trend in a consistent manner over a broad
range of prices. For example, assume that ABC is priced at 60 and XYZ is quoted at
20. After X Periods, ABC is now 62 and XYZ is 22. Though Momentum is the
same (2.0) for both issues, MomentumPct is 103.33 and 110.0, respectively,
indicating that the price movement is more significant for the lower-priced security,
i.e., 10% vs. 3.33%.

e Subtract a constant 100 from MomentumPct to yield the absolute percentage
change over the specified Period to yield the same result as the ROC indicator.

Calculation

Moment umPct = 100 * (Current Price) / (Price n periods ago)

Example

{ Duplicate the MonentunPctSeries cal cul ation }

var Bar, Period, hTnp, hMonPct, MonPct Pane: integer;

Period := 20;

MonPct Pane : = CreatePane(100, true, true);

hTnp := O fsetSeries(#Cl ose, -Period);

hMonPct : = MultiplySeriesVal ue(DivideSeries(#C ose, hTnp), 100);
Pl ot Seri es(hMonPct, MonPct Pane, #Red, #Thick);

Pl ot Seri es(MonmentunPct Seri es(#Cl ose, Period), MnPctPane, #Bl ack,
#Thin);

MoneyFlow

MoneyFlow(Bar: integer): float;
MoneyFlowSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Money Flow returns the average price multiplied by volume. Money Flow is the core

component of the Money Flow Index (MFI) indicator. This is not really an indicator, but
a mathematical function used to construct other indicators.

Interpretation

See the Money Flow Index (MFI) indicator and the example script application below.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 216

Calculation

Money Flow is the average price multiplied by Volume.

Average Price = #AverageC = (High + Low + Close) / 3
Money Flow = Vol une x Average Price

Example

{ The exanpl e bel ow duplicates the cal culation of the M-l }

var TODAY, YESTERDAY, X: float;

var MFPCSI Tl VE, MFNEGATI VE, MYMFI, BAR, MFPOSSUM MFNEGSUM MONEYRATI O,
MFPANE, MFI Pane: i nteger;

MFPositive := CreateSeries;

MFNegative : = CreateSeries;

M/MFI := CreateSeries;

for Bar := 1 to BarCount - 1 do
begin
today := PriceAverageC(Bar);
yesterday := PriceAverageC(Bar - 1);
if today > yesterday then
Set Seri esVal ue(Bar, M-Positive, MneyFl ow Bar))
else if today < yesterday then
Set Seri esVal ue(Bar, M-Negative, MneyFl ow Bar));

end;

MFPosSum : = SuntSeries(M-Positive, 14);
MFNegSum : = SunfSeri es(M-Negative, 14);
MoneyRatio := DivideSeries(MPosSum M-NegSum);
for Bar := 14 to BarCount - 1 do

begi n

X =100 - (100 / (1 + GetSeriesValue(Bar, MneyRatio)));
Set Seri esVal ue(Bar, MyYMFI, x);
end;

MFPane : = CreatePane(100, true, true);

Pl ot Series(MyMFl, M-Pane, #Navy, #Thick);

MFl Pane : = CreatePane(100, true, true);

Pl ot Series(M-I Series(14), M-Il Pane, 950, #Thick);
DrawLabel ("MFI(14)', Ml Pane);

16.53 NVI

NVI(Bar: integer): float;
NVISeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

The Negative Volume Index was created by Norman Fosback, and its purpose is to
expose where "smart money" investment action is occurring. The assumption is that
smart money, mostly floor traders, will produce moves in price with less volume than
the rest of the crowd.

Interpretation

Fosback compared the NVI with its one year (255 bar) moving average. When NVI is
above the moving average, he calculated that there is a 96% chance that a bull
market is in progress, and when it is below the average a 53% chance of a bear
market.

© 2003-2006 WL Systems, Inc.

217

WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

var Bar: integer;
var NVI Pane, PVI Pane: integer;
NVI Pane := CreatePane(75, true, true);
PVI Pane := CreatePane(75, true, true);
var NvI1, PVI1, SMAl, SMA2: integer;
NVI1 := NVI Seri es;
PVI1 := PVI Seri es;
SMALl : = SMASeries(PVI1, 255);
SMA2 : = SMASeries(NVI1, 255);
Pl ot Seri esLabel (NVI1, NVIPane, 900, #Thick, "NVI1=NVI()"');
Pl ot Seri esLabel (PVI1, PVIPane, 050, #Thick, "PVI1=PVI()');
Pl ot Seri esLabel (SMA1, PVIPane, 020, #Thin, 'SMA1=SMA(PVI 1, 255)");
Pl ot Seri esLabel (SMA2, NVI Pane, 200, #Thin, 'SMA2=SMA(NVI 1, 255)"');
Bar := BarCount - 1,
if PVI(Bar) > @MAl[Bar] then
DrawLabel (' PVI says 79% chance Bull Market is in progress', 0)
el se
DrawLabel (' PVI says 67% chance a Bear Market is in progress', 0);
if NVI(Bar) > @MA2[Bar] then
DrawLabel (' NVI says 96% chance Bull Market is in progress', 0)
el se
DrawLabel (' NVI says 53% chance a Bear Market is in progress', 0);

16.54 OBV

OBV(Bar: integer): float;
OBVSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

On Balance Volume developed by Joseph Granville and described in his "New Key to
Stock Market Profits", uses volume to gauge the strength of a market. If prices close
up, the current bar's volume is added to OBV, and if prices close down, it is
subtracted. The result is an indicator that depicts the flow of volume into and out of a
security. It either confirms the quality of the current trend or warn of an impending
reversals.

You can often spot divergences between price action and the OBV indicator. For
example, if prices make a new high but the move is not accompanied by sufficient
volume, OBV will fail to make a new high. Such divergences can be a sign that a trend
is nearing completion.

Interpretation

The actual value of the OBV is unimportant, concentrate on its direction.

When both price and OBV are making higher peaks and higher troughs, the up
trend is likely to continue.

When both price and OBV are making lower peaks and lower troughs, the down
trend is likely to continue.

When price continues to make higher peaks and OBV fails to make higher peak, the
up trend is likely to stall or fail.

When price continues to make lower troughs and OBV fails to make lower troughs,
the down trend is likely to stall or fail.

If during a trading range, the OBV is rising then accumulation may be taking place

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 218

and is a warning of an upward break out.

e If during a trading range, the OBV is falling then distribution may be taking place
and is a warning of an downward break out.

Calculation

On Balance Volume is calculated as follows:

", .. the total daily volume is added to a cumulative total whenever the price of a
stock closes higher than the day before and it is subtracted whenever the price of the
stock closes lower than the day before. On days when the stock closes unchanged in
price, the running cumulative volume remains unchanged." (Granville, p. 144)

Example

{ This sinple systens buys and sells based

on a noving average crossover of OBV }
var OBVPANE, OBV1l, OBV2, BAR integer;
OBVPane := CreatePane(80, false, true);
Pl ot Seri es(OBVSeries, OBVPane, 700, #Thick);
OBV1 := EMASeries(OBVSeries, 24);
OBV2 := EMASeries(OBVSeries, 48);
Pl ot Seri es(OBV1, OBVPane, #Bl ack, #Dotted);
Pl ot Seri es(OBV2, OBVPane, #Red, #Dotted);

for Bar := 48 to BarCount - 1 do
begin
if CrossOver(Bar, OBV1, OBV2) then
BuyAt Market (Bar + 1, ''")

else if CrossUnder(Bar, OBV1, OBV2) then
Sel LAt Market (Bar + 1, LastPosition, 'OBV);
end;

16.55 Parabolic

Parabolic(Bar: integer; AccelUp: float; AccelDown: float; AccelMax: float): float;
ParabolicSeries(AccelUp: float; AccelDown: float; AccelMax: float): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Welles Wilder's Parabolic SAR is actually a type of trailing stop-based system, but it's
often used as an indicator. The SAR (Stop And Reverse) uses a trailing stop level that
follows prices as they move up or down. The stop level increases speed based on an
"Acceleration Factor". When plotted on the chart, this stop level resembles a parabolic
curve, thus the indicator's name. The Parabolic function accepts 3 parameters. The
first two control the Acceleration during up and down moves, respectively. The last
parameter determines the maximum Acceleration.

The Parabolic assumes that you are trading a trend and therefore expects price to
change over time. If you are long the Parabolic SAR will move the stop up every
period, regardless of whether the price has moved. It moves down if you are short.

© 2003-2006 WL Systems, Inc.

219

WealthScript Function Reference, Wealth-Lab Developer 4.0

Interpretation

e The Parabolic SAR trading system uses the Parabolic level as a Stop and Reverse
point. This stop is calculated for the next period. When the stop is hit, this signals
to close the trade and take a new trade in the opposite direction. The system is
typically always in the market.

e When price movement trades in a narrow trading range, the Parabolic SAR will
whipsaw. The Parabolic is trend following indicator, it is useless in the absence of a
trend. Use another indicator, such as ADXR, to determine trend strength.

e The Parabolic excels in fast moving trends that accelerate as they progress. The
stops are also calculated to accelerate, hence you need to have the correct
"Acceleration Factor" to match the market you are trading. Up and down
accelerations parameters maybe different.

e The indicator is usually shown as a series of dots above or below the price bars.
The dots are the stop levels. You should be short when the stops are above the bars
and long when the stops are below the bars. When a stop is hit then trade in
opposite direction.

Calculation

£
&
I

SARc + AF * (EP - SARc), where

SARt = the stop for the next bar
SARc = the stop for the current bar
Accel eration Factor

Extrenme Point for current trade

The AF used by Wilder is 0.02. This means move the stop 2 percent of distance
between EP and the original stop. Each time the EP changes, the AF increases by 0.02
up to the maximum acceleration, 0.2 in Wilders' case. Practical values are: AF range
0.01 to 0.025, and AFmax range of 0.1 to 0.25.

If long then EP is the highest high since going long, if short then EP is the lowest low
since going short.

Example

var Bar: integer;

var x: float;

for Bar := 20 to BarCount - 1 do

begin
X := Parabolic(Bar, 0.02, 0.02, 0.2);
if not LastPositionActive then

begin
if PriceLow(Bar) < Parabolic(Bar, 0.02, 0.02, 0.2) then
BuyAt Stop(Bar + 1, x, '')
el se
Short At Stop(Bar + 1, x, '');
end
el se
begin
i f PositionLong(LastPosition) then
begin
Sel | At Stop(Bar + 1, x, LastPosition, '');
Short At Stop(Bar + 1, x, '');
end
el se
begin
Cover At Stop(Bar + 1, x, LastPosition, '');

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 220

BuyAt Stop(Bar + 1, x, '');
end;
end;
end;
Pl ot Seri es(ParabolicSeries(0.02, 0.02, 0.2), 0, 905, #Dots);
DrawLabel (' Parabolic(0.02, 0.02, 0.2)", 0);

16.56 Peak

Peak(Bar: integer; Series: integer; Reversal: float): float;
PeakSeries(Series: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the value of the last Peak that was identified for the specified Price Series as
of the specified Bar. The Reversal parameter determines how much of a percentage
(default) or point decline is required to trigger a new Peak. It typically requires a few
bars of downward price movement to reach the Reversal level and qualify a new Peak.
The Peak function never "looks ahead" in time, but always returns the Peak value as it
would have been determined as of the specified bar. For this reason, the return value
of the Peak function will lag, and report peaks a few bars later than they actually
occurred in hindsight. This is intentional, and allows peak/trough detection to be used
when back-testing trading systems.

Interpretation

e Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

e Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

e To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

e Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Peaks are detected by looking for a percentage (default) or point reversal in the Price
Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
high of $100, a peak will be triggered at that bar as soon as prices move down to $90
(provided they do not continue above $100). The move down to $90 may take
several bars. During these bars the Peak function will not return $100, but will
instead return the value of the previous peak. This is because you would not have
known that that $100 was an actual peak yet because the reversal level has not been
met. The new Peak value of $100 will be returned only after prices have reached the
$90 level, and the reversal level is reached.

© 2003-2006 WL Systems, Inc.

221

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.57

Example

{ Draw the level of 7% Peaks on the chart }
var PS: integer;

PS : = PeakSeries(#H gh, 7);

Pl ot Series(PS, 0, #Red, #Dots);

PeakBar

PeakBar(Bar: integer; Series: integer; Reversal: float): integer;
PeakBarSeries(Series: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar number at which the last Peak that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) decline is required to trigger a new Peak. It typically requires a
few bars of downward price movement to reach the Reversal level and qualify a new
Peak. The Peak function never "looks ahead" in time, but always returns the Peak
value as it would have been determined as of the specified bar. For this reason, the
return value of the Peak function will lag, and report peaks a few bars later than they
actually occurred in hindsight. This is intentional, and allows peak/trough detection to
be used when back-testing trading systems.

Interpretation

Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

PeakBar is particularly useful with working with chart patterns. You can store the
bar number of the most recent peak, then use this as an anchor bar to retrieve the
bar number for the previous peak, and so on.

Remarks

PeakBar returns -1 if a peak has not yet been detected at the beginning of the
chart.

To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation
(See Peakl20))

Example

{ Draw a trendline fromthe 2 nost recent 10% Peaks }
var pl, p2, Bar: integer;
var Detected2Peaks: bool ean = fal se;

Bar := BarCount - 1;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 222

pl := PeakBar(Bar, #C ose, 10);
if pl > -1 then
begin
p2 := PeakBar(pl, #C ose, 10);
if p2 > -1 then

begin
DrawLi ne(pl, PriceCose(pl), p2, PriceCose(p2), 0, #Red,
#Thi ck);
Det ect ed2Peaks : = true;
end;
end;

i f not Detected2Peaks then
DrawText (' 2 peaks not detected. Try another synbol or |oad nore
data.', 0, 5, 50, #Red, 10);

16.58 PeakNum

PeakNum(Bar: integer; Series: integer; Number: integer; Reversal: float): float;
PeakNumSeries(Series: integer; Number: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the value of the "Nth" most recent Peak that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) decline is required to trigger a new Peak. It typically requires a
few bars of downward price movement to reach the Reversal level and qualify a new
Peak. The Peak function never "looks ahead" in time, but always returns the Peak
value as it would have been determined as of the specified bar. For this reason, the
return value of the Peak function will lag, and report peaks a few bars later than they
actually occurred in hindsight. This is intentional, and allows peak/trough detection to
be used when back-testing trading systems.

Use the Number parameter to specify which Peak to identify. To obtain the most
recent Peak, pass 0 (although this is the same as using the Peak function). Number =
1 returns the previous Peak, 2 returns the second most previous, etc.

Interpretation

e Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

e Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

e To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

e Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Peaks are detected by looking for a percentage (default) or point reversal in the Price
Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new

© 2003-2006 WL Systems, Inc.

223 WealthScript Function Reference, Wealth-Lab Developer 4.0

high of $100, a peak will be triggered at that bar as soon as prices move down to $90
(provided they do not continue above $100). The move down to $90 may take
several bars. During these bars the Peak function will not return $100, but will
instead return the value of the previous peak. This is because you would not have
known that that $100 was an actual peak yet because the reversal level has not been
met. The new Peak value of $100 will be returned only after prices have reached the
$90 level, and the reversal level is reached.

Example

{ Flags bars as red when a potential Head & Shoulders top is form ng.
Note, this script does not check for penetration of the neckline. }
var Pl, P2, P3, LASTHEAD: fl oat;

var BAR, pbl, pb2, pb3: integer;

for Bar := 120 to BarCount - 1 do
begin
pl := Peak(Bar, #H gh, 7);

: = PeakNun(Bar, #High, 1, 7))
p3 := PeakNun(Bar, #Hi gh, 2, 7))
if ROC(Bar, #Close, 120) > 20 t
if pl < p2 then
if p2 > p3 then
begin
if LastHead <> p2 then
begin
Last Head : = p2;

©
N
o n

’hen

pbl : = PeakBar(Bar, #H gh, 7);
pb2 := PeakBar(pbl, #H gh, 7);
pb3 := PeakBar(pb2, #H gh, 7);

Annot ateBar('S1', pb3, true, #Black, 8);
AnnotateBar('H , pb2, true, #Black, 8);
Annot ateBar('S2', pbl, true, #Black, 8);
end;
if PriceH gh(Bar) < LastHead then
Set Bar Col or (Bar, #Red);
end;
end;

16.59 PVI

PVI(Bar: integer): float;
PVISeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

The Positive Volume Index was created by Norman Fosback, and its purpose is to
expose where "smart money" investment action is occurring. The assumption is that
smart money, mostly floor traders, will produce moves in price with less volume than
the rest of the crowd.

Interpretation

Fosback compared the PVI with its one year (255 bar) moving average. When PVI is
above the moving average, he calculated that there is a 79% chance that there is a
bull market in progress, and when it is below the average a 67% chance of a bear
market.

Example
var Bar: integer;

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 224

var NVI Pane, PVI Pane: integer;

NVI Pane : = CreatePane(75, true, true);
PVI Pane : = CreatePane(75, true, true);
var NvI1, PVI1, SMAl, SMA2: integer;

NVI1 := NVI Seri es;
PVI1 := PVI Seri es;
SMAL := SMASeries(PVI1, 255);

SMA2 : = SMASeries(NvI1l, 255);
Pl ot Seri esLabel (NVI 1, NVIPane, 900, #Thick, "NVI1=NVI()');
Pl ot Seri esLabel (PVI1, PVIPane, 050, #Thick, "PVI1=PVI()');
Pl ot Seri esLabel (SMA1, PVIPane, 020, #Thin, 'SMA1=SMA(PVI 1, 255)");
Pl ot Seri esLabel (SMA2, NVI Pane, 200, #Thin, 'SMA2=SMA(NVI 1, 255)");
Bar := BarCount - 1,
if PVI(Bar) > @MAl[Bar] then
DrawLabel (' PVI says 79% chance Bull Market is in progress', 0)
el se
DrawLabel (' PVI says 67% chance a Bear Market is in progress', 0);
if NVI(Bar) > @MA2[Bar] then
DrawLabel (' NVI says 96% chance Bull Market is in progress', 0)
el se
DrawLabel (' NVI says 53% chance a Bear Market is in progress', 0);

16.60 QStick

QStick(Bar: integer; Period: integer): float;
QStickSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

QStick provides a way to quantify candlestick values. The QStick indicator is
calculated by taking a moving average of the difference between open and closing
prices.

Interpretation

When QStick crosses above zero, this is considered bullish, and below zero bearish.
You can also look for extreme QStick levels to determine overbought and oversold
levels, or look for divergences between QStick and price to signal trend reversals.

Example

{ See how good the QStick zero line entry rule really is }
var QSTI CKPANE, BAR: i nteger;
StickPane : = CreatePane(100, true, true);
Pl ot Series(QStickSeries(24), @StickPane, 050, #Thick);
DrawLabel (" QStick(24)', QStickPane);
Install ProfitTarget(10);
I nstal | StopLoss(20);
for Bar := 24 to BarCount - 1 do
begin
Appl yAut oSt ops(Bar);
if CrossOverValue(Bar, QStickSeries(24), 0) then

BuyAt Market (Bar + 1, '');
i f CrossUnderVal ue(Bar, QstickSeries(24), 0) then
Short At Market (Bar + 1, '');

end;

© 2003-2006 WL Systems, Inc.

225 WealthScript Function Reference, Wealth-Lab Developer 4.0

16.61 RelSlope

RelSlope(Bar: integer; Series: integer; Period: integer; Smooth: integer): float;
RelSlopeSeries(Series: integer; Period: integer; Smooth: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

RelSlope stands for the "Relative Slope" Indicator, created by Dimitris Tsokakis.
RelSlope takes 3 parameters. The Series parameter specifies what you wish to apply
Relative Slope to, average price weighted with closing price is recommended
(#AverageC).

Note: Series should be a Price Series that contains positive values only. Calculating
RelSlope on a Price Series that contains negative values is meaningless.

The Period parameter determines the period of an initial EMA that is taken of the
Series. A Period of 10 is recommended. The final parameter, Smooth, determines a
final smoothing of the indicator, and a value of 3 is recommended.

Interpretation

As an independent indicator, RelSlope is a fast trend follower and its divergences often
anticipate big price movements.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as RelSlope.
Choose the default method for calculating the EMA exponent in the Indicator
Calculations section of the Options dialog.

Calculation
Example

{ This ChartScript denonstrates the cal cul ation of Rel Sl ope }
var Period, Snooth, RSPane: integer;

var K, KPLUS, KM NUS, S1, M/Rel Sl opeSeries: integer;

UseUpdat edEMA(true);

Period :
Snoot h :

3,

K := EMASeri es(#C ose, Period);

KPlus := AddSeries(K, OfsetSeries(K, -1));

KM nus := SubtractSeries(K, OfsetSeries(K, -1));

S1 := MultiplySeriesValue(DivideSeries(KMnus, KPlus), 2);

MyRel Sl opeSeries := MiltiplySeriesVal ue(EMASeries(S1, Snooth), 1000

RSPane := CreatePane(75, true, true);

Pl ot Seri esLabel (MyRel Sl opeSeri es, RSPane, #Bl ue, #Hi stogram

"Rel Sl ope(cal culated)');

Pl ot Seri esLabel (Rel Sl opeSeries(#C ose, Period, Snoboth), RSPane,
#Red, #Thin, 'Rel Slope');

16.62 ROC

ROC(Bar: integer; Series: integer; Period: integer): float;
ROCSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 226

The Rate of Change (ROC) indicator provides a percentage that the security's price
has changed over the specified Period. The Rate of Change shows the speed at which
price changes from one period to another. Sometimes this is referred to as
momentum. It gives a excellent indication of the market participants' commitment to
the current trend. When the ROC begins to reverse or turn, it indicates diminishing
commitment and a loss of momentum. ROC is a leading or coincidental indicator.

Like other momentum indicators, ROC has overbought and oversold zones. These
zones are defined by lines that are placed so that ROC spends about 5% of its time
within the zones. The lines should be adjusted according to market conditions.

Interpretation

¢ In ranging markets, go long after ROC falls below the oversold line then rises back
above it.

e In ranging markets, go short after ROC rises above the overbought line the falls
back below it.

¢ In ranging markets, go long on bullish divergences if ROC's first trough is in the
oversold zone.

e In ranging markets, go short on bearish divergences if ROC's first peak is in the
overbought zone.

e In an up trend confirmed by a trend-following indicator, go long when ROC turns up
from below the center line. Exit using the trend following indicator. Divergences of
ROC and price during a trend can be misleading.

¢ In a down trend, confirmed by a trend-following indicator, go short when the ROC
turns down from above the center line. Exit using the trend following indicator.
Divergences of ROC and price during trend can be misleading.

Calculation

ROC is the percentage change between the current price with respect to an earlier
price. Typically, the closing Price Series (#Close) is used.

ROC(Bar) = 100 * ((Price(Bar) / Price(Bar - Period)) - 1),

where Bar is the current Bar. For example, if the current price is 77 and the previous
price were 70, ROC = 100 * ((77/ 70) - 1) = 10.0, which is the percentage
change from 70.

Example

{ This systemis based on a snpothed Rate of Change. Entry occurs when
snoot hed ROC ri ses above zero. The long Position is closed when the
snoot hed ROC turns down. }

var ROCPANE, SMAROC, BAR i nteger;

ROCPane : = CreatePane(75, true, true);

Pl ot Seri es(ROCSeries(#C ose, 40), ROCPane, 005, #ThickHi st);

SMARoc : = SMASeries(ROCSeries(#C ose, 40), 14);

Pl ot Seri es(SMARoc, ROCPane, #Bl ack, #Dotted);

for Bar := 54 to BarCount - 1 do
begi n
i f not LastPositionActive then
begin
i f CrossOverVal ue(Bar, SMARoc, 0) then
BuyAt Market (Bar + 1, '');
end
el se
begin

© 2003-2006 WL Systems, Inc.

227 WealthScript Function Reference, Wealth-Lab Developer 4.0
i f TurnDown(Bar, SMARoc) then
Sel | At Market(Bar + 1, LastPosition, '');
end;
end;
16.63 RSI

RSI(Bar: integer; Series: integer; Period: integer): float;
RSISeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

The RSI function returns the Relative Strength Index indicator. RSI is one of the
classic momentum indicators and was developed by Wells Wilder. RSI measures a
market's internal strength by dividing the average of the sum of the up day closing
prices by the the average of the sum of the down day closing prices over a specific
period of time. It returns a value within the range of 0 to 100. The RSI is a leading or
a coincidental indicator. Popular averaging periods for the RSI are 9, 14 and 25.
Wilder used 14 periods. Use the Period that works best for you. The indicator
becomes more volatile and amplitude widens with fewer periods used.

Interpretation

e The classic way to interpret RSI is to look for oversold levels below 30 and
overbought levels above 70. These normally occur before the underlying price chart
forms a top or a bottom. Note you should change the levels depending on market
conditions. Ensure the level lines cut across the highest peaks and the lowest
troughs. During strong trends the RSI may remain in overbought or oversold for
extended periods.

e RSI also often forms chart patterns which may not show on the underlying price
chart, such as double tops and bottoms and trendlines. Also look for support or
resistance on the RSI.

e If underlying prices make a new high or low that isn't confirmed by the RSI this
divergence can signal a price reversal. RSI divergences from price indicates very
strong buy or sell signal.

e Swing Failures. If the RSI makes a lower high followed buy a downside move below
a previous low, then a Top Swing Failure has occurred. If the RSI makes a higher
low followed buy a upside move above a previous high, then a Bottom Swing
Failure has occurred.

e The mid point level of 50 will often act as support or resistance if the RSI bounce
off the 50 level. Crosses of the 50 level can be used as a buying or selling signal.
When RSI cross above then buy, when RSI crosses below then sell.

e RSI can be use to find dips in strong trends. Use trend indicator to determine a
strong up trend then if the RSI is below 50, you have a dip in the up trend. In
strong down trends use RSI above 50 to detect small rallies. Buy the dip and sell
the small rally.

Remarks

e As a rule of thumb, allow RSI to stabilize for 2.5 to 3 times the specified Period.
For example, start the trading loop at Bar Number 42 for a 14-period RSI.

Calculation

RSI =100 - (100 / (1 + RS))

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 228

where,

RSI relative strength index
RS = (average of n bars' up closes) / (average of n bars' down closes)
n = number of bars or period, typically 14

Note in calculating the RS values for the total of closes up, add all price changes
where the close is greater then previous close. For closes down, add all price changes
where the close is less then previous close.

Finally, the RSI formula may be found in some technical references as the following
equivalent expression:

RSI = 100 * UpDaysAvg / (UpDaysAvg + DownDaysAvg)

Example

{ This script colors each bar based on the RSI oversol d/ overbought
| evel }
var X: float;
var RSI PANE, BAR, COL: integer;
RSI Pane := CreatePane(75, true, true);
Set PaneM nhMax(RSI Pane, 0, 100);
Pl ot Series(RSl Series(#C ose, 14), RSIPane, 005, #Thin);
DrawLabel ('"RSI(Cose, 14)', RSIPane);
for Bar := 42 to BarCount - 1 do
begin
X := RSI(Bar, #Cl ose, 14);
if x > 50 then

begin

X .= X - 50;

X =X * 2

X :=x 1 9

col := Trunc(x) * 100;
end
el se
begin

X .= 50 - x;

X =X * 2

X :=x 1/ 9

col := Trunc(x) * 10;
end;
Set Bar Col or (Bar, col);

end;

16.64 RSquared

RSquared(Bar: integer; Series: integer; Period: integer): float;
RSquaredSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

RSquared is the Correlation Coefficient squared from Linear Regression. It is used to
determine how much of the price action over the specified period can be explained by
the regression line, and how much should be attributes to random noise. RSquared
ranges from O to 1.

RSquared is a statistical indicator. Other indicators in the same class are
LinearReg, LinearRegSlope, StdErr, and StdDev.

© 2003-2006 WL Systems, Inc.

229

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.65

Interpretation

e The closer RSquared is to one, the closer prices have fitted to the linear regression
line. See the table below. During strong trends, RSquared will remain above 0.5
for an extended period of time. Use the RSquared indicator with LinearRegSlope
to determine if a significant trend is in place.

e Use RSquared for confirmation of the trend. When RSI, Stochastics, CCI and other
momentum indicators are in overbought or oversold regions, look for RSquared to
show that no statistical trend is in place before taking a contrary trading position.

e If trading a trend-following system, such as moving average crossover, you can use
RSquared to confirm that the trend is statistically significant.

Table

The following table show the RSquared values for a given number of periods for a
statistically significant trend to be in place. A 95% confidence means that 95% of the
prices can be explained by Linear Regression and 5% by unexplained random noise.

RSquared values for

Number of periods 959% confidence
5 0.77
10 0.40
14 0.27
20 0.20
25 0.16
30 0.13
50 0.08
60 0.06
120 0.03

Calculation

RSquared is a rather complex statistical calculation. It uses the least square method
to fit a trendline to the data by minimizing the distance between the price and the
Linear Regression trendline and returns a percentage of price movement that is
explained by the regression line.

Example

{ Plot RSquared in order to exani ne how prices react when they reach
different levels. }

var RSquar edPane: i nteger;

RSquar edPane : = CreatePane(75, true, true);

Pl ot Seri es(RSquaredSeries(#C ose, 30), RSquaredPane, 905, #Thin);
DrawLabel (' RSquared(C ose, 30)', RSquaredPane);

var LinRegSl opePane: integer;

Pl ot Seri es(Li near RegSl opeSeries(#C ose, 30), RSquaredPane, 509,
#Thin);

DrawLabel (' Li near RegSl ope(Close, 30)', RSquaredPane);

RVI

RVI(Bar: integer; Period: integer): float;
RVISeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 230

RVI returns the Relative Vigor Index, and indicator created by John Ehlers of Mesa
Software (http://www.mesasoftware.com). RVI measures the average difference
between closing and opening price, normalized to the average daily trading range. It
applies a normalization filter to smooth the index with minimal lag.

Interpretation

RVI reaches extreme high and low levels near the peaks of uptrends and downtrends.
You can trigger signals based on these extreme levels, or wait until RVI crosses above
or below a signal line.

The RVI indicator accepts a parameter that determines the Period to use in its
calculation. You can create a dynamic RVI that is based on half of the dominant cycle
period as described by Ehlers. Below we create a custom Price Series and populate
with the RVI values based on half of the cycle period as determined by the HTPeriod
indicator.

Example

var RVI PANE, DYNRVI, BAR, N, P: integer;
RVI Pane : = CreatePane(100, true, true);

DynRVI := CreateSeries;
for Bar := 40 to BarCount - 1 do
begi n

n := Round(HTPeriod(Bar, #Average)) div 2;
Set Seri esVal ue(Bar, DynRVI, RVI(Bar, n));
end;
Pl ot Seri es(DynRVI, RVIPane, 009, #Thick);
DrawLabel (' DynRVI', RVI Pane);
for Bar := 20 to BarCount - 1 do
begi n
if TurnUp(Bar, DynRVI) then
if GetSeriesValue(Bar - 1, DynRVI) < -0.35 then
BuyAt Market (Bar + 1, '');
i f CrossOverValue(Bar, DynRVI, 0.35) then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
Sel | At Market(Bar + 1, P, "');
end;
var HTPeri odPane: integer;
HTPeri odPane : = CreatePane(100, true, true);
Pl ot Seri es(HTPeriodSeries(#Average), HTPeriodPane, 055, #Thick);
DrawLabel (' HTPeri od(Average)', HTPeriodPane);

16.66 SMA

SMA(Bar: integer; Series: integer; Period: integer): float;
SMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

SMA returns the Simple Moving Average indicator. Moving averages are one of the
core indicators in technical analysis, and there are a variety of different versions. SMA
is the easiest moving average to construct. It is simply the average price over the
specified Period. The average is called "Moving" because it is plotted on the chart bar
by bar, forming a line that moves along the chart as the average value changes.

Interpretation

© 2003-2006 WL Systems, Inc.

231 WealthScript Function Reference, Wealth-Lab Developer 4.0

e SMAs are often used to determine Trend Direction. If the SMA is moving up, the
trend is up, moving down and the trend is down. A 200 bar SMA is common proxy
for the long term trend. 60 bar SMAs are typically used to gauge the intermediate
trend. Shorter period SMAs can be used to determine shorter term trends.

e SMAs are commonly used to smooth price data and technical indicators. Applying
an SMA smoothes out choppy data. The longer the period of the SMA, the
smoother the result, but the more lag that is introduced between the SMA and the
source.

¢ SMA Crossing Price is often used to trigger trading signals. When prices cross
above the SMA go long, when they cross below the SMA go short.

e SMA Crossing SMA is another common trading signal. When a short period SMA
crosses above a long period SMA, go long. Go short when the short term SMA
crosses back below the long term.

Calculation
SMA is simply the mean, or average, of the values in a Series over the specified

Period.

Example

{ An SMA Crossover system }
var BAR, hSlow, hFast, SlowPer, FastPer: integer;
Sl owPer : = 100;

Fast Per := 40;
hSl ow : = SMASeri es(#Cl ose, Sl owPer);
hFast := SMASeries(#C ose, FastPer);

Pl ot Series(hSlow, 0, 000, #Thick);
Pl ot Series(hFast, 0, 502, #Thick);

for Bar := SlowPer to BarCount - 1 do
begin
i f not LastPositionActive then
begin
if CrossOver(Bar, hFast, hSlow) then
BuyAt Market (Bar + 1, '');
end
el se
begin
if CrossUnder(Bar, hFast, hSlow) then
Sel | At Market(Bar + 1, LastPosition, '');
end;
end;

16.67 StdDev

StdDev(Bar: integer; Series: integer; Period: integer): float;
StdDevSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Standard Deviation is the statistical measure of market volatility. If prices trade in a
tight narrow trading range then StdDev will return a low value indicating volatility is
low. Conversely if prices swing wildly up and down then StdDev returns a high value
indicating volatility is high. What it does is measure how widely prices are dispersed
from the average or mean price.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 232

Interpretation

e Standard deviation rises as prices become more volatile. As price action calms,
standard deviation heads lower.

¢ Market tops accompanied by increase volatility over short periods of time, indicate
nervous and indecisive traders. Or market tops with decreasing volatility over long
time frames, indicate maturing bull markets.

¢ Market bottoms accompanied by decreased volatility over long periods of time,
indicate bored and disinterested traders. Or market bottoms with increasing
volatility over relatively sort time periods, indicate panic sell off.

Calculation

You can choose between standard deviation of a sample (compatible with Excel
STDEV) or of a population (compatible with Excel STDEVP) in the Indicator
Calculations section of the Options dialog. See the User Guide for details.

Example

{ Divide Standard Devi ation by Average Price to arrive
at a nornalized Volatility indicator }
var MyVOLATI LITY, VOLPANE: integer;
MyVol atility := DivideSeries(StdDevSeries(#C ose, 30),
SMASeri es(#C ose, 30));
Vol Pane : = CreatePane(100, true, true);
Pl ot Series(MyVolatility, Vol Pane, #Purple, #ThickHi st);

16.68 StdError

StdError(Bar: integer; Series: integer; Period: integer): float;
StdErrorSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the Standard Error of the estimate for a Linear Regression line of the specified
Period. Standard Error measures the difference between actual price and the
estimated price of the Linear Regression line at every point along the line. The lower
the standard error, the closer actual prices have met the estimate. If all the closing
prices matched the Linear Regression values for the specified period, then the
Standard Error would be Zero.

Interpretation

e The larger the error the less reliable the trend as the price has greater variance
around the Linear Regression line, prices are volatile. This can be caused by the
changes in the prevailing trend within the specified number of periods.

e The smaller the error then more reliable the trend as the prices are congregating
around the Linear Regression Linear line.

e If RSquared and Standard Error are at extreme levels and then they begin to
converge then expect a change in the trend.

Calculation

Standard Error is a fairly complex statistical calculation. It uses the least square fit
method to fit a trendline to the data by minimizing the distance between the price and
the Linear Regression trendline. This is used to find an estimated of the next periods
price. The Standard Error indicator returns the statistical difference between the
estimate and the actual price.

© 2003-2006 WL Systems, Inc.

233

WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Display the nost recent Linear Regression value, and the Standard
Error }
var BAR i nteger;

Bar := BarCount - 1,

DrawLabel ('Linear Reg = ' + FormatFloat('#, ##0.00', LinearReg(Bar,
#Close, 30)), 0);

DrawLabel ('Std Error ="' + FormatFloat('#, ##0.00', StdError(Bar,

#Close, 30)), 0);

16.69 StochD

StochD(Bar: integer; Period: integer; Smooth: integer): float;
StochDSeries(Period: integer; Smooth: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

StochD returns the Stochastic %D indicator. StochD is a smoothed version of the
Stochastic %K (see StochK). Specify the length of smoothing desired in the Smooth
parameter. The indicator can range from 0 to 100. Values near 0 indicate that most of
the recent price action closed near the days lows, and readings near 100 indicate that
prices are closing near the upper range.

The Stochastic is a momentum indicator. The closing price tends to close near the
high in an uptrend and near the low in a downtrend. If the closing price then slips
away form the high or the low, then momentum is slowing. Stochastics are most
effective in broad trading ranges or slow moving trends.

The %K and %D combination is called the fast stochastic. You can use the StochD
indicator as the basis for creating a "Slow Stochastic" %K. To create a Slow Stochastic
signal line, just take a moving average of the StochD.

Remarks

StochD is not valid until Bar Number Period + Smooth - 1.

Interpretation

StochD is used as a signal line for StochK. A buy is triggered when StochK crosses
above StochD from a level typically below 30. A sell is triggered when StochK
crosses below StochD from typically above 70.

Ranging markets, go long on bullish divergences, especially where the first trough
is below 30.

Ranging markets, go short on bearish divergences, especially where the first peak
is above 70.

Trending market, when either Stochastic line crosses below 30 (signal day), place a
stop order to go long if prices rise above the high of the signal day or any
subsequent day with a lower low. Place stop order below the low of the same day.

Trending markets, when either Stochastic line crosses above 70 (signal day), place
a stop order to go short if prices falls below the low of the signal day or any
subsequent day with a higher high. Place a stop loss order above the high of the
same day.

Trending markets, Use trend following indicators to exit. Can take profits on
divergences, if confirmed by the trend following indicator.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 234

Calculation

n Number of periods, normally 5

S = Nunber of snmpoothing intervals, nornally 3

%D = Slow Stochastic K, snmpothed over S periods (not SMA snoot hi ng)
HH(Bar-j) = Hi ghest Hi gh at Bar-j over n periods

LL(Bar-j) = Lowest Low at Bar-j over n periods

C(Bar-j) = PriceC ose at Bar-j

Y = Summation fromj = 0to S - 1 periods

Suml = X(C(Bar-j) - LL(Bar-j))

Sun® >(HH(Bar-j) - LL(Bar-j))
%O = 100 * Sunil / Sun®

Example

{ Sinple system based on Sl ow Stochastic }

var STOCHPANE, SLOWX, SLOWD, BAR: i nteger;

St ochPane : = CreatePane(120, true, true);
SlowK : = StochDSeries(10, 3);

SlowD : = SMASeries(SlowK, 3);

Pl ot Series(Sl owK, StochPane, #Purple, #Thick);
Pl ot Series(Sl owD, StochPane, #Black, #Thin);

for Bar := 20 to BarCount - 1 do
begi n
if not LastPositionActive then
begi n

if CrossOver(Bar, SlowK, SlowD) then
if GetSeriesValue(Bar - 1, SlowK) < 20 then

BuyAt Market (Bar + 1, '');

end

el se

begin

i f CrossOverValue(Bar, SlowK, 80) then
Sel | At Market (Bar + 1, LastPosition, '');
end;
end;

16.70 StochK

StochK(Bar: integer; Period: integer): float;
StochKSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

StochK returns the Stochastic Oscillator %K. The Stochastic Oscillator measures how
much price tends to close in the upper or lower areas of its trading range. The
indicator can range from 0 to 100. Values near 0 indicate that most of the recent price
action closed near the days lows, and readings near 100 indicate that prices are
closing near the upper range.

The Stochastic is a momentum indicator. The closing price tends to close near the
high in an uptrend and near the low in a downtrend. If the closing price then slips
away form the high or the low, then momentum is slowing. Stochastics are most
effective in broad trading ranges or slow moving trends.

Interpretation

The classic way to interpret the Stochastic is to wait for %K to reach an extreme level.
A level above 70 typically indicates an overbought condition, while below 30 indicates

© 2003-2006 WL Systems, Inc.

235 WealthScript Function Reference, Wealth-Lab Developer 4.0

an oversold level. While these penetrations of extreme levels indicate a warning, the

actual buy/sell signals occur when %K crosses %D (see StochD).

e Ranging markets, go long on bullish divergences, especially where the first trough
is below 30.

e Ranging markets, go short on bearish divergences, especially where the first peak
is above 70.

e Trending market, when either Stochastic line crosses below 30 (signal day), place a
stop order to go long if prices rise above the high of the signal day or any
subsequent day with a lower low. Place stop order below the low of the same day.

¢ Trending markets, when either Stochastic line crosses above 70 (signal day), place
a stop order to go short if prices falls below the low of the signal day or any
subsequent day with a higher high. Place a stop loss order above the high of the
same day.

e Trending markets, use trend following indicators to exit. Can take profits on
divergences, if confirmed by the trend following indicator.

Calculation
n = Nunber of periods, normally 5
HHn = Hi ghest Hi gh over n periods
LLn = Lowest Low over n periods
C = Priced ose today
% = Stochastic K=100* (C- LLn) / (HHn - LLn)

Example

{ A system based on Fast Stochastic Extrene Levels }
var STOCHPANE, BAR, P: integer;
St ochPane : = CreatePane(100, true, true);
Pl ot Seri es(StochKSeries(14), StochPane, 505, #Thick);
DrawLabel (' StochK(14)', StochPane);
for Bar := 14 to BarCount - 1 do
begin
i f CrossUnderVal ue(Bar, StochKSeries(14), 20) then
BuyAt Market (Bar + 1, '');
if CrossOverValue(Bar, StochKSeries(14), 20) then
for P:=0 to PositionCount - 1 do
if PositionActive(P) then
Sel | At Market(Bar + 1, P, "');
end;
16.71 StochRSI

StochRSI(Bar: integer; Series: integer; Period: integer): float;
StochRSISeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

StochRSI is an indicator created by Tushar Chande that combines Stochastics with the
Relative Strength Index. Like RSI, StochRSI cycles between overbought levels below
30 and oversold levels above 70. The StochRSI reaches these levels much more
frequently than RSI, resulting in an oscillator that offers more trading opportunities.
StochRSI moves within the range of 0 to 100. Unlike RSI, StochRSI frequently reaches
the extreme 0 and 100 levels.

Interpretation

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 236

e Look for oversold levels below 30 and overbought levels above 70. These normally
occur before the underlying price chart forms a top or a bottom. Note, you should
change the levels depending on market conditions. Ensure the level lines cut across
the highest peaks and the lowest troughs. During strong trends the StochRSI may
remain in overbought or oversold for extended periods.

e If underlying prices make a new high or low that isn't confirmed by the StochRSI,
this divergence can signal a price reversal. StochRSI divergences from price
indicates very strong buy or sell signal.

e Swing Failures. If the StochRSI makes a lower high followed buy a downside move
below a previous low, then a Top Swing Failure has occurred, sell signal. If the
StochRSI makes a higher low followed buy a upside move above a previous high,
then a Bottom Swing Failure has occurred, buy signal.

e The mid point level of 50 will often act as support or resistance if the StochRSI
bounce off the 50 level. Crosses of the 50 level can be used as a buying or selling
signal. When StochRSI cross above then buy, when StochRSI crosses below then
sell.

Calculation

StochRSI is essentially a StochK of the RSI. See both StochK and RSI for more
information.

StochRSI = (RSI(n) - RSI lowest low(n)) / (RSI highest high(n) - RSI
| owest |low(n))

where, n = number of periods

Example

var STOCHRSI PANE, BAR. i nteger;
St ochRSI Pane : = CreatePane(75, TRUE, TRUE);
Pl ot Seri es(StochRSI Series(#C ose, 14), StochRSlIPane, 411, 2);

I nstal | BreakEvenSt op(10);
for Bar := 31 to BarCount - 1 do
begin
Appl yAut oSt ops(Bar);
i f LastPositionActive then
begin
if StochRSI(Bar, #C ose, 14) = 100 then
Sel | At Market(Bar + 1, LastPosition, '');
end
el se
begin
if EMA(Bar, #Close, 30) > EMA(Bar - 1, #C ose, 30) then
if StochRSI(Bar, #Close, 14) = 0 then
BuyAt Market (Bar + 1, '');
end;
end;

16.72 Sum

Sum(Bar: integer; Series: integer; Period: integer): float;
SumSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

237

WealthScript Function Reference, Wealth-Lab Developer 4.0

16.73

Returns the sum of values from the specified Price Series over the desired period. This
is not really an indicator per se, but a mathematical function used to summate values
in a price series. You can use this function to build your own custom indicators, like
the example shown below.

In this example, we add all the highs for twenty bars, then add all the lows for twenty
bars, producing two floating point values, xUp and xDown. The two floats are
subtracted and the result used to build a new series called UpMinusDown. This new
indicator series behaves similar to the ATR indicator.

Interpretation

Sum is most useful when making your own custom indicators to integrate over a
specified number of Periods.

Calculation

Simply the addition of price over the period specified.
Sum=(PL + P2 + ... + Pn)

where,

Sum = summation of price values
P = price series to be summated, #Open, #Close, TrueRangeSeries, SMASeries, etc

n = number of periods or Bars

Example

{ Plot 20 bar sum of H ghs m nus Lows }
var XUP, XDOM: fl oat;
var UPM NUSDOWN, BAR, UDPANE: i nteger;
UpM nusDown : = CreateSeri es;
for Bar := 20 to BarCount - 1 do
begin
xUp := Sun(Bar, #H gh, 20);
xDown := Sun(Bar, #lLow, 20);
Set Seri esVal ue(Bar, UpM nusDown, xUp - xDown);
end;
UDPane := CreatePane(70, false, true);
Pl ot Seri es(UpM nusDown, UDPane, #d ive, #Thick);

TII

TII(Bar: integer; Series: integer; Period: integer; MAPeriod: integer): float;
TIISeries(Series: integer; Period, MAPeriod): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

TII is the Trend Intensity Index. It measures the strength of a trend by tabulating the
deviation of price and its moving average. Specify the number of bars to use when
calculating the indicator in the Period parameter, and the length of the moving
average to use in the MAPeriod parameter.

TII compares the price to its MAPeriod moving average, recording the deviation at
each bar. If price is above the moving average, a positive deviation is recorded, and if
price is below the moving average a negative deviation. The deviation is simply the
distance between price and the moving average.

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 238

Once the deviations are calculated, TII is calculated as:
(Sum of Positive Dev) / ((Sumof Positive Dev) + (Sum of Negative
Dev)) * 100
Interpretation

TII moves between 0 and 100. A strong uptrend is indicated when TII is above 80. A
strong downtrend is indicated when TII is below 20.

Example
var TIlPane, TIISer, Per, MAPer: integer;
Per := 30;
MAPer : = 60;
TIlISer := Tl Series(#Cl ose, Per, MAPer);
Tl I Pane := CreatePane(75, true, true);
Pl ot Seri esLabel (TIl Ser, TIIPane, 009, #Thin,
"TIl Ser=Tll (#Cl ose,' + IntToStr(Per) + ',' + IntToStr(MAPer) + ')"');
16.74 TRIX

TRIX(Bar: integer; Series: integer; Period: integer): float;
TRIXSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

TRIX displays the percentage Rate of Change (see ROC) of a triple exponentially-
smoothed moving average (EMA) over the specified Period. TRIX oscillates above and
below the zero value. The indicator applies triple smoothing in an attempt to
eliminate insignificant price movements within the trend that you're trying to isolate.

Interpretation

TRIX generates a signal when it changes direction (turns up or down). Alternately,
you can create a signal line using a moving average and wait until TRIX crosses this
signal line.

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
TRIX at runtime. Choose the default method for calculating the EMA
exponent in the Indicator Calculations section of the Options dialog.

Example
{ Buy when TRI X turns up from below zero. Sell when TRI X crosses above
zero. }
var TRI XPANE, BAR, Per: integer;
Per := 24;

TRI XPane : = CreatePane(50, true, true);
Pl ot Series(TRI XSeries(#C ose, Per), TRI XPane, 520, #Thick);
DrawLabel (' TRIX(Cose, 24)', TR XPane);

for Bar := 60 to BarCount - 1 do
begin
if not LastPositionActive then
begin

if TurnUp(Bar, TRI XSeries(#Cl ose, Per)) then
if TRIX(Bar, #Cl ose, 24) < 0 then
BuyAt Market (Bar + 1, '');
end
el se

© 2003-2006 WL Systems, Inc.

239 WealthScript Function Reference, Wealth-Lab Developer 4.0

begi n
i f CrossOverVal ue(Bar, TRI XSeries(#C ose, Per), 0) then
Sel | At Market (Bar + 1, LastPosition, '');
end;
end;

16.75 Trough

Trough(Bar: integer; Series: integer; Reversal: float): float;
TroughSeries(Series: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the value of the last Trough that was identified for the specified Price Series
as of the specified Bar. The Reversal parameter determines how much of a
percentage (default) or point advance is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified Bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Interpretation
(See Peakl0))

Remarks

e To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

e Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Troughs are detected by looking for a percentage (default) or point reversal in the
Price Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
low of $20, a trough will be triggered at that bar as soon as prices move up to $22
(provided they do not continue below $20). The move up to $22 may take several
bars. During these bars the Trough function will not return $20, but will instead
return the value of the previous trough. This is because you would not have known
that that $20 was an actual trough yet because the Reversal level has not been met.
The new Trough value of $20 will be returned only after prices have reached the $22
level, and the reversal level is reached.

Example

{ Draw the level of 7% Troughs on the chart }
var PS: integer;

PS := TroughSeries(#Low, 7);

Pl ot Series(PS, 0, #G een, #Dots);

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 240

16.76 TroughBar

TroughBar(Bar: integer; Series: integer; Reversal: float): integer;
TroughBarSeries(Series: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns the bar number at which the last Trough that was identified for the specified
Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) or point decline is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Interpretation
(See Peak Barl2h)

Remarks

¢ TroughBar returns -1 if a trough has not yet been detected at the beginning of the
chart.

e To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

e Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

(See Trough)

Example

{ Flag bars that are 5% Troughs }
var Bar, n, nPrev: integer;
for Bar := 0 to BarCount - 1 do
begi n
n := TroughBar(Bar, #lLow, 5);
if (n<>nPrev) and (n > -1) then

begi n
DrawCircle(6, 0, n, PriceLow(n), #Geen, #Thick);
nPrev := n;
end;
end;

16.77 TroughNum

TroughNum(Bar: integer; Series: integer; Number: integer; Reversal: float): float;
TroughNumSeries(Series: integer; Number: integer; Reversal: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description

Returns the value of the "Nth" most recent Trough that was identified for the specified

© 2003-2006 WL Systems, Inc.

241

WealthScript Function Reference, Wealth-Lab Developer 4.0

Price Series as of the specified Bar. The Reversal parameter determines how much of
a percentage (default) or point decline is required to trigger a new Trough. It typically
requires a few bars of upward price movement to reach the Reversal level and qualify
a new Trough. The Trough function never "looks ahead" in time, but always returns
the Trough value as it would have been determined as of the specified bar. For this
reason, the return value of the Trough function will lag, and report troughs a few bars
later than they actually occurred in hindsight. This is intentional, and allows
peak/trough detection to be used when back-testing trading systems.

Use the Number parameter to specify which Trough to identify. To obtain the most
recent Trough, pass 0 (although this is the same as using the Trough function).
Number = 1 returns the previous Trough, 2 returns the second most previous, etc.

Interpretation

e Peaks/Troughs of highs and lows are often used as support and resistance levels.
These points have historical significance because they have proven to be important
levels of price reversal.

e Peaks and troughs are a convenient way of detecting chart patterns. For example,
one aspect of a Head & Shoulders Top is a series of 3 Peaks, the second higher than
the outer two.

Remarks

e To base reversals on point/absolute movement, pass the #AsPoint constant to the
SetPeakTroughMode function in your script.

e Calculating peaks/troughs based on percentage moves is not allowed on data series
that contains negative or zero values. For these data series you must use
SetPeakTroughMode to base the reversal amount on a point value.

Calculation

Troughs are detected by looking for a percentage (default) or point reversal in the
Price Series greater than or equal to the reversal amount specified in the Reversal
parameter. For example, if you specify a reversal value of 10, and prices make a new
low of $20, a trough will be triggered at that bar as soon as prices move up to $22
(provided they do not continue below $20). The move up to $22 may take several
bars. During these bars the Trough function will not return $20, but will instead
return the value of the previous trough. This is because you would not have known
that that $20 was an actual trough yet because the reversal level has not been met.
The new Trough value of $20 will be returned only after prices have reached the $22
level, and the reversal level is reached.

Example

{ Draw resistance necklines for potential Double Bottons }
var T1, T2, DI FF, D FFPCT, P1: fl oat;

var LASTPEAK: fl oat;

var BAR i nteger;

for Bar := 120 to BarCount - 1 do
begi n
if ROC(Bar, #Close, 120) < -20 then
begin
t1l := TroughNun(Bar, #Low, 0, 5);

t2 := TroughNun(Bar, #Low, 1, 5);

Diff := Abs(t1 - t2);

DiffPct := (Diff / PriceCose(Bar)) * 100;
if DiffPct < 5 then

begi n

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 242

pl := Peak(Bar, #H gh, 5);

if pl <> LastPeak then

begin
Last Peak : = p1l;
DrawLi ne(Bar, pl, Bar + 60, pl, 0O, #Blue, #Thin);

end;

end;
end
end;

16.78 TrueRange

TrueRange(Bar): float;
TrueRangeSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

True Range is apart of the Welles Wilder indicator collection. It is the actual range,
high to low, of a bar. It includes any gap, between today's High or Low and
yesterday's Close. As it can use the previous day in its calculation, the first periods
true range may be undefined. The True Range is the maximum price movement over
a period. True Range is the basis of the Average True Range (see ATR) indicator.

Interpretation

e True Range is a way to express a daily range without ignoring gaps that can occur
between the previous close and the open.
e The True Range is not intended to be used as an indicator.

e The True Range is useful if used as a Price Series Parameter for another indicator as
in the EMA volatility example show below.

e Especially useful in volatility indicators, where the high and low prices may not
include the full volatility of price action.

e Can be incorporated in entry or exit triggers.

Calculation

True Range is always a positive humber and is defined by Welles Wilder to be the
greatest of the following for each period:

The distance from today's high to today's low.
The distance from yesterday's close to today's high.
The distance from yesterday's close to today's low.

Example

{ Exanple 1, Show how the ATR indicator is created }

var MYATR, ATRPANE: i nteger;

M/ATR : = W/ der MASeri es(TrueRangeSeries, 14);

ATRPane := CreatePane(100, true, true);

Pl ot Seri es(MYATR, ATRPane, #Maroon, #Thick);

Pl ot Seri es(ATRSeries(14), ATRPane, #Red, #Thin);

DrawLabel ('Ex 1: W/ der MASeri es(TrueRangeSeri es, 14)', ATRPane);

{ Exanple 2, Show how True Range is used in EMA volatility }
var TRPane: integer;

var range_s: integer; // Series

/'l EMA(True Range)

range_s := EMASeries(TrueRangeSeries, 21);

© 2003-2006 WL Systems, Inc.

243 WealthScript Function Reference, Wealth-Lab Developer 4.0

/1l Plot True Range
TRPane := CreatePane(100, true, true);

Pl ot Seri es(range_s, TRPane, #Maroon, #Thick);
TRPane);

DrawLabel (' Ex 2: EMA(TrueRangeSeries)',

16.79 UltimateOsc

UltimateOsc(Bar: integer): float;
UltimateOscSeries: integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Williams' Ultimate Oscillator uses weighted sums of three oscillators, each using a
different time period (7, 14, and 28), which represent short, medium, and long term
market trends. The Ultimate Oscillator moves within the range of 0 to 100.

Interpretation

Williams recommended method of interpreting the Ultimate Oscillator is to look for
divergences between the indicator value and price. For example, a bullish divergence
occurs when prices make a lower low, but the Ultimate Oscillator fails to make a lower

low.

Example

{ Look for bullish divergences between U tinmte GCscillator and Price }

var T1, T2: float;
var UUP, PUP: bool ean;

var ULTOSCPANE, UTROUGH, PTROUGH, BAR: i nteger;

U t GscPane := CreatePane(80, true, true);

PlotSeries(UtinmteGOscSeries, UtGscPane, 022, #Thick);

DrawLabel ("U timateGsc', U tGCscPane);

Set PeakTr oughMode(#AsPoint);

UTrough := TroughSeries(U tinateOscSeries, 10);
Pl ot Seri es(UTrough, U tGscPane, #G een, #Dots);
PTrough := TroughSeries(#C ose, 10);

Pl ot Seri es(PTrough, 0, #G een, #Dots);

for Bar := 100 to BarCount - 1 do

begin
tl := Trough(Bar, U tinmateGscSeries, 10);
t2 := TroughNunm(Bar, U tinmateGCscSeries, 1, 10);
Ulp :=tl > t2;
tl := Trough(Bar, #C ose, 10);
t2 := TroughNun(Bar, #Cl ose, 1, 10);
PUp :=tl > t2;

if UUp and not PUp then
Set Bar Col or (Bar, #Green);
end;

16.80 VHF

VHF(Bar: integer; Series: integer; Period: integer): float;
VHFSeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 244

The Vertical Horizontal Filter is used to determine if prices are trending or are in a
congestion stage. It is calculated by dividing the difference in the sums of highest and
lowest values by the sum of the absolute values of daily price differences. Typically a
period of 28 is used for VHF.

Interpretation

VHF describes how strongly prices are trending. The higher the VHF value, the
stronger the trend.

Example

{ Color chart background when prices are trending according to VHF }
var VHFPANE, BAR: i nteger;
VHFPane : = CreatePane(70, true, true);
Pl ot Seri es(VHFSeries(#C ose, 28), VHFPane, 952, #Thin);
DrawLabel (" VHF(28)', VHFPane);
for Bar := 28 to BarCount - 1 do
if VHF(Bar, #Close, 28) > 0.4 then
Set Backgr oundCol or (Bar, 789);

16.81 Vidya

Vidya(Bar: integer; Series: integer; VolatilityIndex: integer; Alpha: float): float;
VidyaSeries(Series: integer; VolatilityIndex: integer; Alpha: float): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Vidya returns Tushar Chande's Variable Index Dynamic Average. Vidya is similar to
an Exponential Moving Average, but uses a different period for each bar of calculation.
The period to use is determined by the bar's volatility. Bars with a high volatility will
use a shorter period, and those with a low volatility a longer period. This results in an
indicator that is very responsive to abrupt market moves, but becomes less responsive
during consolidation periods.

Vidya requires a "Volatility Index", which should be some indicator that tracks market
volatility. Specify the Volatility Index as a Price Series in the VolatilityIndex
parameter. The resulting Vidya will have lower effective periods on bars where the
Index indicates high volatility.

Vidya also requires a floating point Alpha parameter. The values of the Volatility
Index are multiplied by Alpha to modulate the sensitivity of the Vidya. You should
arrive at a value of Alpha such that (1 - Alpha * Volatility Index) never becomes
negative.

Interpretation

You can interpret Vidya as you would another moving average. Additionally, Vidya
tends to respond more quickly and go flat during consolidation periods.

Example

{ Vidya using Standard Deviation as Volatility Index }
var STD, SMASTD, VOLI DX, VI DYASTDDEV: integer;

{ Obtain Current Std Dev as a ratio of Historic Std Dev }
Std := StdDevSeries(#C ose, 10);

SmasStd = SMASeries(Std, 50);

Vol IDX := DivideSeries(Std, SmaStd);

© 2003-2006 WL Systems, Inc.

245 WealthScript Function Reference, Wealth-Lab Developer 4.0

{ Create the Vidya }
Vi dyaSt dDev : = VidyaSeries(#C ose, VolIDX, 0.1);
Pl ot Seri es(VidyaStdDev, 0, #Red, 2);

16.82 VMA

VMA(Bar: integer; Series: integer; Period: integer): float;
VMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

VMA returns the Volume-Weighted Moving Average for the specified Price Series and
Period. VMA is similar to a Simple Moving Average (SMA), but each bar of data is
weighted by the bar's volume.

VMA places more significance on bars with the largest volume and less for bars with
lowest volume for the Period specified. The VMA value attempts to represent the
average purchase price of the past number of periods, as it assumes that all prices
were traded at selected time (usually the closing value). Using VMA, you can judge if
you are buying at a low value or selling at a high value compared to the averaged
price paid by all market participants.

Because important breakouts are often accompanied by a large increase in volume,
VMA will track aggressive moves more closely than other types of moving averages.
During consolidation periods, where volume is light, VMA will act like a normal Simple
Moving Average.

Interpretation

e Use the same rules that we apply to SMA when interpreting VMA. Keep in mind,
though, that VMA is generally more sensitive to price movement on high volume
days.

e VMA's are used to determine trend direction. If the VMA is moving up, the trend is
up, if moving down then the trend is down. A 200-bar VMA is common proxy for the
long term trend. 60-bar VMA's are typically used to gauge the intermediate trend.
Shorter-period VMA's can be used to determine short-term trends.

e VMA's are commonly used to smooth price data and technical indicators. Applying a
VMA smooths out choppy data. The longer the period of the VMA, the smoother the
result, but more lag is introduced between the VMA and the source series.

e VMA crossing price is often used to trigger trading signals. For example, when
prices cross above the VMA go long, and when they cross below the VMA go short.

e Look for differences between the SMA and the VMA with the same number of
periods. When the WMA is above the SMA then buyers are active and are
accumulating stock, go long. When the WMA is below the SMA then seller are
active, and stock is being sold, go short.

Calculation

VWA= (VL*PL+V2* P2+ ...+ Vn*Pn)/ (VL+V2+ ... +Vn)
where,

P1 = current price

P2 = price one bar ago, etc . .

V1 = current volume

V2 = volume one bar ago

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 246

n = number of periods/bars

Example

{ Conpare a Volume Wi ghted Myving Average with a standard MA }
Pl ot Seri es(SMASeries(#Cl ose, 60), 0, 005, #Thin);
Pl ot Seri es(VMASeries(#Cl ose, 60), 0, 005, #Thick);

16.83 Volatility

Volatility(Bar: integer; Period: integer; ROCPeriod: integer): float;
VolatilitySeries(Period: integer; ROCPeriod: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Return's Chaikin's Volatility indicator of the specified Moving Average and ROC
periods. Chaikin's Volatility first calculates an Exponential Moving Average (EMA) of
the difference between the High and Low price. The Volatility indicator is then created
by taking the Rate of Change (ROC) of this value over a period specified by
ROCPeriod. The period of the EMA is specified in the Period parameter.

Interpretation

e High values indicate that intraday prices have a wide high to low range. Low values
indicate that intraday prices have relatively constant high to low range.

¢ Market tops accompanied by increase volatility over short periods of time, indicate
nervous and indecisive traders. Or market tops with decreasing volatility over long
time frames, indicate maturing bull markets.

e Market bottoms accompanied by decreased volatility over long periods of time,
indicate bored and disinterested traders. Or market bottoms with increasing
volatility over relatively sort time periods, indicate panic sell off.

Calculation
First calculate an Exponential Moving Average (EMA) of the difference between High
and Low price.

HLAve = 10-day EMA(High - Low)

Then take the Rate of Change (ROC) of this value over a period specified by
ROCPeriod.

Cv = (HLAve) / (HLAve n days ago)
where,

CV = Chaikin's Volatility value
n = number of ROC periods

Note: UseUpdatedEMA affects the calculation of EMA-based indicators such as
Volatility. Choose the default method for calculating the EMA exponent in
the Indicator Calculations section of the Options dialog.

Example

{ Colors bars with higher intensity red as volatility increases }
var V: float;

var VOLPANE, BAR, N:. integer;

Vol Pane : = CreatePane(100, true, true);

Pl ot Series(VolatilitySeries(14, 10), Vol Pane, 062, #ThickHi st);

© 2003-2006 WL Systems, Inc.

247

WealthScript Function Reference, Wealth-Lab Developer 4.0

DrawLabel ("Volatility(14, 10)', Vol Pane);
for Bar := 0 to BarCount - 1 do
begin
v := Volatility(Bar, 14, 10);
n := Round(v) div 10;
ifon 0 then
n:= 0;
ifon 9 then
n:= 0;
Set Bar Col or (Bar, n * 100);
end;

N

I v I

16.84 WilderMA

WilderMA(Bar: integer; Series: integer; Period: integer): float;
WilderMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

WilderMA is sometimes call Wilder's Smoothing, and it returns the Moving Average as
calculated by Welles Wilder in his book New Concepts in Technical Trading. This
indicator is similar to the Exponential Moving Average. Compared to other moving
averages, WildersMA responds slowly to price changes. A n-period WildersMA gives
similar values to a 2n period EMA. For example, a 14-period EMA has almost the
same values as a 7-period WilderMA.

Interpretation

WilderMA can be interpreted in the same way as other moving averages. The
WilderMA is like a EMA with half number of periods. See the EMA indicator for more
information.

You should use a WilderMA when calculating other Wilder's indicators to ensure
consistent results with other systems and users.

If you are after a smoothing indicator for general use, it is best to use the SMA or
EMA.

Calculation

WilderMA is calculated for periods "n" as follows:

Wlder MA = (Previous Wlder MA* (n- 1) + Price Series Value) / n

where,

n = number of periods
Price Series Value = data you wish to average

Example

{ Conpare a Sinple and Exponential Moving Average with Wlder's MA }
var n: integer;
var s, s2: string;

n := 14;
s :="'"(Close, ' +IntToStr(n) + "')';
s2 :='(Cose, " +IntToStr(2 * n) + '

)"
Pl ot Seri esLabel (W I der MASeri es(#Cl ose, n), 0, 090, #Thick,
"WlderMA' + s);
Pl ot Seri esLabel (SMASeries(#Cl ose, n), 0, 900, #Thin, 'SMA" + s);
Pl ot Seri esLabel (EMASeries(#Close, 2 * n), 0, 005, #Thin, 'EMA" + s2
)

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 248

16.85 WilliamsR

WilliamsR(Bar: integer; Period: integer): float;
WilliamsRSeries(Period: integer): integer;

MChartScripts MSimuScripts OPerfScripts ©CMScripts

Description

Williams %R is a momentum indicator developed by Larry Williams. Like Stochastic
Oscillators (StochK, StochD), WilliamsR is used to gauge overbought and oversold
levels, and ranges between 0 and 100. However, unlike most other momentum
oscillators, the low end of the scale represents an overbought area, and the high end
an oversold condition. For this reason Williams %R is often multiplied by -1 and
plotted on a negative scale.

Williams %R measures the latest closing price relative to high low range within the
past data, thus it reflects buyers and sellers commitment to close the price within that
range. At the peak of the buyer's power the oscillator reaches zero, and at the peak of
the seller's power, it reaches 100. The overbought region is below 10 percent and the
oversold region is over 90 percent.

Interpretation

A reading of above 80 or 90 indicates oversold levels, and below 20 or 10 indicates
overbought. Williams %R has a tendency to peak ahead of price, so it can be a good
tool in identifying trend reversals. During strong trends, the Williams %R can remain
in the oversold or overbought regions for extended periods of time.

¢ In ranging markets, go long when the indicator falls below the oversold line then
rises back above the oversold line.

¢ In ranging markets, go short when indicator rises above the overbought line the
falls back below the overbought line.

¢ In ranging markets, go long on bullish divergences, if the indicator's first trough is
in the oversold zone.

¢ In ranging markets, go short on bearish divergences, if the indicator's first peak is
in the overbought zone.

e In a up trend or rally, go short if the indicator fails to reach the oversold region and
begins to fall. This is a swing failure, it show the buyers are weakening.

¢ In a down trend, go long when the indicator fails to reach the overbought region
and begins to rise. This is a swing failure, it show the sellers are weakening.

Calculation
WPR = 100 * (Hhn - C) / (H1 - Ln)
where,

n = period, such as 7 days

Hn = Highest high in last n periods
Ln = Lowest low in last n period

C = closing price of latest bar

Example

{ Color the chart background for snoothed WIIlians %R oversold and
over bought |evels }

var X: float;

var PCTRPANE, SMOOTHR, BAR:. i nteger;

© 2003-2006 WL Systems, Inc.

249

WealthScript Function Reference, Wealth-Lab Developer 4.0

Pct RPane : = CreatePane(75, true, true);
Pl ot Series(WIlliansRSeries(14), PctRPane, 511, #Thick);
Snoot hR : = Wl derMASeries(WIliansRSeries(14), 4);
DrawLabel ("WIliamsR(14)', PctRPane);
Pl ot Seri es(Smoot hR, Pct RPane, #Bl ack, #Thin);
for Bar := 20 to BarCount - 1 do
begin

X := Cet SeriesValue(Bar, SmoothR);

if x <20 then

Set Backgr oundCol or (Bar, #RedBkg)

else if x > 80 then

Set Backgr oundCol or (Bar, #Bl ueBkg);
end;

16.86 WMA

WMA(Bar: integer; Series: integer; Period: integer): float;
WMASeries(Series: integer; Period: integer): integer;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

WMA returns a linearly-Weighted Moving Average of the Price Series over the specified
Period.

Whereas a Simple Moving Average (SMA) calculates a straight average of the data,
WMA applies more weight to the data that is more current. The most weight is placed
on the most recent data point. Because of the way it's calculated, WMA will follow
prices more closely than a corresponding SMA.

Interpretation

e Use the same rules that we apply to SMA when interpreting WMA. Keep in mind,
though, that WMA is generally more sensitive to price movement. This can be a
double-edged sword. On the one hand, it can get you into trends a bit earlier than
an WMA would. On the other hand, the WMA will probably experience more
whipsaws than a corresponding SMA.

e Use the WMA to determine trend direction, and trade in that direction. When the
WMA rises then buy when prices dip near or a bit below the WMA. When the WMA
falls then sell when prices rally towards or a bit above the WMA.

e Moving averages can also indicate support and resistance areas. A rising WMA
tends to support the price action and a falling WMA tends to provide resistance to
price action. This reinforces the idea of buying when price is near the rising WMA or
selling when price is near the falling WMA.

e All Moving Averages, including the WMA are not designed to get you into a trade at
the exact bottom and out again at the exact top. They tend to ensure that you're
trading in the general direction of the trend, but with a delay at the entry and exit.
The WMA has a shorter delay then the SMA.

Calculation

WMA is a linearly-weighted moving average that is calculated by multiplying the first
data point (oldest in time) by 1, the second by 2, the third by 3, etc. The final result is
then divided by the sum of the weights. More recent data is thus more heavily
weighted, and contributes more to the final WMA value. WMA excludes price data
outside the length of the moving average, Period.

WA =(PL*n+P2*(n1l + P3* (n-2) +...)/ (n+(n-1) + (n-2)

© 2003-2006 WL Systems, Inc.

Technical Indicator Functions 250

where,

P1 = Current Price
P2 = price one bar ago, etc....
n = number of periods

Example

{ This sanple system acts on crossovers of 60 and 80 period W/HAs }
var BAR, WWAS|I ow, WVAFast: i nteger;

WVASI ow : = WwWASeries(#C ose, 80);

WWAFast : = WVASeri es(#C ose, 60);

Pl ot Seri esLabel (WMAFast, 0, 900, #Thin, 'WMAFast');

Pl ot Seri esLabel (WMASI ow, 0, 009, #Thin, 'WASl ow);

Install ProfitTarget(20);
for Bar := 80 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

i f LastPositionActive then

begin
if CrossUnder(Bar, WVAFast, WWVASIow) then
Sel | At Market(Bar + 1, LastPosition, '');
end
el se
begin
if CrossOver(Bar, WWAFast, WWVASI ow) then
BuyAt Market (Bar + 1, '');
end;
end;

© 2003-2006 WL Systems, Inc.

251

WealthScript Function Reference, Wealth-Lab Developer 4.0

17

17.1

17.2

Time Frame Functions

Overview

The Time Frame functions are probably the most difficult to understand of the
WealthScript functions, yet once you have mastered them, you will see how easy it is
to create complex trading systems based on data and indicators in other time frames.

Two concepts relating to time frames are necessary to understand. The first is that
you can Scale the data in the primary series using the using the Scale toolbar for
ChartScripts (D W M, 5, [2)) and the Scale tab controls in the $imulator, Rankings,
and Scans tools. Scaling in this manner re-creates the data into a new base time
frame, which allows you to generate trades in the new scale. Note that the
ChangeScalelst function serves this same purpose, but it is useful only in the
ChartScript window.

Unlike the aforementioned scaling features of Wealth-Lab, the Time Frame functions
do not change the base time frame and therefore do not allow you to make trades on
resultant Price Series. This group of functions allow you to create indicators in more
compressed time frames that must be restored or projected back to the original base
time frame.

Scaling and Time Frame Notes:

1. Transforming intraday data to multiples of its underlying interval using the Scale
toolbar is currently available only for ChartScript windows. A similar intraday
scaling feature does not exist for the $imulator, Scans, and Rankings.

2. It is not possible to place trades on a Primary Series that has been time-
compressed from within a script using Set Scal eConpr essed or

Set Scal eDai | y, for example. These WealthScript Time Frame functions allow
you only to generate indicators and other Price Series in a more compressed
time frame that must be referenced back to the base time frame.

For more information, see the discussion of Understanding Time Frames in the
WealthScript Guide.

Note: The Time Frame category of WealthScript functions are not available for
SimuScripts.

ChangeScale

ChangeScale(Scale: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Changes the scale of the chart window to the scale specified in the Scale parameter.
You must use the following constants to specify scale:

#Daily, #Weekly, #Monthly

Use this function if you have a system that should always operate on weekly data, for
example, to save you from having to manually change scale from the toolbar.

© 2003-2006 WL Systems, Inc.

Time Frame Functions 252

Remarks
¢ Available from the ChartScript window only.

e ChangeScale works differently than other functions. The parser looks for the
statement in the code and changes scale before executing the script. If you do not
want to change the scale then do not include this statement - even in a comment
block!

e Do not use ChangeScale more than once in the same ChartScript. Only the first
ChangeScale call will be honored.

Example

ChangeScal e(#Weekly);
{ Systemrules for weekly scale only follow }

17.3 DailyFromMonthly

DailyFromMonthly(Series: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns the daily price Series [handle] from a previously accessed monthly series
(using SetScaleMonthly) specified by the parameter Series. The function creates a
new Price Series synched with the current daily chart, and populates it with the
appropriate values from the monthly series. The result will be repeated values
(typically 20 or so) for each month within the series.

Example

{ Plot nmonthly high/low bands on the daily chart }
var MH, M., MHP, M.P: integer;

Set Scal eMont hl y;

mh : = #Hi gh;

m = #lLow;

Rest orePri marySeri es;

mhp : = DailyFronMonthly(mh);

mp := DailyFronMonthly(m);

Pl ot Series(mhp, 0, #Red, #Thin);

PlotSeries(mp, 0, #Blue, #Thin);

17.4 DailyFromWeekly

DailyFromWeekly(Series: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns a daily price series [handle] from a previously accessed weekly series (using
SetScaleWeekly) specified by the parameter Series. The function creates a new
Price Series synched with the current daily chart, and populates it with the appropriate
values from the weekly series. The result will be repeated values (typically 5) for each
week within the series.

Example

{ Plot 52 week noving average on the daily chart }
var WBMA, WSMAP: i nt eger;
Set Scal eWeekl y;

© 2003-2006 WL Systems, Inc.

253

WealthScript Function Reference, Wealth-Lab Developer 4.0

17.5

17.6

wsma = SMASeries(#C ose, 52);

Rest orePri marySeri es;

wsmap : = Dail yFromieekl y(wsma);

Pl ot Series(wsmap, 0, #Oive, #Thick);

GetDailyBar

GetDailyBar(Bar: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you access daily data from within an intraday chart. The daily series must have
been obtained after a call to SetScaleDaily. GetDailyBar returns the Bar Number of
the daily series that corresponds to the specified Bar in the intraday series. This
function works only within an intraday chart.

Example

{ Highlight bars on the intraday chart where a
dai ly noving average crossover took place }
var Bar, BarDaily, SMAl, SMA2: integer;

{ Get the daily noving averages }
Set Scal eDai | y;

SMA1 : = SMASeries(#Cl ose, 5);
SMA2 : = SMASeries(#Cl ose, 10);
Rest orePri marySeri es;

{ Now, cycle through our intraday bars }
for Bar := 60 to BarCount - 1 do
begi n
{ Get corresponding daily bar value }
BarDaily := GetDailyBar(Bar);
if BarDaily > 1 then
if CrossOver(BarDaily, SMA1, SMA2) then
Set Bar Col or (Bar, #Green);
end;

GetintraDayBar

GetIntraDayBar(Bar: integer; Interval: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Note: Not applicable to second or tick-based charts.

Description

Lets you access a compressed Price Series in a higher time frame (created with

SetScaleCompressed). This function takes a Bar number and converts it to the
corresponding bar in the compressed series Interval. So you can, for example, get the
correct bar of data in a 15 minute compressed Price Series from a 1 minute chart.

Example
{ Uses 15 mnute RSI for buy/sell signals }
var RSIPANE, RSI_20_15, RSI_20_15_S, BAR, BAR15: integer;

RSI Pane : = CreatePane(100, true, true);
Set Scal eConpressed(15);

© 2003-2006 WL Systems, Inc.

Time Frame Functions 254

RSI _20_15 := RSl Series(#C ose, 20);

RSI _20_15 := OfsetSeries(RSI_20 15, -1);

Rest orePri marySeri es;

RSI _20_15 S := IntradayFronConpressed(RSI_20_15, 15);

Pl ot Series(RSI_20_15_S, RSI Pane, #Blue, #Thin);

for Bar := 100 to BarCount - 1 do
begi n
Bar 15 : = GetlntrabayBar(Bar, 15);
i f CrossOverVal ue(Bar15, RSI_20 15, 30) and not LastPositionActive
t hen
BuyAt Market (Bar + 1, '15 minute RSI')
el se if CrossOverVal ue(Barl15, RSI_20 15, 50) then
Sel | At Market (Bar + 1, LastPosition, '15 minute RSI');
end;

17.7 GetMonthlyBar

GetMonthlyBar(Bar: integer): integer;
MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you access monthly data from within a daily chart. GetMonthlyBar returns the
Bar Number in the monthly series that corresponds to the specified Bar in the daily
series. The monthly series must have been obtained after a call to SetScaleMonthly.
This function only works within a daily chart.

Example

{ Highlight bars on the daily chart where 5 nonth RSI
is below 30 }
var BAR, MONTHLYBAR: i nteger;
for Bar := 30 to BarCount - 1 do
begi n
Mont hl yBar : = Get Mont hl yBar(Bar);
begi n
Set Scal eMont hl y;
if RSI(MonthlyBar, #C ose, 5) < 30 then
Set Bar Col or (Bar, #Geen);
Rest orePri marySeri es;
end;
end;

17.8 GetWeeklyBar

GetWeeklyBar(Bar: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you access weekly data from within a daily chart. GetWeeklyBar provides the
bar number in the weekly series that corresponds to the specified Bar in the daily
series. The weekly series must have been obtained after a call to SetScaleWeekly.
This function only works within a daily chart.

Example

{ Highlight bars on the daily chart where weekly MACD
has turned up }

© 2003-2006 WL Systems, Inc.

255

WealthScript Function Reference, Wealth-Lab Developer 4.0

17.9

var WEEKLYMACD, BAR, WEEKLYBAR: i nteger;
Set Scal eWekl y;
Weekl yMACD : = MACDSeri es(#Cl ose);
Rest orePri marySeri es;
for Bar := 10 to BarCount - 1 do
begin
Weekl yBar : = Get Weekl yBar(Bar);
i f TurnUp(WeeklyBar, Weekl yMACD) then
Set Bar Col or (Bar, #Blue);
end;

IntraDayFromCompressed

IntraDayFromCompressed(Series: integer; Interval: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Note: Not applicable to second or tick-based charts.

Description

Use this function to take a Price Series that was created in a higher time frame having
the specified Interval (using SetScaleCompressed) and create a corresponding
expanded Price Series that is synchronized with the base time frame.
IntraDayFromCompressed returns the integer Price Series handle for the new
synchronized series.

For example, you might have created a 15 minute compressed time frame Price Series
in @ 1-minute chart. The compressed series has 1 bar of data for every 15 bars in the
base chart. This makes plotting the compressed series impossible.
IntraDayFromCompressed will expand the 15-minute Price Series, effectively
duplicating each bar 15 times. You can now safely plot the series on your 1-minute
chart.

Note: If you do not wish to plot the new series, you can use GetIntradayBar
whose advantage is one of memory savings, which may result in faster
$imulations on intraday data. However, it's generally more intuitive to work
with the IntraDayFromCompressed function.

Example

{ Plot the 15 minute RSI on a 1 mnute chart }
var RSIPANE, RSl _20_15, RSI_20_15 S: integer;

RSI Pane : = CreatePane(100, true, true);

Set Scal eConpressed(15);

RSI _20_15 := RSl Series(#C ose, 20);

Rest orePri marySeri es;

RSI _20_15_S := IntradayFronConpressed(RSI_20_15, 15);
Pl ot Series(RSI_20_15_S, RSIPane, #Blue, #Thick);

© 2003-2006 WL Systems, Inc.

Time Frame Functions 256

17.10 IntraDayFromDaily

17.11

17.12

IntraDayFromDaily(Series: integer): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Returns an intraday Price Series [handle] from a previously accessed daily Series
using SetScaleDaily. The function creates a new price series synched with the
current intraday chart, and populates it with the appropriate values from the daily
series. The result will be repeated values (the number depends on the interval of the
intraday chart) for each day within the series.

Note: If you do not wish to plot the new series, you can use GetDailyBar, whose
advantage is one of memory savings, which may be helpful when running
large $imulations on intraday data. However, it's generally more intuitive to
work with the IntraDayFromDaily function.

Example

{ Obtain the daily noving average fromthe intraday chart }
var dsma: integer;

Set Scal eDai | y;

dsma : = SMASeries(#C ose, 10);

Rest orePri marySeri es;

dsma := IntrabDayFronDaily(dsma);

Pl ot Series(dsma, 0, #Blue, #Thick);

IsDaily

IsDaily: boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the current chart is on daily scale.

Example

{ if not daily, print a nessage to the debug wi ndow and exit }
if not IsDaily then
begin
Print('Not using daily scale');
exit;
end;

Isintraday

IsIntraday: boolean;

MChartScripts MSimuScripts MPerfScripts ©CMScripts

Description

Returns true if the current chart is on an intraday scale. An intraday scale can be
made of intervals of minutes, seconds, or ticks. Use the BarInterval function to
determine the number of minutes, ticks, or seconds per bar, i.e., the interval.

© 2003-2006 WL Systems, Inc.

257 WealthScript Function Reference, Wealth-Lab Developer 4.0
Example
{ if not intraday, print a nessage to the debug w ndow and exit }
if not Islntraday then
begin
Print('Not an intraday scale');
exit;
end;
17.13 IsMonthly
IsMonthly: boolean;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Returns true if the current chart is on monthly scale.
Example
{ if not nonthly, print a nmessage to the debug wi ndow and exit }
if not IsMonthly then
begin
Print('Not using a nonthly scale');
exit;
end;
17.14 1sWeekly
IsWeekly: boolean;
MChartScripts MSimuScripts MPerfScripts ©CMScripts
Description
Returns true if the current chart is on weekly scale.
Example
{ if not weekly, print a nmessage to the debug w ndow and exit }
if not IsWeekly then
begi n
Print('Not using a weekly scale');
exit;
end;
17.15 SetScaleCompressed

SetScaleCompressed(Interval: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Note: Not applicable to second or tick-based charts.

Description

Sets the chart's time scale to a more compressed intraday time frame. Future Price
Series that are acquired will be based on the new time frame, which is specified in the
Interval parameter. You should always revert back to the base scale by calling
RestorePrimarySeries after changing time frame.

© 2003-2006 WL Systems, Inc.

Time Frame Functions 258

SetScaleCompressed will work on intraday charts only. You can only change to a
higher time frame that is possible to create from the current time frame. For
example, if you're working in a base 5-minute chart, you can compress to 10, 15 or
20 minutes, but not to 1 or 7 minutes. Base 1-minute charts can be compressed to
any higher time interval.

You can use the higher time frame data series in your charts in 2 ways. To plot an
entire series you must first convert the higher time frame series back to the base time
frame by using IntraDayFromCompressed. To access an individual bar from a
higher time frame series (without the ability to plot the series in the lower time frame)
you should use GetIntraDayBar to obtain the correct bar number to access.

Important Note

When using data from a higher time frame in trading systems, you should be sure to
take an action only on a bar that has complete data for the higher time frame. For
example, if accessing 15-minute bars, only take trades on even 15 minute boundaries.
Alternately, you can shift the higher time frame Price Series 1 bar to the right using
OffsetSeries to safely use the previous value.

Example
{ The chart will depict a 15 minute SMA and RSI froma 1, 3 or 5 m nute
chart }
var SMA 20, SMA 20_15, SMA 20_15 S, RSIPANE, RSI_20 15, RSI_20 _15_S:
i nt eger;

SMA 20 : = SMASeries(#C ose, 20);

Set Scal eConpressed(15);

SMA 20 15 := SMASeries(#C ose, 20);

Rest orePri marySeri es;

SNVA 20_15_S : = IntradayFronConpressed(SMA 20_15, 15);
Pl ot Series(SMA 20, 0, #Red, #Thin);

Pl ot Series(SMA 20_15_ S, 0, #Blue, #Thin);

RSI Pane : = CreatePane(100, true, true);

Pl ot Series(RSI Series(#C ose, 20), RSIPane, #Red, #Thin);
Set Scal eConpressed(15);

RSI _20_15 := RSl Series(#C ose, 20);

Rest orePri marySeri es;

RSI _20_15_S := IntradayFronConpressed(RSI_20_15, 15);

Pl ot Series(RSI_20_15_ S, RSI Pane, #Blue, #Thin);

17.16 SetScaleDaily

SetScaleDaily;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the chart's time scale to daily data from an intraday chart. Future Price Series
that are acquired will be daily series. You should always revert back to the intraday
scale by calling RestorePrimarySeries after changing the scale to daily.

You can use the daily data series in your intraday charts in two ways. To plot an
entire series you must first convert the daily series to an intraday one with
IntraDayFromDaily. To access an individual bar from a daily series (without the
need to convert the daily series to an intraday time frame) you should use
GetDailyBar to obtain the correct bar number to access in the daily series as shown
in the example.

© 2003-2006 WL Systems, Inc.

259

WealthScript Function Reference, Wealth-Lab Developer 4.0

Example

{ Look for a Daily SMA CrossOver in our intraday chart }
var Bar, db, SMAl, SMA2: integer;
Set Scal eDai | y;
SMALl : = SMASeries(#C ose, 10);
SMA2 : = SMASeries(#C ose, 40);
Rest orePri marySeri es;
for Bar := 200 to BarCount - 1 do
begin
db := GetDailyBar(Bar);
if CrossOver(db, SMAL, SMA2) then
begin
Set Backgr oundCol or (Bar, #Bl ueBkg);
end;
end;

17.17 SetScaleMonthly

17.18

SetScaleMonthly;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the chart's time scale to monthly data from a daily chart. Future price series that
are acquired will be monthly series. You should always revert back to the daily scale
by calling RestorePrimarySeries after changing the scale to monthly.

You can use the monthly data series in your daily charts in two ways. To plot an
entire series you must first convert the monthly series to a daily one with
DailyFromMonthly. Alternatively, to access an individual bar from a monthly series
(without the need to convert the monthly series to a daily time frame) you should use
GetMonthlyBar to obtain the correct bar number to access in the monthly series.

Example

{ Plot the 5 nonth RSI in our daily chart }
var Mont hl yRSI, Pl ot Mont hl yRSI, RSI Pane: integer;
Set Scal eMont hl y;

Mont hl yRSI : = RSI Series(#C ose, 5);
Rest orePri marySeri es;
Pl ot Mont hl yRSI : = Dai |l yFronmvont hl y(Monthl yRSI);

RSI Pane : = CreatePane(100, true, true);
Pl ot Series(Pl otMnthl yRSI, RSIPane, #Navy, #Thick);

SetScaleWeekly

SetScaleWeekly;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the chart's time scale to weekly data from a daily chart. Future price series that
are acquired will be weekly series. You should always revert back to the daily scale by
calling RestorePrimarySeries after changing the scale to weekly.

You can use the weekly data series in your daily charts in two ways. To plot an entire
series you must first convert the weekly series to a daily one with DailyFromWeekly.
Alternatively, to access an individual bar from a weekly series (without the need to

© 2003-2006 WL Systems, Inc.

Time Frame Functions 260

convert the weekly series to a daily time frame) you should use GetWeeklyBar to
obtain the correct bar number to access in the weekly series.

Example

{ Plot the weekly MACD in our daily chart }

var \Weekl yMACD, Pl ot Weekl yMACD, MACDPane: i nteger;

Set Scal eVeekl y;

Weekl yMACD : = MACDSeri es(#Cl ose);

Rest orePri marySeri es;

Pl ot Weekl yMACD : = Dai | yFromAéekl y(Weekl yMACD) ;

MACDPane : = CreatePane(100, true, true);

Pl ot Seri es(Pl ot Weekl yMACD, MACDPane, #Maroon, #ThickH st);

© 2003-2006 WL Systems, Inc.

261

WealthScript Function Reference, Wealth-Lab Developer 4.0

18

18.1

18.2

Trading System Control Functions
Overview

The Trading System functions encompass those functions that enter, exit, and split
positions. You can also control automatic exits or stops without the need to program
them manually.

Using SetCommission 78 and SetSlippagelsil, you can override the default costs of
commissions and slippage, which are set in the Options Dialog (F12) Trading
Costs/Control tab. Finally, another group of functions allow you to further influence
the sizing of positions from within your ChartScript.

Note: The Trading System category of WealthScript functions are not available for
SimuScripts.

ApplyAutoStops

ApplyAutoStops(Bar: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Processes all installed AutoStops for the specified Bar number. Generally, when using
AutoStops, you place the ApplyAutoStops statement at the beginning of the main
trading loop, prior to other trading system signals.

Remarks

e AutoStops are global in nature. For example, only a single profit target level exists,
so you cannot establish different levels for multiple positions in the same script.
It's best to code your own exits manually if you want to maintain different target
levels.

e AutoStops are processed for the Bar passed to the function. It is not necessary to
pass Bar + 1 to ApplyAutoStops in order to trigger Alerts, which are generated as
required based on installed AutoStops.

e By design, AutoStops never exit on the same bar as entry in backtesting. For
information about same-bar stops for automated trading, see the Option Dialog's
Automated Execution topic in the User Guide.

Priority of Multiple Installed Stops

In the event that more than one AutoStop is competing to exit a trade on the same
bar, Wealth-Lab takes the earliest/most pessimistic exit. For example, an Installed
stop loss will be processed before all other Installed stops except the time-based exit.
Specifically, the order of priority is as follows:

InstallTimeBasedEXxit
InstallStopLoss
InstallTrailingStop
InstallReverseBreakEvenStop
InstallBreakEvenStop
InstallProfitTarget

auhWNK

© 2003-2006 WL Systems, Inc.

Trading System Control Functions

262

Mixing Manual and Installed AutoStops

Manually-coded exits execute in the order that they are coded. However, if you mix
manual exits and AutoStops, manual exits that execute on Bar + 1 will take priority
unless you explicitly change the order of priority by passing Bar + 1 to
ApplyAutoStops. In this case, you must place the statement in the exit logic for
correct operation as shown in the following example that mixes a time-based

AutoStop exit with a manual profit target.

var Bar, p:
Pl ot St ops;
I nstall Ti reBasedExit(20);
for Bar := 10 to BarCount -
begi n
i f LastPositionActive then
begi n
Appl yAut oSt ops(Bar + 1);
p := LastPosition;
SellAtLimt(Bar + 1,
ProfitTgt"');
end
el se
BuyAt Stop(Bar + 1,
end;
Precedence discussion: topic?id=6315

i nteger;

1 do

/1 Note placenent within exit

PositionEntryPrice(p) * 1.05, p,

Hi ghest (Bar,

| ogi c

' 5%

#H gh, 8), "');

Manually-coded exits will exit at whichever bar you specify, and in the order in which

they are coded. For example, to exit with a 5% profit target on the same bar, the
following code could be used instead of InstallProfitTarget(5). Notice that in
this case the stop is plotted on the same bar as the entry bar.

var Bar, p: integer;
Pl ot St ops;
for Bar := 10 to BarCount - 1 do
begi n
{ Single entry condition for demp }
if Bar = BarCount - 20 then
BuyAt Mar ket (Bar + 1, '');
i f LastPositionActive then
begi n
p := LastPosition;
SellAtLimt(Bar + 1, PositionEntryPrice(p) * 1.05, p, '5%
ProfitTgt');
end;
end;
Example
{ Install and execute automated stops in our trading system}
var Bar: integer;

Instal | StopLoss(8);
Install ProfitTarget(10);
I nstal | Ti neBasedExit(40);

for Bar := 20 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);
{ ... nore trading systemrules ... }
end;

© 2003-2006 WL Systems, Inc.

263 WealthScript Function Reference, Wealth-Lab Developer 4.0
18.3 BuyAtClose

BuyAtClose(Bar: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a long Position at market close of the specified Bar.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e BuyAtClose will return boolean false if the signal fails to establish a new position.
This can occur, for example, when using 100% equity position sizing without
Leeway.

Note: AtClose orders can be difficult to realize in practice.

Example

{ Buy at close on a 200 bar |ow }
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begin
i f not LastPositionActive then
begin
if PriceLow(Bar) = Lowest(Bar, #Low, 200) then
BuyAt Cl ose(Bar, 'Low Hit');
end
el se
begin
{ .. xit Rules ... }
end
end;
18.4 BuyAtLimit

BuyAtLimit(Bar: integer; LimitPrice: float; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a long Position if prices reach the indicated LimitPrice. The Position will be
opened if prices meet or go below the specified LimitPrice on the specified Bar. If
prices open below the LimitPrice, the Position will be established at open price. If
prices fail to reach the LimitPrice objective, a Position is not established and the
function returns false.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 264

e For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Buy the next bar if it hits the previous 10 bar |ow }
var X: float;
var BAR i nteger;
for Bar := 200 to BarCount - 1 do
begin

i f not LastPositionActive then

begin

X := Lowest(Bar, #Low, 10);
BuyAtLimt(Bar + 1, x, "10 bar low);

end

el se

begin
{ .. Exit Rules ... }

end
end;

18.5 BuyAtMarket

BuyAtMarket(Bar: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a long Position at market open of the specified Bar.

Remarks
e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e BuyAtMarket will return boolean false if the signal fails to establish a new position.
This can occur, for example, when using 100% equity position sizing without
Leeway.

Example

{ Open a long position on the follow ng bar based on this bar's
i ndi cator val ues }
var Bar, p: integer;

for Bar := 40 to BarCount - 1 do
begi n
if not LastPositionActive then
begin

if PriceCose(Bar) > SMA(Bar, #Cl ose, 40) then
i f BuyAtMarket(Bar + 1, 'SMA') then
SetPositionPriority(LastPosition, -RSI(Bar, #C ose, 14));
end
el se
begi n
p := LastPosition;
if Bar + 1 - PositionEntryBar(p) = 5 then
Sel | At Market(Bar + 1, p, 'Tinme-Based);
end;
end;

© 2003-2006 WL Systems, Inc.

265 WealthScript Function Reference, Wealth-Lab Developer 4.0
18.6 BuyAtStop

BuyAtStop(Bar: integer; StopPrice: float; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a long Position if prices reach the indicated StopPrice. The Position will be

opened if prices meet or exceed the specified StopPrice on the specified Bar. If prices

open above the StopPrice, the Position will be established at open price. If prices fail
to reach the StopPrice objective, a Position is not established and the function returns
false.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Try to buy a peak breakout }
var BAR i nteger;
var p: float;
for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
p := Peak(Bar, #C ose, 15);
BuyAt Stop(Bar + 1, p, 'Breakout');
end
el se
begin
{ .. xit Rules ... }
end;
end;
18.7 CoverAtClose

CoverAtClose(Bar: integer; Position: integer; SignalName: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Covers and closes out an open short Position at closing price of the specified Bar.

Remarks
e Slippage, when activated, can affect the trade's execution price.

e CoverAtClose will exit any position, short or long, that is passed to it in the
Position parameter.

e To exit all open short positions pass the constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 266

Note: AtClose orders can be difficult to realize in practice.

Example

{ Exit the short after 20 days }
var BAR i nteger;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin

if Bar = PositionEntryBar(LastPosition) + 20 then
Cover At Cl ose(Bar, LastPosition, '20 day exit');
end;
end;

18.8 CoverAtLimit

CoverAtLimit(Bar: integer; LimitPrice: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Covers and closes out an open short Position if prices meet or exceed the specified
LimitPrice. If prices open below the LimitPrice, the Position is closed at market open
price. If prices fail to reach the LimitPrice objective, the Position remains open and
the function returns false. To exit all open short positions pass the constant #All in
the Position parameter.

Remarks

Slippage, when activated, can affect the trade's execution price.

CoverAtLimit can exit any position, short or long, that is passed to it in the
Position parameter.

The string, which may be a blank string, passed as the Signa/lName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Try and exit our short position at a profit }
var BAR i nteger;
var x: float;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin

X := Lowest(Bar, #Low, 10);
CoverAtLimt(Bar + 1, x, LastPosition, '10 day Low Limt"');
end;
end;

© 2003-2006 WL Systems, Inc.

267 WealthScript Function Reference, Wealth-Lab Developer 4.0
18.9 CoverAtMarket
CoverAtMarket(Bar: integer; Position: integer; SignalName: string);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Used to cover and close out an open short position at the opening price of the
specified Bar.
Remarks
e Slippage, when activated, can affect the trade's execution price.
e CoverAtMarket will exit any position, short or long, that is passed to it in the
Position parameter.
e To exit all open short positions pass the constant #All in the Position parameter.
e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.
Example
{ Cover the short position if CMO becones slightly overbought }
var BAR i nteger;
for Bar := 40 to BarCount - 1 do
begi n
if not LastPositionActive then
begi n
{ ... Entry Rules ... }
end
el se
begi n
if CMX Bar, #Cl ose, 20) > 30 then
Cover At Market (Bar + 1, LastPosition, '');
end;
end;
18.10 CoverAtStop

CoverAtStop(Bar: integer; StopPrice: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Used to cover and close out an open short Position if prices meet or go above the
specified StopPrice. If prices open above the StopPrice, the Position is closed at the
market open price. If prices fail to reach the StopPrice, the Position remains open and
the function returns false.

Remarks

Slippage, when activated, can affect the trade's execution price.

CoverAtStop will exit any position, short or long, that is passed to it in the Position
parameter.

To enter a CoverAtStop order for all open short positions, pass the constant #All
in the Position parameter.

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 268

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e Use PlotStops to plot the effective stop price for Position.

e For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Cover the short position if prices nove against us by 10%}
var BAR i nteger;
var x: float;

for Bar := 40 to BarCount - 1 do
begin
i f not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin
X := PositionEntryPrice(LastPosition) * 1.1;
Cover At Stop(Bar + 1, x, LastPosition, '10% Stop');
end;
end;

18.11 CoverAtTrailingStop

CoverAtTrailingStop(Bar: integer; Price: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Implements a trailing stop at the specified Price level. The stop level is adjusted only
if it is above the current stop level. This results in a trailing stop that is always raised,
and never lowered. Otherwise, this function behaves exactly like the corresponding
CoverAtStop function. It returns true if the stop level was reached and the position
was closed.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e CoverAtTrailingStop will exit any position, short or long, that is passed to it in the
Position parameter.

e To enter a CoverAtTrailingStop order for all open short positions, pass the
constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e Use PlotStops to plot the effective stop price for Position.

Example

{ Initiate a trailing stop after a 5% gain }
var Bar, p: integer;

Pl ot St ops;
for Bar := 20 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

269 WealthScript Function Reference, Wealth-Lab Developer 4.0
i f LastPositionActive then
begi n
p := LastPosition;
i f PositionOpenMFEPct (p, Bar) > 5 then
Cover At Trai lingStop(Bar + 1, SMA(Bar, #C ose, 20), p, 'TStop'
)
el se
Cover At Stop(Bar + 1, PositionEntryPrice(p) * 1.10, p,
' St opLoss');
end
el se
Short At Stop(Bar + 1, Lowest(Bar, #Low, 20), '');
end;
18.12 InstallBreakEvenStop
InstallBreakEvenStop(Trigger: float);
MChartScripts ©SimuScripts OPerfScripts ©CMScripts
Description
Installs an automatic breakeven stop once the Position reaches the specified Trigger
profit level on a closing basis. Call ApplyAutoStops in your Trading System's main
loop to process auto-stops.
Remarks
e Trigger is expressed as a percentage, points, or dollar movement as determined by
the SetAutoStopMode function, where percentage is the default if not used.
¢ InstallBreakEvenStop is global in nature, therefore the most recent call to
InstallBreakEvenStop will be used for subsequent trades.
e See ApplyAutoStops for information.
Example
{ Install a breakeven stop when we cl ose above 5% profit }
var BAR i nteger;
I nstal | BreakEvenStop(5);
for Bar := 20 to BarCount - 1 do
begi n
Appl yAut oSt ops(Bar);
{ ... Entry and Exit Rules ... }
end;
18.13 InstallProfitTarget

InstallProfitTarget(TargetLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Installs a profit target at the specified TargetLevel. Open Positions will be
automatically closed if total Position profit reaches the target level. If prices gap up
above the TargetLevel value the Position will be closed at the market open price. Call
ApplyAutoStops in your Trading System's main loop to process AutoStops.

Remarks

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 270

e TargetlLevel is expressed as a percentage, points, or dollar movement as
determined by the SetAutoStopMode function, where percentage is the default if
not used.

o InstallProfitTarget is global in nature, therefore the most recent call to
InstallProfitTarget will be used for subsequent trades.

e For real-time automated trading, to exit with a profit on the same bar as entry use
InstallProfitTarget. See "Automated Trading Options" in the User Guide for more
information.

e See ApplyAutoStops for more information.

Example

{ If our trades ever see a 100% profit we'll be sure to cash out }
var BAR i nteger;
Install ProfitTarget(100);

for Bar := 20 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.14 InstallReverseBreakEvenStop

InstallReverseBreakEvenStop(LossLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Installs an automatic breakeven stop order once the Position experiences the
percentage loss level specified in the LossLevel parameter on a closing basis. Call
ApplyAutoStops in your Trading System's main loop to process auto-stops.

Remarks

e [osslevel is expressed as a percentage, points, or dollar movement as determined
by the SetAutoStopMode function, where percentage is the default if not used.

¢ InstallReverseBreakEvenStop is global in nature, therefore the most recent call
will be used for subsequent trades.

e See ApplyAutoStops for more information.

Example
{ Install a BreakEven stop to exit if we sustain |osses of at |east 10%

}
var BAR i nteger;

I nstal | Rever seBreakEvenSt op(10);

for Bar := 20 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);
{ ... Entry and Exit Rules ... }
end;

18.15 InstallStopLoss

InstallStopLoss(StopLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

271

WealthScript Function Reference, Wealth-Lab Developer 4.0

18.16

Description

Installs a stop loss at the specified StopLevel. Open Positions will be automatically
closed if total Position loss reaches the loss value. If prices gap down below the stop
loss value the Position will be closed at the market open price. Call ApplyAutoStops
in your Trading System's main loop to process AutoStops.

Remarks

e StopLevel is expressed as a percentage, points, or dollar movement as determined
by the SetAutoStopMode function, where percentage is the default if not used.

e InstallStopLoss is global in nature, therefore the most recent call will be used for
subsequent trades.

e For real-time automated trading, to activate a stop loss exit on the same bar as
entry, use InstallStopLoss and/or SetRiskStopLevel. See "Automated Trading
Options" in the User Guide for more information.

e See ApplyAutoStops for information.

Example

{ Install a global automated stop |oss of 15%}
var BAR i nteger;
I nstall StopLoss(15);

for Bar := 20 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);
{ ... Entry and Exit Rules ... }
end;

InstallTimeBasedExit

InstallTimeBasedExit(Bars: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Installs an automated exit based on the specified number of Bars. Positions will be
automatically closed after a number of bars specified in the Bars parameter. Be sure
to call ApplyAutoStops in your trading system loop to activate the automated exit.

Remarks

¢ InstallTimeBasedEXxit is global in nature, therefore the most recent call will be
used for subsequent trades.

e AutoStops are processed on the Bar Number passed to the function, but it is not
required to pass Bar + 1 to ApplyAutoStops unless you wish to shift priority from
manual exits to AutoStops. Changing the order precedence is necessary only when
mixing InstallTimeBasedExit with manual exits that apply AtLimit, AtStop, or
AtClose orders on Bar + 1. If you decide to give AutoStops priority over manual
exits, then we recommend placing the ApplyAutoStops(Bar + 1) function with
the rest of the exit logic as shown in the example.

e Some live feed providers may not include zero-volume bars in a [primarily
intraday] chart. Since InstallTimeBasedEXxit is bar-based, you may wish to
include manual exit logic using the GetTime function to achieve the desired result
for sparsely-traded issues.

e See also: ApplyAutoStops

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 272

The example shows how to properly mix a manual exit with AutoStops that include an
InstalledTimeBasedExit. Priority must be given to AutoStops in this [single]
instance, otherwise it would allow the SellAtStop manual exit to trigger on the third
day prior to closing the position at the open.

Example

{ Buy on a SMA crossover, and sell on a stop of the slow

novi ng average or after 3 Bars, whichever occurs first }
var Bar, p, hSMA S, hSMA F, perSlow, perFast: integer;
var fStop: float;

per Sl ow : = 20;
per Fast := 10;
hSVMA S : = SMASeri es(#Cl ose, perSlow);
hSVMA F : = SMASeri es(#Cl ose, perFast);

Instal |l Ti neBasedExit(3);

Pl ot St ops;
for Bar := perSlow to BarCount - 1 do
begin
i f not LastPositionActive then
begin { ----------------- Entry Rule }
if CrossOver(Bar, hSMA F, hSMA S) then
BuyAt Market (Bar + 1, '');
end
else { ----------------- Exit Rules }
begin
{ Here, installed AutoStops have priority since they are processed
first }

Appl yAut oSt ops(Bar + 1);

p := LastPosition;
{ Round the stop value to 2 digits after the decinal }
fStop := Trunc(100 * @SMA S[Bar]) / 100;
Sel | At Stop(Bar + 1, fStop, p, 'Manual Stop');
end;
end;

Pl ot Seri esLabel (hSMA'S, 0, #Blue, #Thin, "SMA ' + IntToStr(perSlow);
Pl ot Seri esLabel (hSMA F, 0, #Red, #Dotted, 'SMA ' + IntToStr(perFast)
)

18.17 InstallTrailingStop

InstallTrailingStop(Trigger: float; StopLevel: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Installs a trailing stop to protect profits in Positions that are moving in a favorable
direction. The Trigger value is the profit on a closing basis that the trade must show
before the trailing stop is triggered, or activated. Once triggered, the stop is set to
protect against a reversal of the value expressed in the StopLevel parameter. You
must call the ApplyAutoStops function to actually process the stop.

© 2003-2006 WL Systems, Inc.

273

WealthScript Function Reference, Wealth-Lab Developer 4.0

18.18

Remarks

Trigger is expressed as a percentage, points, or dollar movement as determined by
the SetAutoStopMode function, where percentage is the default if not used.
StopLevel is always expressed as a percentage reversal and remains unaffected by
SetAutoStopMode.

InstallTrailingStop is global in nature, therefore the most recent call will be used
for subsequent trades.

See ApplyAutoStops for information.

Example

{ Protect 70% of profits once we achieve 20% profit }
var BAR i nteger;
Install TrailingStop(20, (100 - 70));

for Bar := 20 to BarCount - 1 do
begi n

Appl yAut oSt ops(Bar);
{ ... Entry and Exit Rules ... }
end;

PortfolioSynch

PortfolioSynch(Bar: integer; Portfolio: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

PortfolioSynch creates entries and exits based on the actual Trade History for the

specified Portfolio. Historical entry and exit signals are ignored, and the trades that
appear on the chart are based on realized trades only. Consequently, this function

allows you to base trading system processing on the actual signals from a specified
Portfolio.

Bar The bar being processed. Synchronization occurs on the signal, or alert
Bar.

Portfolio Specifies which Portfolio Manager portfolio to synchronize with. Pass an
empty string in the Portfolio parameter to match against positions in any
portfolio.

Remarks

PortfolioSynch is functional only for Real-time ChartScript Windows and both the
Scans tools (WatchList Scans and Real-Time Scans).

When using PortfolioSynch, exits for the next bar (alerts) are processed only for
open positions in the Portfolio.

ChartScript Placement

Method 1: Call PortfolioSynch the first thing in your main trading system loop.
This method is sufficient for most trading scripts. If your script uses
SetPositionData or otherwise initializes local variables during the
entry logic that are accessed in the exit logic, use Method 2.

Method 2: Place PortfolioSynch in both the entry and exit logic, after testing for
active Positions as shown in the example. It is important that
PortfolioSynch is called once for each Bar in the trading loop.

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 274

Example
{ A Real-Tine testing script that issues buys and sells every other bar
}
const MYPORT = "''; [/ Ensure an enpty string, not a white space
var Bar: integer;
for Bar := 20 to BarCount - 1 do
begin
/1 PortfolioSynch(Bar, MYPORT); [/ Method 1 placenent
i f LastPositionActive then
begin
PortfolioSynch(Bar, MYPORT); /1 Method 2 placenment (1 of 2)
if Bar nod 2 = 0 then
Sel | At Market(Bar + 1, LastPosition, '');
end
el se
begin
PortfolioSynch(Bar, MYPORT); /1 Method 2 placenment (2 of 2)
if Bar nod 2 = 0 then
BuyAt Market (Bar + 1, '');
end;
end;

18.19 SellAtClose

SellAtClose(Bar: integer; Position: integer; SignalName: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sells and closes out an open long Position at closing price of the specified Bar.

Remarks
e Slippage, when activated, can affect the trade's execution price.

e SellAtClose will exit any position, short or long, that is passed to it in the Position
parameter.

e To exit all open long positions pass the constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Note: AtClose orders can be difficult to realize in practice.

Example

{ 10 days is long enough for this system}
var BAR i nteger;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin

if Bar - PositionEntryBar(LastPosition) = 10 then
Sel | At Cl ose(Bar, LastPosition, '10 Day Exit');
end;

© 2003-2006 WL Systems, Inc.

275

WealthScript Function Reference, Wealth-Lab Developer 4.0

end;

18.20 SellAtLimit

18.21

SellAtLimit(Bar: integer; LimitPrice: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sells and closes out an open long Position on the specified Bar if prices meet or
exceed the specified LimitPrice. If prices open above the LimitPrice, the Position is
closed at market open price. If prices fail to reach the LimitPrice objective, the
Position remains open and the function returns false. To exit all open long positions
pass the constant #All in the Position parameter.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e SellAtLimit can exit any position, short or long, that is passed to it in the Position
parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Try to get out at a recent high }
var BAR i nteger;
var x: float;

for Bar := 40 to BarCount - 1 do
begi n
if not LastPositionActive then
begi n
{ ... Entry Rules ... }
end
el se
begi n

X := Highest(Bar, #Hi gh, 10) * 1.02;
if Sel | AtLimit(Bar + 1, x, LastPosition, '"Limt Sell') then
Print('Sold!'");
end;
end;

SellAtMarket

SellAtMarket(Bar: integer; Position: integer; SignalName: string);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sells and closes out an open long Position at open price of the specified Bar.

Remarks

e Slippage, when activated, can affect the trade's execution price.

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 276

e SellAtMarket can exit any position, short or long, that is passed to it in the
Position parameter.

e To exit all open long positions pass the constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

Example

{ Sell when prices go bel ow the 200 day novi ng average }
var BAR i nteger;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin

if CrossUnder(Bar, #C ose, SMASeries(#C ose, 200)) then
Sel | At Market (Bar + 1, LastPosition, 'Below 200 day SMA'");
end;
end;

18.22 SellAtStop

SellAtStop(Bar: integer; StopPrice: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sells and closes out an open long Position if prices meet or go below the specified
StopPrice. If prices open below the StopPrice, the Position is closed at market open
price. If prices fail to reach the StopPrice, the Position remains open and the function
returns false.

Remarks
e Slippage, when activated, can affect the trade's execution price.

¢ SellAtStop can exit any position, short or long, that is passed to it in the Position
parameter.

e To enter a SellAtStop order for all open long positions at StopPrice, simply pass
the constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e Use PlotStops to plot the effective stop price for Position.

e For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Sell at a 20% stop | oss level }
var BAR i nteger;

var xStop: float;

for Bar := 40 to BarCount - 1 do
begin

© 2003-2006 WL Systems, Inc.

277

WealthScript Function Reference, Wealth-Lab Developer 4.0

i f not LastPositionActive then
begi n
Entry Rules ... }

end
el se
begin

xStop := PositionEntryPrice(LastPosition) * 0.8;

Sel | At Stop(Bar + 1, xStop, LastPosition, 'Stop Loss');
end;

end;

18.23 SellAtTrailingStop

SellAtTrailingStop(Bar: integer; Price: float; Position: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Implements a trailing stop at the specified Price level. The stop level is adjusted only
if it is above the current stop level. This results in a trailing stop that is always raised,
and never lowered. Otherwise, this function behaves exactly like the corresponding

SellAtStop function. It returns true if the stop level was reached and the position
was closed.

Remarks

e Slippage, when activated, can affect the trade's execution price.

o SellAtTrailingStop will exit any position, short or long, that is passed to it in the
Position parameter.

¢ To enter a SellAtTrailingStop order for all open long positions at the specified
Price, simply pass the constant #All in the Position parameter.

e The string, which may be a blank string, passed as the SignalName parameter will

appear in the Exit Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

¢ Use PlotStops to plot the effective stop price for Position.

Example

{ Initiate a trailing stop after a 5% gain }
var Bar, p: integer;

Pl ot St ops;
for Bar := 20 to BarCount - 1 do
begin
i f LastPositionActive then
begin
p := LastPosition;
i f PositionQpenMFEPct (p, Bar) > 5 then
Sel | At TrailingStop(Bar + 1, SMA(Bar, #Close, 20), p, 'TStop'

el se
Sel | At Stop(Bar + 1, PositionEntryPrice(p) * 0.90, p,
' St opLoss');
end
el se
BuyAt Stop(Bar + 1, Highest(Bar, #H gh, 20), ''");

end;

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 278

18.24 SetAutoStopMode

SetAutoStopMode(Mode: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Allows you to control how the parameters of AutoStops are interpreted. This affects
InstallStoplLoss, InstallProfitTarget, InstallTrailingStop (first parameter only),
InstallBreakEvenStop and InstallReverseBreakEvenStop.

The Mode parameter can be one of the following constants:

#AsPercent - AutoStop values are expressed as percentage moves (default)
#AsPoint - AutoStop values are expressed as point moves
#AsDollar - AutoStop values are expressed as dollar moves

Remarks

e The AutoStop Mode is currently a global value within a script execution. You
cannot have some AutoStops using percent and others using point, etc.

e Remember to call ApplyAutoStops to execute your automated stops.

Example

{ Stop Loss if price declines 5% or nore }
Set Aut oSt opMode(#AsPercent);
Instal | StopLoss(5);

{ Stop Loss if price declines 5 points or nore }
Set Aut oSt opMode(#AsPoi nt) ;
Instal | StopLoss(5);

{ Stop Loss if Position declines by $2,000 or nore }
Set Aut oSt opMode(#AsDol | ar) ;
I nstal |l StopLoss(2000);

18.25 SetCommission

SetCommission(Commission: float);

OChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

The SetCommission function sets the Commission value that is deducted from net
profit every time a trade is executed. The default commission setting can be found
under Trading Costs/Control in the Options Dialog (F12).

Note: For Wealth-Lab Developer Version 3.0, Build 4 and up, SetCommission no
longer has any effect on setting commissions. The use of SetCommission
in the ChartScript Window will generate an error; though in Scans,
$imulations, Rankings, and Optimizations, no error will be triggered so as
not to disrupt these processes. As an alternative, use CommissionScripts
for customized control of commissions. This information is included to
support use of older ChartScripts that employed the function.

© 2003-2006 WL Systems, Inc.

279 WealthScript Function Reference, Wealth-Lab Developer 4.0

Remarks

e SetCommission has been deprecated. Use CommissionScripts to control complex
commission calculations with user-defined functions.

18.26 SetPositionSize

SetPositionSize(Size: float);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets the Position Size, in dollars, that will be used for new Positions. Subsequent

trades will be sized with the dollar Size specified.

Remarks

¢ Use of SetPositionSize is generally discouraged since SimuScripts are available to
set position sizing in all tools (see SetPositionSizeFixed). The function is
primarily for compatibility with earlier versions of Wealth-Lab.

e When using the $imulator tool or Portfolio Simulation mode in the Position Sizing
control, you must choose the radio button for SetShare/PositionSize Value to
enable SetPositionSize to influence position sizing.

e In Raw Profit modes, SetPositionSize will override the Position Sizing control's
selection. Exception: SetPositionSize has no effect in a Raw Profit WatchList or
ChartScript Ranking.

e You can use both SetPositionSize and SetShareSize in the same script. As these
functions are global in nature, the next time a trade is processed it will use the
value from the function last called.

Example
{ Set a dynami c position size based on overbought/oversold |evels }
var PS: float;
var BAR integer;
for Bar := 40 to BarCount - 1 do
begi n

if not LastPositionActive then
begi n
ps := (CM(Bar, #Close, 14) + 200) * 10;
Set Posi ti onSi ze(ps);
{ ... Entry Rules ... }
end
el se
begi n
{ ... Exit Rules ... }
end;
end;
18.27 SetShareCap

SetShareCap(Cap: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 280

Description

Sets a maximum number of shares per position to Cap. Ordinarily, the size of a
Position is established by what you select in the Position Sizing control. However, if
you use SetShareCap you can limit the number of shares. You can also use this
feature to force a certain number of shares per Position, as follows.

Remarks

e SetShareCap is global in nature, therefore the most recent call to SetShareCap
will be used for subsequent trades. This implies that in the $imulator only the last
call in the final raw-profit run of the last symbol will be used as the share cap.

Example

{ Force Positions to be 100 shares each }
Set Posi ti onSi ze(999999999); //would result in VERY |arge Positions
Set Shar eCap(100); /1but here we cap shares at 100

18.28 SetShareFloor

SetShareFloor(Floor: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Sets a minimum number of shares per position to Floor. Ordinarily, the size of a
Position is established by what you select in the Position Sizing control. However, if
you use SetShareFloor you can limit the number of shares.

Remarks

e SetShareFloor is global in nature, therefore the most recent call to
SetShareFloor will be used for subsequent trades. This implies that in the
$imulator only the last call in the final raw-profit run of the last symbol will be used
as the share floor.

Example

{ Mninmumtrade size of 100 shares }
Set Shar eFl oor (100);

18.29 SetShareSize

SetShareSize(Shares: integer);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Use SetShareSize to assign a fixed number of Shares (or contracts) per Position in
your script. Subsequent trades will use the number of Shares or contracts that you
specified.

Remarks

e Use of SetShareSize is generally discouraged since SimuScripts are available to
set position sizing in all tools (see SetPositionSizeShares). The function is
primarily for compatibility with earlier versions of Wealth-Lab.

e When using the $imulator tool or Portfolio Simulation mode in the Position Sizing

© 2003-2006 WL Systems, Inc.

281

WealthScript Function Reference, Wealth-Lab Developer 4.0

18.30

control, you must choose the radio button for SetShare/PositionSize Value to
enable SetShareSize to influence position sizing.

e In Raw Profit modes, SetShareSize will override the Position Sizing control's
selection. Exception: SetShareSize has no effect in a Raw Profit WatchList or
ChartScript Ranking.

¢ You can use both SetPositionSize and SetShareSize in the same script. As these
functions are global in nature, the next time a trade is processed it will use the
value from the function last called.

Example

{ Assign a trade size of 200 shares to new positions }
Set Shar eSi ze(200);

SetSlippage

SetSlippage(EnableSlippage: boolean; Slippage: float; LimitOrders: boolean);

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Lets you override the default Slippage settings in the Options Dialog|Trading
Costs/Control from within your script.

EnableSlippage Controls whether Slippage is on (activated) or off.
Slippage Controls the amount of Slippage to use.

LimitOrders Controls whether prices must move to at least the Slippage-
adjusted amount in order for Limit and Stop orders to be executed.

Remarks

e Settings for the most recent SetSlippage call are used for the trading signals that
follow (see example).

e See the Options Dialog|Trading Costs/Control topic in the Wealth-Lab User
Guide for details on how Slippage affects entry and exit price.

Example

var Bar: integer;

Instal |l Ti reBasedExit(10);

Install StopLoss(5);

for Bar := 20 to BarCount - 1 do

begin

{ Enable 2 units of slippage for the Autostops }
Set Sli ppage(true, 2, true);
Appl yAut oSt ops(Bar);

{ Disable slippage for other [manual] trading signals }
Set Sl i ppage(false, 2, true);

/'l rest of trading system..

end;

18.31 ShortAtClose

ShortAtClose(Bar: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 282

18.32

Description

Establishes a short Position at market close of the specified Bar.

Remarks
e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

¢ ShortAtClose will return boolean false if the signal fails to establish a new
position. This can occur, for example, when using 100% equity position sizing
without Leeway.

Note: AtClose orders can be difficult to realize in practice.

Example

{ Short at Close on a TD Power of 9 Signal }
var BAR integer;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin

if Cumlp(Bar, #Close, 4) = 9 then
Short At Cl ose(Bar, 'TD Power of 9');
end
el se
begin
{ ... Exit Rules ... }
end;
end;

ShortAtLimit

ShortAtLimit(Bar: integer; LimitPrice: float; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a short Position if prices reach the indicated LimitPrice. The Position will
be opened if prices meet or exceed the LimitPrice on the specified Bar. If prices open
above the LimitPrice, the Position will be established at open price. If prices fail to
reach the LimitPrice objective, a Position is not established and the function returns
false.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e For futures symbols, LimitPrice is automatically rounded to the nearest Tick value.

Example

{ Short the next bar at limt price of recent 10 bar high }
var BAR integer;

© 2003-2006 WL Systems, Inc.

283 WealthScript Function Reference, Wealth-Lab Developer 4.0

var p: float;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begi n
p := Hi ghest(Bar, #C ose, 10);
ShortAtLimt(Bar + 1, p, "');
end
el se
begin
{ ... Exit Rules ... }
end;
end;

18.33 ShortAtMarket

ShortAtMarket(Bar: integer; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Establishes a short Position at market open of the specified Bar.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string, which may be a blank string, passed as the SignalName parameter will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator

windows, or in the Signal Name column for the Scans tools.

¢ ShortAtMarket will return boolean false if the signal fails to establish a new
position. This can occur, for example, when using 100% equity position sizing

without Leeway.

Example

{ Establish a short position if RSI gets overbought }

var BAR integer;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin

if RSI(Bar, #Close, 20) > 70 then

Short At Market (Bar + 1, '"RSI Short Signal');

end
el se
begin
{ ... Exit Rules ... }
end;
end;

18.34 ShortAtStop

ShortAtStop(Bar: integer; StopPrice: float; SignalName: string): boolean;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

© 2003-2006 WL Systems, Inc.

Trading System Control Functions 284

Description

Establishes a short Position if prices reach the indicated StopPrice. The Position will
be opened if prices meet or go below the specified StopPrice on the specified Bar. If
prices open below the StopPrice, the Position will be established at open price. If
prices fail to reach the StopPrice objective, a Position is not established and the
function returns false.

Remarks

e Slippage, when activated, can affect the trade's execution price.

e The string passed as the SignalName parameter, which may be a blank string, will
appear in the Entry Signal column in the Trades View for ChartScript and $imulator
windows, or in the Signal Name column for the Scans tools.

e For futures symbols, StopPrice is automatically rounded to the nearest Tick value.

Example

{ Enter short if prices go a BIT |ower than today's |ow }
var BAR integer;
var sp: float;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
sp := PriceLow(Bar) * 0.95;
Short At Stop(Bar + 1, sp, '');
end
el se
begin
{ ... Exit Rules ... }
end;
end;

18.35 SplitPosition

SplitPosition(Position: integer; RetainPct: float): integer;

MChartScripts ©SimuScripts OPerfScripts ©CMScripts

Description

Splits a single Position into two and returns the Position Number of the new position.
You can then close off one of the Positions if desired. The RetainPct parameter
specifies the percentage of shares/contracts to retain in the original position. For
example, to keep 75% of the Position, specify 75 for this parameter. The new Position
will contain 25% of the shares of the original Position.

Remarks

e The Position Number of the original position is not affected by SplitPosition. The
new position is added to the PositionCount and becomes the LastActivePosition.

e When using an exact 50% split for odd-sized Positions, e.g. 7, 11, or 13 contracts,
it's possible that floating point rounding errors can cause the odd lot to be exited in
some cases and retained for others. You can work around this issue by passing a
number slightly less than or greater than 50 for the RetainPct parameter. For
example, use 49.999 to force the sale of the odd share (and retain the lesser
amount).

© 2003-2006 WL Systems, Inc.

285

WealthScript Function Reference, Wealth-Lab Developer 4.0

e See the SplitPosition Tutorial for additional information and examples in the

Wealth-Lab Knowledge Base.

Special Notes:
e Since SplitPosition has the effect of creating multiple positions on the entry bar,

trading systems that use this function cannot be supported by the Order Manager.

e "Merging" positions is currently not possible.

Example

{ Split our Position into two and sell one half }
var BAR, NP: integer;

for Bar := 40 to BarCount - 1 do
begin
if not LastPositionActive then
begin
{ ... Entry Rules ... }
end
el se
begin
{ ... Exit Rules ... }
end;

Exit half after 10 days }
i f LastPositionActive then
if Bar - PositionEntryBar(LastPosition) > 10 then
begin
np := SplitPosition(LastPosition, 50);
Sel | At Cl ose(Bar, np, '');
end;
end;

© 2003-2006 WL Systems, Inc.

	Introduction
	Alert Functions
	Overview
	AlertCount
	AlertOrderType
	AlertPositionType
	AlertPrice
	AlertShares
	AlertSymbol

	Cosmetic Chart Functions
	Overview
	AnnotateBar
	AnnotateChart
	CreatePane
	DrawCircle
	DrawCircle2
	DrawDiamond
	DrawEllipse
	DrawHorzLine
	DrawImage
	DrawLabel
	DrawLine
	DrawRectangle
	DrawRoundRect
	DrawText
	DrawTriangle
	EnableNotes
	EnableTradeNotes
	HidePaneLines
	HideVolume
	PlotSeries
	PlotSeriesLabel
	PlotStops
	PlotSymbol
	PlotSyntheticSymbol
	SetBackgroundColor
	SetBarColor
	SetBarColors
	SetColorScheme
	SetLogScale
	SetPaneBackgroundColor
	SetPaneMinMax
	SetSeriesBarColor

	CommissionScript Functions
	Overview
	CMShares
	CMPrice
	CMEntry
	CMOrderType
	CMSymbol
	CMDataSource
	CMResult

	Data Access Functions
	Overview
	BarCount
	GetDate
	GetMargin
	GetPointValue
	GetSecurityName
	GetSymbol
	GetTick
	GetTime
	OpenInterest
	PriceAverage
	PriceAverageC
	PriceClose
	PriceHigh
	PriceLow
	PriceOpen
	Volume

	Date/Time Functions
	Overview
	BarInterval
	BarNum
	CurrentDate
	CurrentTime
	DateTimeToBar
	DateToBar
	DateToStr
	DayOfWeek
	DaysBetween
	DaysBetweenDates
	GetDay
	GetHour
	GetMinute
	GetMonth
	GetYear
	IsLeapYear
	LastBar
	OptionExpiryDate
	StrToDate
	StrToTime
	TimeToStr

	File Access Functions
	Overview
	FileClear
	FileClose
	FileCreate
	FileEOF
	FileFlush
	FileOpen
	FileRead
	FileWrite

	Fundamental Data Access Functions
	FundamentalPriceSeriesAverage
	GetFundamentalDetail

	Math Functions
	Overview
	Abs
	ArcCos
	ArcSin
	ArcSinh
	ArcTan
	ArcTanh
	Correlation
	Cos
	Cosh
	Cotan
	Dec
	DegToRad
	Exp
	Frac
	Hypot
	Inc
	Int
	LinearRegLine
	LineExtendX
	LineExtendY
	LN
	Log10
	Log2
	Max
	Min
	Pi
	Power
	RadToDeg
	RandG
	Random
	RandomInt
	Randomize
	RandSeed
	Round
	SetRandSeed
	Sin
	Sinh
	Sqr
	Sqrt
	Tan
	Tanh
	TrendLineValue
	Trunc

	PerfScript Functions
	Overview
	AccountExposure
	CashInterest
	DividendsPaid
	MarginLoan
	PerfAddCurrency
	PerfAddNumber
	PerfAddPct
	PerfAddString
	PerfAddBreak
	StartingCapital
	TotalCommission

	Position Management Functions
	Overview
	ActivePositionCount
	ClearPositions
	GetPositionData
	GetPositionPriority
	GetPositionRiskStop
	LastActivePosition
	LastLongPositionActive
	LastPosition
	LastPositionActive
	LastShortPositionActive
	MarketPosition
	PositionActive
	PositionBasisPrice
	PositionBarsHeld
	PositionCount
	PositionEntryBar
	PositionEntryPrice
	PositionExitBar
	PositionExitPrice
	PositionExitSignalName
	PositionLong
	PositionMAE
	PositionMAEPct
	PositionMFE
	PositionMFEPct
	PositionOpenMAE
	PositionOpenMAEPct
	PositionOpenMFE
	PositionOpenMFEPct
	PositionOpenProfit
	PositionOpenProfitPct
	PositionOrderType
	PositionProfit
	PositionProfitPct
	PositionShares
	PositionShort
	PositionSignalName
	PositionSymbol
	SetPositionData
	SetPositionPriority
	SetPositionRiskStop
	SetRiskStopLevel

	Price Series Functions
	Overview
	AbsSeries
	AddCalendarDays
	AddFutureBars
	AddSeries
	AddSeriesValue
	AnalyzeSeries
	ChangeBar
	ClearExternalSeries
	ClearIndicators
	CreateNamedSeries
	CreateSeries
	CreateSeriesLength
	CrossOver
	CrossOverValue
	CrossUnder
	CrossUnderValue
	DivideSeries
	DivideSeriesValue
	DivideValueSeries
	EnableSynch
	FindNamedSeries
	FirstActualBar
	GetDescription
	GetExternalSeries
	GetSeriesValue
	MultiplySeries
	MultiplySeriesValue
	OffsetSeries
	RestorePrimarySeries
	SetDescription
	SetPrimarySeries
	SetSeriesValue
	SingleCalcMode
	SubtractSeries
	SubtractSeriesValue
	SubtractValueSeries
	SynchAll
	SynchSeries
	SyntheticBar
	TurnDown
	TurnUp

	SimuScript Functions
	Overview
	BarCount
	BuyAndHold
	CandidateCount
	Cash
	DrawDown
	DrawDownPct
	Equity
	SetPositionSizeFixed
	SetPositionSizePct
	SetPositionSizeShares
	SortByEntryDate
	SortByExitDate

	String Functions
	Overview
	CharAt
	Chr
	CompareStr
	CompareText
	Copy
	Delete
	FloatToStr
	FormatFloat
	GetToken
	Insert
	IntToStr
	Length
	LowerCase
	Ord
	Pos
	StrToFloat
	StrToFloatDef
	StrToInt
	StrToIntDef
	Trim
	TrimLeft
	TrimRight
	UpperCase

	System Functions
	Overview
	Abort
	AddCommentary
	AddScanColumn
	AddScanColumnStr
	AllowSymbolSearch
	CreateOleObject
	GetGlobal
	GetScriptName
	GetTickCount
	Input
	IWealthLabAddOn3
	IWealthLabAuto
	IsRealTime
	Null
	PlaySound
	Print
	PrintFlush
	PrintStatus
	RunProgram
	SaveChartImage
	SetGlobal
	SetOptimizeValue
	SetPeakTroughMode
	ShowMessage
	Sleep
	UseUpdatedEMA
	WatchListAddSymbol
	WatchListClear
	WatchListCount
	WatchListDelete
	WatchListName
	WatchListRemoveSymbol
	WatchListSelect
	WatchListSymbol

	Technical Indicator Functions
	Overview
	AccumDist
	ADX
	ADXR
	AroonDown
	AroonUp
	ATR
	ATRP
	BBandLower
	BBandUpper
	BOP
	CADO
	CCI
	CMF
	CMO
	CumDown
	CumUp
	DIMinus
	DIPlus
	DSS
	DX
	EMA
	EMMinus
	EMPlus
	FAMA
	FIR
	Highest
	HighestBar
	HTDCPhase
	HTInPhase
	HTLeadSin
	HTPeriod
	HTQuadrature
	HTSin
	HTTrendLine
	HV
	Kalman
	KAMA
	KeltnerLower
	KeltnerUpper
	LinearReg
	LinearRegPredict
	LinearRegSlope
	Lowest
	LowestBar
	MACD
	MAMA
	Median
	MFI
	Momentum
	MomentumPct
	MoneyFlow
	NVI
	OBV
	Parabolic
	Peak
	PeakBar
	PeakNum
	PVI
	QStick
	RelSlope
	ROC
	RSI
	RSquared
	RVI
	SMA
	StdDev
	StdError
	StochD
	StochK
	StochRSI
	Sum
	TII
	TRIX
	Trough
	TroughBar
	TroughNum
	TrueRange
	UltimateOsc
	VHF
	Vidya
	VMA
	Volatility
	WilderMA
	WilliamsR
	WMA

	Time Frame Functions
	Overview
	ChangeScale
	DailyFromMonthly
	DailyFromWeekly
	GetDailyBar
	GetIntraDayBar
	GetMonthlyBar
	GetWeeklyBar
	IntraDayFromCompressed
	IntraDayFromDaily
	IsDaily
	IsIntraday
	IsMonthly
	IsWeekly
	SetScaleCompressed
	SetScaleDaily
	SetScaleMonthly
	SetScaleWeekly

	Trading System Control Functions
	Overview
	ApplyAutoStops
	BuyAtClose
	BuyAtLimit
	BuyAtMarket
	BuyAtStop
	CoverAtClose
	CoverAtLimit
	CoverAtMarket
	CoverAtStop
	CoverAtTrailingStop
	InstallBreakEvenStop
	InstallProfitTarget
	InstallReverseBreakEvenStop
	InstallStopLoss
	InstallTimeBasedExit
	InstallTrailingStop
	PortfolioSynch
	SellAtClose
	SellAtLimit
	SellAtMarket
	SellAtStop
	SellAtTrailingStop
	SetAutoStopMode
	SetCommission
	SetPositionSize
	SetShareCap
	SetShareFloor
	SetShareSize
	SetSlippage
	ShortAtClose
	ShortAtLimit
	ShortAtMarket
	ShortAtStop
	SplitPosition

