
© 2003-2006 WL Systems, Inc.

WealthScript Language Guide
Wealth-Lab Developer 4.0

Wealth-Lab Developer 4.0 WealthScript Language Guide

by WL Systems, Inc.

Revised: Monday, December 11, 2006

No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the
publisher.

Third party trademarks and service marks are the property of their respective owners.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use or misuse of information contained in this
document or from the use or misuse of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Printed: Monday, December 11, 2006

Wealth-Lab Developer 4.0 WealthScript Language Guide

© 2003-2006 WL Systems, Inc.

Special thanks to:

Wealth-Lab's great on-line community whose comments have
helped make this manual more useful for veteran and new users
alike.

EC Software, whose product HELP & MANUAL printed this
document.

Table of Contents

Part I Introduction 5

Part II WealthScript Language Syntax 7

... 71 Overview

... 82 Comments

... 83 Statements and Delimiters

... 94 Variables and Data Types

.. 9Overview

.. 10Declaring Variables

.. 10Variable Naming Rules

.. 11Data Types

.. 12Record Types

.. 13Enumerated Types

... 145 Assignment Statements

... 166 Constants

... 187 Operations

.. 18Overview

.. 18Mathematical Operations

.. 19Boolean Operations

.. 21Logical Operations

... 21Summary

... 21And Operator

... 22Or Operator

... 24Xor Operator

... 25Not Operator

.. 25String Operations

... 268 Conditional Statements

... 309 Case Statement

... 3210 Looping Statements

.. 32Summary

.. 32For Loop

.. 33While Loop

.. 34Repeat Loop

.. 34Breaking Out of a Loop

... 3511 Functions and Procedures

.. 35Overview

.. 36Declaring Procedures

.. 37Declaring Functions

.. 39Calling Functions and Procedures

.. 40Passing Parameters

.. 42Scope of Variables

.. 43Exiting a Procedure

.. 44Native and Re-usable Functions

... 4412 Error Handling

... 4513 Arrays

Part III Working with Price Series 48

... 481 Introduction to Price Series

WealthScript Language Guide, Wealth-Lab Developer 4.0I

© 2003-2006 WL Systems, Inc.

... 482 What is a Price Series?

... 493 Handles to Price Series

.. 49Overview

.. 50Standard Price Series and Their Constants

.. 51Functions that Return a Price Series Handle

.. 52Functions that Accept a Price Series Handle

... 544 Creating Your Own Price Series

... 555 Accessing a Single Value of a Price Series

... 576 Using @ Syntax to Access Values from a Price Series

... 587 Series Math

.. 58Practice

.. 59Answers

... 618 Price Series FAQs

Part IV Painting the Chart 64

... 641 Overview

... 652 Chart Panes

... 653 Creating New Panes

... 674 Plotting an Indicator in a Pane

... 685 Plotting Multiple Symbols

... 696 Specifying Colors

... 707 Drawing Text in a Pane

... 708 Drawing Objects in a Pane

Part V Writing Your Trading System Rules 72

... 721 Overview

... 722 Scripting Trading Rules

.. 72Overview

.. 73The Main Loop

.. 74Triggering a Market Buy Order

.. 75Triggering a Limit or Stop Buy Order

.. 75Checking for Open Positions

.. 76Using Automated Stops

.. 77Selling Short

... 783 Implementing Trading System Rules

... 794 Managing Multiple Positions

Part VI Working with Technical Indicator Functions 83

... 831 Overview

... 832 Accessing Indicator Values

... 843 Accessing Indicator Price Series Handles

Part VII Accessing Data from Files 86

... 861 Overview

... 862 Creating and Opening Files

... 873 Reading and Writing

... 884 Closing Files

IIContents

© 2003-2006 WL Systems, Inc.

Part VIII Understanding Time Frames 89

... 891 Overview

... 892 Accessing a Higher Time Frame

... 913 Expanding the Series

... 934 Accessing Higher Time Frame Data by Bar

... 945 Scaling and Trading

Part IX Creating a Custom Indicator 95

... 951 Overview

... 962 Using the New Indicator Wizard

... 993 Deleting a Custom Indicator

... 994 The Guts of a Custom Indicator

... 1015 Other Possibilities and FAQs

Part X CommissionScripts 103

... 1031 Overview

... 1032 CommissionScript Variables

... 1043 Creating and Testing CommissionScripts

Part XI PerfScripts 106

... 1061 Overview

... 1062 PerfScript Functions

... 1073 Creating PerfScripts

... 1084 Using PerfScripts

Part XII SimuScripts 110

... 1101 Overview

... 1102 SimuScript Function Notes

... 1123 How do SimuScripts Work?

... 1124 Creating a SimuScript

... 1145 Testing a SimuScript

... 1156 SimuScript FAQs

Part XIII Objects 117

... 1171 Overview

... 1182 Object Type Declarations

... 1193 Providing Access via Properties

... 1214 Creating and Using Instances of a Type

... 1225 Putting it all Together

... 1236 Inheritance

... 1257 Polymorphism

... 1268 The TList Object

.. 126Overview

.. 127TList Functions

WealthScript Language Guide, Wealth-Lab Developer 4.0III

© 2003-2006 WL Systems, Inc.

... 127Add

... 128AddData

... 129AddObject

... 130Count

... 130Create

... 131Data

... 131Item

... 132IndexOf

... 132IndexOfData

... 133IndexOfObject

... 134Object

.. 134TList Procedures

... 134ChangeItem

... 135Clear

... 136Delete

... 136Free

... 137SortNumeric

... 137SortString

Index 139

IVContents

© 2003-2006 WL Systems, Inc.

© 2003-2006 WL Systems, Inc.

5 WealthScript Language Guide, Wealth-Lab Developer 4.0

1 Introduction

Welcome to the WealthScript Language Guide

The main purpose of the WealthScript Guide is to provide you with the basic (and
some not-so-basic) concepts to express your trading strategies in WealthScript, which
is the scripting language that you'll use within Wealth-Lab Developer 4.0.
WealthScript is a complete programming language based on the standard computing
language Pascal. You'll be amazed with what you can accomplish by coding trading
systems with WealthScript!

Though many of the most essential WealthScript functions are used in this guide to
demonstrate programming and trading system development concepts, it is not within
the scope of the WealthScript Guide to highlight every single WealthScript function.
All functions with syntax, descriptions, and examples, may be found in the
WealthScript Function Reference .

For COM Support in WealthScript, please refer to the Wealth-Lab Developer 4.0 User's
Guide.

Following Along with the Examples

As you come across examples in the Reference we suggest actually typing the code or
at least copying and pasting the examples to get a feel for how to create scripts. To
do this, perform the following steps:

1. Click the New button or select the "File/New ChartScript" menu item. This
action will create a new ChartScript Window, and position you within the
ChartScript Editor.

2. The Editor will contain some boilerplate code common to most new scripts.
Delete this code.

3. Type in the code from the example, or copy and paste it into the Editor.

4. To execute the script, change to the Chart view in the ChartScript Window.
Then, click any of the stock symbols in the DataSource Tree.

So that you can see dynamic data or data stored in variables, many examples output
their results to the Debug Messages window. To see this window you can do one of
the following actions:

· Strike the F11 key, or,

· Select View/Debug Window, or,

· Click the Debug Messages button in the toolbar.

Syntax Notes

Some topics include code syntax. When an optional statement is encountered, it
shall be enclosed in brackets. For example, in the following code fragment the
'begin' and 'end;' statements are optional.

if booleanexpression then
[begin]

statement;
[end;]

5

Introduction

© 2003-2006 WL Systems, Inc.

6

WealthScript Function Reference

For a complete list of functions available in Wealth-Lab Developer 4.0, please refer to
the WealthScript Function Reference .5

© 2003-2006 WL Systems, Inc.

7 WealthScript Language Guide, Wealth-Lab Developer 4.0

2 WealthScript Language Syntax

2.1 Overview

The following sections describe the basic syntax you must use when writing scripts in
Wealth-Lab Developer 4.0. When you become comfortable using the basic syntax,
more advanced programming techniques are available under the Objects topic and
also the Wealth-Lab Developer 4.0 Add-On API on the Wealth-Lab web site.

Comments
Use comments to annotate your code.

Statements and Delimiters
A WealthScript program is composed of a series of statements that are delimited
by semicolons.

Variables and Data Types
Variables are place holders in computer memory that store values that will likely
vary (hence "variables") during the execution of your code.

Assignment Statements
Use assignment statements to place values into your variables.

Constants
Declare constants for values in your scripts that will never change. WealthScript
pre-defined constants give you quick access to named price series and help
make your code more readable.

Operations
Use operators to manipulate numeric and string expressions within your
WealthScript code.

Conditional Statements
Use conditional statements to compare and test expressions with the purpose of
controlling the flow (order) of execution in your WealthScript code.

Case Statement
Group a set of cases into blocks of code to improve your script's organization and
readability.

Looping Statements
Use looping statements to repeat the execution of one or more statements
numerous times

Functions and Procedures
Write your own functions and procedures when you use the same block of code
over and over in different parts of a script. Go one extra step by saving them to
the "Studies" folder and you'll be able to use them over and over

Error Handling
Write robust scripts by expecting and handling errors that occur in your code.

Arrays
Use arrays to index and then iterate through a list of elements of the same data
type.

117

8

8

9

14

16

16

18

26

30

32

35

44

45

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=24

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

8

2.2 Comments

You can use comments to annotate your code. Comments don't affect the execution
of the WealthScript, and can be a useful documentation tool. There are several forms
of comments available.

Comment Blocks

Use the curly braces to create a comment block.

Example

{ This is a comment block
 this text will not be executed
 by the script }

Single Line Comments

Use the "//" characters to create single line comments.

Example

//This is truly the Holy Grail of Trading Systems!
{ Code Omitted }

2.3 Statements and Delimiters

A WealthScript program is composed of a series of statements. WealthScript
executes the statements in order, from top to bottom. You can use
Conditional Statements and Looping Statements to control this flow of
execution.

Semicolons

Each WealthScript statement must end with the semicolon character (;). The
semicolon lets WealthScript know that one statement is completed and another one is
beginning. The following example indicates that carriage return/line feeds and other
formatting characters are essentially ignored by the compiler.

26 32

© 2003-2006 WL Systems, Inc.

9 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

This is one statement;
This is another statement;

This is
one statement;
This is
another
statement
;
This is yet another;

This is one statement;This is another;

Note: An exception exists to using line feeds - a string type cannot extend across
more than one line.

Be sure to read the WealthScript Style Guide article on the Wealth-Lab.com site for
guidance on formatting your code. A consistent block-formatting style will help
reduce programming errors and make your code easier to read and maintain.

2.4 Variables and Data Types

2.4.1 Overview

Variables

A variable is a placeholder in computer memory that can store a particular value.
Each variable has its own unique name, much like a PO Box in a Post Office. You can
use the variable name to recall or modify the value contained in the variable.

Declaring Variables
You cannot refer to a variable in your code without declaring it first.

Variable Naming Rules
Name a variable anything you like, but follow the rules!

Data Types
Declare your variables based on the type of data they will hold.

Record Types
Record Types are useful structures for grouping varied, yet related data into a
single variable type. They can be used, for example, to pass data between
procedures in order to make long parameter lists saner.

Enumerated Types
Enumerated Types are special data types that you define. When defining an
Enumerated Type you specify a list of possible values, each with its own unique
label. Variables declared for the type can only assume one of these values.

See Also: Scope of Variables in the chapter Functions and Procedures

11

10

10

11

12

13

42 35

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=44

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

10

2.4.2 Declaring Variables

Use the var statement to declare a variable in your WealthScript code.

Syntax

var variablelist : variabletype;

Item Description

variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules .

variabletype One of the valid data type names .

Remarks

· You can declare multiple variables of the same data type with a single var
statement by separating each new variable name with a comma as shown below.

· The variable declaration must occur before you use the variable in your code.

· Variable names are not case sensitive. Therefore, you may refer to a variable
declared as MyVariable equally as MYVARIABLE, myVariable, MyVaRIAble, etc.

Example

var MyVariable: integer;
var Var1, Var2: integer;
var Var1: integer; var Var2: float;
var Name, Rank, Serial_Number: string;
var IsLong: boolean;

Tip: If you forget to declare a variable in your code, the compiler with give you an
"Unknown name" error when you try to run your script. You can quickly fix
this error by pressing F4 or by selecting "Chart/Fix ChartScript" from the main
menu.

2.4.3 Variable Naming Rules

You can name your variables anything you like, provided that you follow these rules:

Rule 1: Variable names must begin with an alphabetic character.

Rule 2: Variable names can contain alphabetic, numeric, or underscore characters
only.

Rule 3: You cannot create variables that have the same name as WealthScript
reserved words or built-in function names.

Tip: When using many variables, sometimes it can be difficult to remember their
data type without referring to their declaration. You can help yourself by using
the same prefix for all variables of the same type. For example you could use
"f" as a prefix for variables of type float (e.g. fSimpleMovingAvg, fStdDeviation,
etc.).

These are suggested prefixes using a 1-letter or 3-letter "Hungarian-style" notation.
Use them only if they seem helpful to you.

10

11

© 2003-2006 WL Systems, Inc.

11 WealthScript Language Guide, Wealth-Lab Developer 4.0

flt, f float (examples: fClose, fltClose)

int, i integer

bln, b boolean

str, s string

vnt, v variant

rcd, r record type

lst, l TList object

pne, p pane reference (integer)

hdl, h Price Series handle (integer)

2.4.4 Data Types

A variable must be declared as one of the following data types. For typical syntax,
see the Assignment Statements topic.

integer
Stores whole number values. Values can range from -2,147,483,648 to
2,147,483,647. You can perform mathematical Operations on integer variables.

float
Stores floating point values. The WealthScript engine treats declared floats (and
arrays of type float) with double-precision, which have 14 to 15 digits of
significance. Approximate valid ranges are as follows:

Negative values: -1.7 x 10308 to -4.9 x 10-324

Positive values: 4.9 x 10-324 to 1.7 x 10308

You can perform mathematical Operations on float variables.

Note: Price Series values are stored as single-precision floating point values, which
maintain 7 to 8 significant digits and can range from 1.5 x 10-45 to 3.4 x
1038. For more information, see Data Precision Considerations in the User
Guide.

string
Can store textual data of any length. You can perform string Operations on
string variables.

boolean
Can contain one of two logical values: true or false. You can perform logical
Operations on boolean variables.

variant
A special type of variable that can be assigned to any basic data type. A variant can
be useful if you need to use the same variable for multiple types at run time.

datetime (not supported)
In WealthScript code, dates are accessed as integer values, allowing date
comparison using standard arithmetic operators. For more information, see GetDate
and all the Date/Time functions in the WealthScript Function Reference.

See Also: Record Types Object Type Declarations TList Object

14

18

18

18

18

12 118 126

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

12

2.4.5 Record Types

A useful structure for organizing a related set of data is a user-defined Record Type.
Record Types are multi-dimensional variables that can be used in passing data
between procedures, for example, to make long parameter lists saner.

Although they are not necessary for programming in WealthScript, it's nice to know
these types of structures are available if you need them.

Note: Records cannot be added to a TList object . Instead, you can add an
object using the AddObject method. Objects can contain different data
elements just like a record type.

Syntax

type
rtypename = record
vlistname1 : datatype;
vlistname2 : datatype;

:
:

vlistnameN : datatype;
end;

Item Description

rtypename A valid variable name.

 vlistnameN A single variable name, or a comma-separated list of variables
that follow the variable-naming rules .

 datatype A data type expression (e.g., integer)
or an array declaration (e.g., array[0 .. 0] of float)

Example

{ define a record type named PriceData having
 1 datetime, 4 floats, 1 integer, and 1 boolean }
type
 PriceData = record
 dT: integer;
 O, H, L, C: float;
 V: integer;
 IsIndex: boolean;
end;

{ function to convert a boolean to a string }
function BlnToStr(bln: boolean): string;
begin
 if bln then
 Result := 'True'
 else
 Result := 'False';
end;

{ declare variables as the record type PriceData}
var pd1, pd2: PriceData;
const fmtPd = '#.00';

126

117

10

10

11

© 2003-2006 WL Systems, Inc.

13 WealthScript Language Guide, Wealth-Lab Developer 4.0

pd1.dT := 20030520;
pd1.O := 12.10;
pd1.H := 14.31;
pd1.L := 11.92;
pd1.C := 14.24;
pd1.V := 1023500;
pd1.IsIndex := False;

{ copy the data to another PriceData type }
pd2 := pd1;

Print(IntToStr(pd2.dT) + ', '
 + FormatFloat(fmtPd, pd2.O) + ', '
 + FormatFloat(fmtPd, pd2.H) + ', '
 + FormatFloat(fmtPd, pd2.L) + ', '
 + FormatFloat(fmtPd, pd2.C) + ', '
 + IntToStr(pd2.V) + ', '
 + BlnToStr(pd2.IsIndex));

{ just for practice, let's do the same with an array of a Record Type }
var pda: array[0..1] of PriceData;

pda[0] := pd2;
pda[1] := pda[0];

Print('Second array contents:');
Print(IntToStr(pda[1].dT) + ', '
 + FormatFloat(fmtPd, pda[1].O) + ', '
 + FormatFloat(fmtPd, pda[1].H) + ', '
 + FormatFloat(fmtPd, pda[1].L) + ', '
 + FormatFloat(fmtPd, pda[1].C) + ', '
 + IntToStr(pda[1].V) + ', '
 + BlnToStr(pda[1].IsIndex));

2.4.6 Enumerated Types

The Enumerated Type is a special data type that contains a list of distinct values.
You create a distinct label for each possible value of an Enumerated Type.
Enumerated Types can be used to make your code more self-descriptive. For
example, your trading system might look for a complex sequence of events before
triggering a signal. Rather than using an integer variable to store the system's state,
you could use an Enumerated Type. The script is then easier to understand because
the labels of the Enumerated Type values are descriptive.

Syntax

type TMyType = (valOne [, valTwo] ...[, valLast]);

Item Description

TMyType A valid variable type name.

 valOne - valLast Each possible value of the Enumerated Type must be provided a
unique valid label. By convention, each label begins with
the same brief prefix. You must provide at least one label.

10

10

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

14

Enumerated Type Values

A variable that is an Enumerated Type can only contain a value that was defined in
the Enumerated Type's list. Internally, the values are stored as integers. You can
convert an Enumerated Type variable to an integer by casting it as an integer value.

Example

type TEnum = (enumZero, enumOne, enumTwo);
var n: integer;
var et: TEnum;
et := enumOne;
n := integer(et);
ShowMessage(IntToStr(n));

See Also: Creating Synchronized Arrays

State Machines

The example below is a simple trading system "state machine". The system can be in
one of three different states. The state is controlled by an Enumerated Type variable.

Example

type
 TSystemState = (ssSetup, ssTactical, ssPinpoint);

var Bar: integer;
var State: TSystemState;

InstallStopLoss(5);
InstallProfitTarget(10);

for Bar := 20 to BarCount - 1 do
begin
 ApplyAutoStops(Bar);
 if not LastPositionActive then
 begin
 case State of
 ssSetup:
 if CumDown(Bar, #Close, 4) >= 9 then
 State := ssTactical;
 ssTactical:
 if RSI(Bar, #Close, 14) < 40 then
 State := ssPinpoint;
 ssPinpoint:
 if CumDown(Bar, #Close, 2) >= 3 then
 begin
 BuyAtMarket(Bar + 1, '');
 State := ssSetup;
 end;
 end;
 end;
end;

2.5 Assignment Statements

Use assignment statements to place values into your variables. Assignment
statements use the assignment operator, which is typed as a colon immediately

45

© 2003-2006 WL Systems, Inc.

15 WealthScript Language Guide, Wealth-Lab Developer 4.0

followed by an equal sign.

Example

var n: integer;
n := 100;

var s: string;
{ Note that a string cannot extend across multiple lines in the Editor
}
s := 'My name is Smith';

var f: float;
f := 3.1415;

var b: boolean;
b := true;

It's illegal to assign the wrong data type into a variable. The following examples will
generate an error.

Example

var n: integer;
n := 1.234;

var s: string;
s := 200;

var f: float;
f := 'Illegal';

You can also assign the value from one variable into another.

Example

var var1, var2: integer;
var1 := 2001;
var2 := var1;

Initializing Variables

Generally, you should initialize variables, i.e., assign known values to variables, before
using them for the first time in a calculation. Note that the previous examples use
separate statements for declarations and assignments to initialize a variable.

Another spacing-saving technique involves declaring and initializing a variable in a
single var statement. In some cases, such as within procedures or functions for
example, this type of combined declaration/initialization may make your code more
clear or readable. The expression on the right side of the assignment can also be a
function .

Example

var Yr, MyDay: integer;
var Img: string;
Yr := 2001;
MyDay := 16;
Img := 'RedDiamond';

10

35

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

16

Can be coded equivalently as follows. Note that an equals sign is used, not the
assignment operator.

var Yr: integer = 2001;
var MyDay: integer = 16;
var Img: string = 'RedDiamond';

2.6 Constants

A constant is a numeric or string value in a script that will never change. Using
constants can save you from having to repeat the same values multiple times in a
script with the added advantage of making your code more concise and readable.
Since constants are not variable they are never used on the left side of the
assignment operator .

For example, you might use a format string to format a value for debug printing.
Rather than specifying the format argument each time you use a Print statement,

you could define it as a constant and then use the constant as the format argument in
each statement.

Declaring a Constant

To declare a constant, use the keyword const followed by the equal sign and then the

value of the constant. In the example below, the constant FMT is set to a string, and
therefore may be used in any function requiring a parameter of type string. You can,
however, declare a constant with a numeric value (integer or float) as well.

Example

const FMT = '$#,##0.00';
var Bar: integer;
Bar := BarCount - 1;
DrawLabel('Open = ' + FormatFloat(FMT, PriceOpen(Bar)), 0);
DrawLabel('High = ' + FormatFloat(FMT, PriceHigh(Bar)), 0);
DrawLabel('Low = ' + FormatFloat(FMT, PriceLow(Bar)), 0);
DrawLabel('Close = ' + FormatFloat(FMT, PriceClose(Bar)), 0);

Pre-defined Constants

WealthScript has several constants available for you to use that will improve your
code's readability. For more information, click the links.

Price Series constants

#Open, #High, #Low, #Close, #Volume, #OpenInterest, #Average, #AverageC

#Equity (PerfScripts only)

14

50

106

© 2003-2006 WL Systems, Inc.

17 WealthScript Language Guide, Wealth-Lab Developer 4.0

Color value constants

#Black, #Maroon, #Green, #Olive, #Navy, #Purple, #Teal, #Gray, #Silver,

#Red, #Lime, #Yellow, #Blue, #Fuchsia, #Aqua, #White, and finally

#WinLoss, which is used primarily for PerfScripts .

Light colors, normally used for shading the chart background:

#RedBkg, #BlueBkg, #GreenBkg

Plot formatting constants :

#Thin, #Dotted, #Thick, #Histogram, #ThickHist, #Dots

Style parameter constants (see PlotSymbol):

#OHLC, #Candle, #Line

PerfScript Style parameter constants

#Bold, #Italic

Time Frame constants (see ChangeScale):

#Daily, #Weekly, #Monthly

Day of the Week constants (use with DayOfWeek function):

#Monday, #Tuesday, #Wednesday, #Thursday, #Friday

Current SimuScript Position :

#Current

Shortcut to Closing All Positions : (use with SellAt and CoverAt functions)

#All

ChartScript Optimization Variables

#OptVars are values that will be replaced with a range of different values during the
optimization process. You can use up to 10 #OptVars, #OptVar1 through
#OptVar10.

#OptVar1, #OptVar2, ..., #OptVar10

Set Mode constants

The SetAutoStopMode WealthScript function allows you to control how the

parameter of AutoStops are interpreted.

#AsPercent (default), #AsPoint, #AsDollar

The first two constants are also used in the SetPeakTroughMode WealthScript

function to control how the Reversal parameter of Peak and Trough functions are
interpreted.

69

106

67

106

110

79

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

18

2.7 Operations

2.7.1 Overview

There are four different types of operations you can perform in WealthScript;
mathematical, boolean, logical, and string.

Mathematical Operations
Use the standard mathematical operators to manipulate numeric expressions.

Boolean Operations
Test relationships between expressions using boolean operators.

Logical Operations
Make logical comparisons between two numeric expressions with this subset of
boolean operators.

String Operations
Concatenate and compare string variables and expressions.

2.7.2 Mathematical Operations

Standard Operators

You can use the standard mathematical operators summarized in the table below in
your WealthScript code.

Syntax

Result := Operand1 Operator Operand2;

Operator Description

+ Addition
- Subtraction

* Multiplication
/ Division

Multiplication and division operations are evaluated first, otherwise expressions are
evaluated from left to right. You can use parenthesis to modify the standard order of
evaluation, where the innermost expression is evaluated first.

Example

var x: integer;
x := 1 / 2;
x := x * 5 + 1;
x := (x - 5) / (x * 2);
x := x - (2 / (3 * x));

More advanced mathematical operations can be completed using the built-in Math
Functions.

18

19

21

25

© 2003-2006 WL Systems, Inc.

19 WealthScript Language Guide, Wealth-Lab Developer 4.0

Modulo Operator

The Mod operator is used to divide two floating-point numbers, which are first rounded

to integers, and returns only the remainder as type float. Although the divisor may
be a negative number, the result will always maintain the sign of the dividend.

Syntax

Result := dividend Mod divisor;

Example

{ y will equal -5 and z equals 0 }
var y, z: float;
y := -21 Mod 7.8;
z := 21 Mod 7.3;
ShowMessage(FloatToStr(y) + #9 + FloatToStr(z));

See Also:

ModX function and IGArithm01 functions in the Wealth-Lab Code Library on the
Wealth-Lab site.

Div Operator

There are times when you may want to be sure that the result of an integer division
returns an integer. Whereas Mod returns a remainder, division with the Div operator

returns an integer quotient (without a remainder).

Syntax

Result := dividend Div divisor;

Remarks

dividend and divisor must be integer expressions.

Example

{ i will be assigned the value -3 }
var i, j: integer;
j := -6;
i := 21 Div -j;
ShowMessage(IntToStr(i));

2.7.3 Boolean Operations

Nearly all programs require you to test [boolean] relationships between numeric
variable and perhaps even string variables. For these tests you'll use the standard set
of Pascal boolean operators found in the table below:

Syntax

Result := Operand1 Operator Operand2;

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

20

Operator Description

= Equal to
<> Not equal to

> Greater than
>= Greater than or equal to

< Less than
<= Less than or equal to

The result of comparing two expressions with the operators above is a boolean (True
or False). Consequently, you'll often assign the result of relational operations to a
boolean variable as in the example below:

Example

var b: boolean;
var x1, x2: float;
x1 := 10;
x2 := 20;
b := true; {true}
b := false; {false}

b := x1 = x2; {false}
b := x1 <> x2; {true}
b := x2 > x1; {true}

You can also use boolean expressions whenever a boolean is required without
assigning the result to a boolean variable, as in the if/then statement below.

Example

var b: boolean;
var x1, x2: float;
x1 := 10;
x2 := 20;
if x2 < x1 then
 x1 := x1 * x2;
b := (x1 > x2) Or (x1 > 1); {true}

Note that when using a logical operator you must group the individual expressions in
parenthesis, as in the final assignment using Or in the example above.

See Also: Logical Operations 21

© 2003-2006 WL Systems, Inc.

21 WealthScript Language Guide, Wealth-Lab Developer 4.0

2.7.4 Logical Operations

2.7.4.1 Summary

The following operators allow you to perform logical comparisons between two
numeric expressions. With these operators, you have the additional capability to
perform bitwise comparisons of two identically positioned bits in two numeric
expressions.

And Operator
Perform logical conjunctions of expressions with the And operator.

Or Operator
Perform logical disjunctions of expressions with the Or operator.

Xor Operator
Perform logical exclusions of expressions with the Xor operator.

Not Operator
Perform logical negations of expressions with the Not operator.

Note: When using a logical operator to obtain the result of two boolean expressions,
you must group the individual boolean expressions in parenthesis.

Example

var TestIsTrue: boolean;
TestIsTrue := (2 > 1) And (2 + 2 = 5);
If TestIsTrue then
 ShowMessage('The expression is True!')
else
 ShowMessage('The expression is False!');

2.7.4.2 And Operator

You may perform logical conjunctions of expressions with the And operator.

Syntax

Result := Expression1 And Expression2;

Item Description

Result A boolean variable.

Expression1 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

21

22

24

25

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

22

Result Summary:

 Expression1 Expression2 Result

False False False

False True False

True False False

True True True

Example

var b1, b2, bR: boolean;
b1 := True; b2 := False;
bR := b1 And b2; { bR is assigned False }

b1 := 20 < 23; b2 := 30 > 29;
bR := b1 And b2; { bR is assigned True }

Integer Bitwise Comparison

Likewise, you may also use the And operator to compare two identically positioned
bits in two numeric expressions.

And Bitwise Comparison Result Summary:

bit in Expression1 bit in Expression2 Result

0 0 0
1 0 0
0 1 0
1 1 1

Example

var x, y, z: integer;
x := 9; y := 1;
z := x And y; { z equals 1; 1001 And 0001 = 0001 }

x := 7; y := 12;
z := x And y; { z equals 4; 0111 And 1100 = 0100 }

2.7.4.3 Or Operator

You may perform logical disjunctions of expressions with the Or operator.

Syntax

Result := Expression1 Or Expression2;

© 2003-2006 WL Systems, Inc.

23 WealthScript Language Guide, Wealth-Lab Developer 4.0

Item Description

Result A boolean variable

Expression1 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Result Summary:

Expression1 Expression2 Result

False False False

False True True

True False True

True True True

Example

var b1, b2, bR: boolean;
b1 := True; b2 := False;
bR := b1 Or b2; { bR is assigned True }

b1 := 20 < 23; b2 := 30 > 29;
bR := b1 Or b2; { bR is assigned True }

Integer Bitwise Comparison

Likewise, you may also use the Or operator to compare two identically positioned bits
in two numeric expressions.

Or Bitwise Comparison Result Summary:

bit in Expression1 bit in Expression2 Result

0 0 0

0 1 1

1 0 1

1 1 1

Example

var x, y, z: integer;
x := 9; y := 3;
z := x Or y; { z equals 11; 1001 And 0011 = 1011 }

x := 7; y := 8;
z := x Or y; { z equals 15; 0111 And 1000 = 1111 }

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

24

2.7.4.4 Xor Operator

You may perform logical exclusions of expressions with the Xor operator.

Syntax

Result := Expression1 Xor Expression2;

Item Description

Result A boolean variable

Expression1 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Result Summary:

Expression1 Expression2 Result

False False False

False True True

True False True

True True False

Example

var b1, b2, bR: boolean;
b1 := True; b2 := False;
bR := b1 Xor b2; { bR is assigned True }

b1 := 20 < 23; b2 := 30 > 29;
bR := b1 Xor b2; { bR is assigned False }

Integer Bitwise Comparison

Likewise, you may also use the Xor operator to compare two identically positioned bits
in two numeric expressions.

Xor Bitwise Comparison Result Summary:

bit in Expression1 bit in Expression2 Result

0 0 0

0 1 1

1 0 1

1 1 0

© 2003-2006 WL Systems, Inc.

25 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var x, y, z: integer;
x := 9; y := 3;
z := x Xor y; { z equals 10; 1001 And 0011 = 1010 }

x := 7; y := 8;
z := x Xor y; { z equals 15; 0111 And 1000 = 1111 }

2.7.4.5 Not Operator

You may perform logical negations of expressions with the Not operator.

Syntax

Result := Not Expression;

Item Description

Result A boolean variable

Expression Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Result Summary:

Expression Result

False True

True False

Example

var b, bR: boolean;
b := True;
bR := Not b; { bR is assigned False }

b := 20 > 23;
bR := Not b; { bR is assigned True }

2.7.5 String Operations

The only valid string operation that changes the value of a string variable is
concatenation (+), which appends multiple strings into a single string.

Example

var s1, s2, getty: string;
s1 := 'Four score and';
s2 := 'seven years ago';
getty := s1 + ' ' + s2;
ShowMessage(getty);
{ getty now holds the string 'Four score and seven years ago' }

For non-printable characters, use the Chr(asciicode) function instead of a literal

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

26

string, where asciicode is the decimal ASCII code of a printable or non-printable
character. Alternatively, you may use the shorthand "#asciicode" notation. Below is a

partial list of handy non-printable characters.

Decimal Code Description

9 TAB, tab character
10 LF, line feed
13 CR, carriage return

Tip:

If you want to break a string into multiple lines, add carriage return and line break
character codes to the location of the line break. In the example above, replace the
string-assignment statement as follows:

getty := s1 + Chr(13) + Chr(10) + s2;

{ Or, using the shorthand notation: }
getty := s1 + #13#10 + s2;

String Comparison

You may also make comparisons between string variables using the
boolean operators . A boolean operation on alphanumeric strings results in a binary
(case-sensitive) comparison of the string expressions.

When comparing strings, characters are tested from left to right until an inequality is
found. The value of a string character used for comparison is its associated ASCII
code. Therefore, an alphanumeric character such as '3' having an ASCII code of 53,
will evaluate as being less than any letter, which have ASCII codes starting at 65.

Example

var s1, s2: string;
var b: boolean;
s1 := 'OU812';
s2 := 'Oh, me?';
b := s1 < s2; { b is True }

s2 := 'Ou812';
b := s1 = s2; { b is False }

2.8 Conditional Statements

Conditional statements allow you to control the flow of execution in your
WealthScript programs. You'll use the if, then and else statements for this

purpose.

If/Then Statements

Use the if/then statement to perform logical tests. The program can branch to one

set of statements if the test is true, and another if the result is false. You can use any
of the logical operations in the if/then statement.

19

© 2003-2006 WL Systems, Inc.

27 WealthScript Language Guide, Wealth-Lab Developer 4.0

Syntax

if booleanexpression then
[begin]

statement;
[end;]

Note that the if/then and the statements contained within it are considered as a

single WealthScript statement, so you place a semicolon after the final statement
executed, as shown below.

Example

var x: integer;
x := 10;
if x > 10 then
 x := x + 1; {will not execute}
if x <= 10 then
 x := x * 2; {will execute}
if (x = 20) or (x = 10) then
 x := x / 3; {will execute}

You can also test a boolean variable directly. This can make your code more readable
if you creatively name your variables.

Example

var f1, f2: float;
var IsTrue: boolean;
f1 := 30.5;
f2 := 29.0;
IsTrue := f2 < f1;
if IsTrue then
 Print('Sell Now!');

Executing Multiple Statements After an If/Then

Often you'll want to execute more than one statement after an if/then. In this case

you must use a begin/end statement pair to create a "code block" that encloses the

statements. The begin/end code block concept is used in other areas of

WealthScript, whenever a group of statements need to be treated as a single
statement.

Syntax

if booleanexpression then
begin

statement1;
statement2;

:
:

statementX;
end;

The begin/end code block is considered a single statement, so the semicolon goes

after the end portion of the pair. However, you can place as many other statements

as you like within the begin/end code block. These individual statements within the
begin/end should end with semicolons.

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

28

Example

var x: integer;
x := 10;
{ This code block contains no statements }
if x < 20 then
begin
end;

{ This if/then will execute 3 statements }
if x * 2 = 20 then
begin
 x := x * 2;
 x := x - 1;
 x := x / 10;
end;

Note that each of the 3 statements within the begin/end clock ends with a

semicolon.

The Else Statement

You can use the else statement to execute statements if the if/then test resolves to

false. In this form, the if/then/else is considered a single statement, so the

semicolon goes at the very end of the statement only.

Syntax

if booleanexpression then
statement

else
statement;

Example

var x: integer;
x := 10;
if x = 5 then
 x := x * 20
else
 x := x / 20;

Complex If/Then/Else with Begin/End

You can, of course, use begin/end code blocks in either or both portions of the
if/then/else statement.

Example

{ if/then/else with begin/end blocks, no code in the blocks }
var x: integer;
x := 10;
if x < 10 then
begin
end
else
begin
end;

© 2003-2006 WL Systems, Inc.

29 WealthScript Language Guide, Wealth-Lab Developer 4.0

{ if/then/else with begin/end blocks, with code in the blocks }
var x: integer;
x := 10;
if x < 10 then
begin
 x := x * 2 + 1;
 x := x / 5;
end
else
begin
 x := x * x;
 x := x / 2;
end;

Note that there is no semicolon after the first begin/end pair in the if/then/else
with code blocks. The semicolon appears after the last end only.

Nested If/Then If/Then/Else

You can "nest" one or more if/then/else statements within another.

Example

var x: integer;
x := 10;

{ These are two nested if/then statements }
if x = 10 then
 if x * 2 < 20 then
 begin
 x := x / 3;
 x := x + 2;
 end;

{ This is a nested if/then/else block. }
if x < 2 then
begin
 x := x * 10;
 x := x - 5;
end
else
if x > 5 then
begin
 x := x * 100;
 x := x * x;
end
else
begin
 x := (x + 1) / x;
 x := x * 2;
end;

Note that the first if/then block in the example above is equivalent to the following
if/then block that uses the And logical operator.

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

30

Example

var x: integer;
x := 10;
{ Reminder: boolean expressions must be grouped in parentheses
 when combined by a logical operator }
if (x = 10) And (x * 2 < 20) then
begin
 x := x / 3;
 x := x + 2;
end;

2.9 Case Statement

A case statement examines a variable and lets you execute a different statement or
group of statements depending on its value. Each "case" can include a single value, a
list of values separated by commas, or define a range between two values (included in
the range) using a double-dot notation (..) between the values. Place a colon after
the end of the value lists. After each case is defined, you can place a single statement
to be executed, or a group of statements surrounded by a begin/end block.

Use the else statement to execute statements when a value doesn't fall within any of

your pre-defined cases. The begin/end statements are optional after else in a

case statement, even if you have multiple statements in the else block.

Note: You can use all comparative data types in the case instruction, i.e., including
strings, floats, and even booleans; although use of floats and booleans in
case statements are uncommon.

Single Value Case Statements

Syntax

case testexpression of
casevalue1:
[begin]

statements;
[end;]
casevalue2, casevalue3, ..., casevalueX:

statement;
casevalueY:

statement;
else
[begin]

statements;
[end;]

end;

The example below shows a case statement that operates on single values only.

© 2003-2006 WL Systems, Inc.

31 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var n: integer;
n := Round(Random * 5) + 1;
case n of
 1:
 ShowMessage('One');
 2:
 ShowMessage('Two');
 3:
 ShowMessage('Three');
 4:
 ShowMessage('Four');
 else
 ShowMessage('None of the Above');
end;

Case Statements Using a List of Values

The example below uses a list of values for the cases. It also shows how to use
begin/end blocks to execute multiple statements for a case.

Example

var n: integer;
n := Round(Random * 10) + 1;
case n of
 1, 2:
 begin
 ShowMessage('One, Two');
 ShowMessage('Buckle my Shoe');
 end;
 3, 4:
 begin
 ShowMessage('Three, Four');
 ShowMessage('Trade Some More');
 end;
 5..8:
 ShowMessage('Between 5 and 8, inclusive: ' + IntToStr(n));
 else
 ShowMessage('Collect your Profits now!');
end;

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

32

2.10 Looping Statements

2.10.1 Summary

Use looping statements to repeat the execution of one or more statements numerous
times. There are several types of looping techniques possible:

For Loop
The for loop uses an index variable to repeat a statement or block of statements.

While Loop
This type of loop continues to execute while a test condition evaluates True.

Repeat Loop
Similar to a the While loop, a Repeat loop makes sure that the statements within
the loop are executed at least once.

Breaking Out of a Loop
It's not always necessary to run a loop to its completion. When the code inside a
loop has served its purpose, use the break statement to terminate a loop to save

processing time.

2.10.2 For Loop

The for loop uses an index variable to repeat a statement or block of statements.

Within the repeated statement block you can access the value of the variable used to
control the loop.

Syntax

for numericvariable := start to end do
[begin]

statements;
[end;]

If you want the for loop to repeat more than a single statement you must enclose the

statements in a begin/end block.

Example

var n: integer;
var x: float;
x := 2;

{ Repeat a single statement 10 times }
for n := 1 to 10 do
 x := x * 2;

{ Repeat a group of statements 10 times }
for n := 1 to 10 do
begin
 x := x * 2;
 x := x + 5;
end;

32

33

34

34

© 2003-2006 WL Systems, Inc.

33 WealthScript Language Guide, Wealth-Lab Developer 4.0

{ Use the index variable in the loop }
for n := 1 to 10 do
begin
 x := x + n * 2;
 x := x / n;
end;

Counting Backward

You can count backwards instead of forward in your for loop by using downto instead

of to in the loop.

Example

var n: integer;
for n := 10 downto 1 do
begin
end;

2.10.3 While Loop

Use the while loop to execute statements as long as a certain boolean condition is

true. The condition should be enclosed in parenthesis, and can be any value Boolean
Operation.

Syntax

while booleanexpression do
[begin]

statements;
[end;]

Example

var n1, n2: integer;
n1 := 10;
n2 := 50;
while (n1 < n2) do
begin
 print(IntToStr(n1));
 n1 := n1 + 3;
end;

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

34

2.10.4 Repeat Loop

The repeat loop will execute statements until the specified condition is true. This is

similar to the while loop, but the repeat loop checks the condition after the first

pass of the loop. This guarantees that the statements within the loop will execute at
least once.

Note that this loop does not require begin and end for multiple statements since the

block of loop code is fully contained within the repeat..until keywords.

Syntax

repeat
statements;

until booleanexpression ;

Example

var n1, n2: integer;
n1 := 10;
n2 := 50;
repeat
print(IntToStr(n1));
 n1 := n1 + 3;
until (n1 > n2);

2.10.5 Breaking Out of a Loop

Sometimes it's necessary to break out of a loop before it completes. There are two
ways you can do this.

The break statement takes you completely out of the loop, and resumes execution at

the statement immediately after the loop.

Syntax

break;

Example

var i: integer;
for i := 1 to 10 do
begin
 if Random > 0.5 then
 break;
end;
//Execution resumes here
Print(IntToStr(i)) ;

The continue statement takes you back to the beginning of the loop and continues

with the next iteration, skipping any statements after the continue.

Syntax

continue;

33

© 2003-2006 WL Systems, Inc.

35 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var i, n: integer;
n := 0;
for i := 1 to 10 do
begin
 if Random > 0.5 then
 continue;
 n := n + i;
end;

2.11 Functions and Procedures

2.11.1 Overview

Functions and procedures are blocks of code that you can execute whenever needed
from any point within your script. You give these code blocks their own "name", and
can then execute the code by calling it by name.

A rule of thumb is that when you find yourself writing the same block of code more
than once in your scripts, there's a good chance that you should convert that block of
code into a function (if you need a value returned) or a procedure (to do some other
repetitive operation, like drawing trendlines on a chart).

Declaring Procedures
Procedures must be declared above the calling routine using the syntax found in
this topic.

Declaring Functions
The main distinction between a function and a procedure is that a function
returns a value to the caller, while a procedure does not. Like procedures,
functions must also be declared above the calling routine.

Calling Functions and Procedures
Similar to double-clicking on a Windows shortcut to run a program, you call
functions and procedures using the name in their declarations. When the name is
encountered in code, the "small program" found within the function/procedure
block is run. When the function/procedure completes its routine, program
execution begins at the next statement following the call.

Passing Parameters
More often than not, you'll want to pass values (or objects) to functions and
procedures for further manipulation. Using the parameter list, you have the
choice of passing arguments by value or by reference.

Scope of Variables
It's possible for variables to be accessed in more than one routine. If you're not
careful with the placement of your
variable declarations you could unknowingly be modifying the value of a variable
used in multiple routines.

Exiting a Procedure
Use the Exit statement to terminate a function or procedure without executing

any remaining statements.

36

37

39

40

42

43

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

36

Native and Re-usable Functions
One characteristic of functions and procedures is that they are re-usable. You can
build your own library of functions and procedures and include them in different
ChartScripts. WealthScript itself is made up of hundreds of other "native"
functions and procedures. You'll call native functions just like a function you have
written yourself, but since they are part of the WealthScript language, you don't
have to declare them!

2.11.2 Declaring Procedures

Like functions, procedures must be declared before they can be referenced in your
script. This means that they must appear towards the beginning of your script, above
the main routine of your ChartScript code.

Use the procedure statement followed by a unique name to declare a procedure, as

shown below. Procedures follow the same naming rules as normal variables.

Syntax

procedure procedurename[([var] variablelist1: type1; [var] variablelist2: type2;
... [var] variablelistX: typeX)];
begin

[procedure-scope variable declarations]
[statements]

end;

Item Description

procedurename A valid name that follows variable naming rules .

variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules . When multiple types
exist in the parameter list, they are separated by semicolons.

type One of the valid data type names .

statements WealthScript function/procedure code

Remarks:

· Use procedures when you do not need to return a value to the caller.

· After the procedure statement is a begin/end block that contains the code

that will execute when you call the procedure.

· By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an

argument by reference. For more information, see Passing Parameters in this
chapter.

· Declarations of the variables in the parameter list are sufficient for their use
throughout the procedure. In the procedure-scope declarations, declare only
additional variables you need for use within the procedure; for interim
calculations, for example.

· Excluding object and record types, procedure-scope variables can be declared in
the procedure declaration, i.e., immediately after the procedure statement and

before the first begin. For this method, use one var statement followed by

44

10

10

10

11

40

© 2003-2006 WL Systems, Inc.

37 WealthScript Language Guide, Wealth-Lab Developer 4.0

variablename: type; as shown below.

Example

{ This is a procedure and therefore has no return value }
procedure DoSomething;
var
 i, j: integer;
 f: float;
 str: string;
begin
 // Your "do something" procedure code would go here
end;

2.11.3 Declaring Functions

Like procedures, functions must be declared before they can be referenced in your
script. This means that they must appear towards the beginning of your script, above
the main body of your ChartScript code.

Use the function statement followed by a unique name to declare a function, as

shown below. Functions follow the same naming rules as normal variables.

Syntax

function functionname[([var] variablelist1: type1; [var] variablelist2: type2; ...
[var] variablelistX: typeX)]: returntype;
begin

[function-scope variable declarations]
[statements]
[Result := expression ;]

end;

Item Description

functionname A valid name that follows variable naming rules .

procedurename A valid name that follows variable naming rules .

returntype One of the valid data type names .

variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules . When multiple types
exists in the parameter list, they are separated by semicolons.

type One of the valid data type names .

statements WealthScript function/procedure code

expression An expression of type returntype

Remarks:

· Use functions when you need to return a value to the caller. Specify the data
type (returntype) of the return value (Result) at the end of the function
statement, preceded by a colon.

· After the function statement is a begin/end block that contains the code

that will execute when you call the function.

10

10

10

11

10

11

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

38

· By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an

argument by reference. For more information, see Passing Parameters in this
chapter.

· Declarations of the variables in the parameter list are sufficient for their use
throughout the function. In the function-scope declarations, declare only
additional variables you need for use within the procedure; for interim
calculations, for example.

· Excluding object and record types, function-scope variables can be declared in
the procedure declaration, i.e., immediately after the function statement and

before the first begin. For this method, use one var statement followed by

variablename: type; as shown below.

Example

{ This simple function returns the integer 1 }
function MyFunction: integer;
var
 i: integer;
 f: float;
begin
 i := 50;
 f := 0.02;
 Result := Round(i * f);
end;

{ And this one returns the string '<WLD>!' }
function Func2: string;
begin
 Result := 'Wealth-Lab Developer 4.0!';
end;

// Call the functions and show the result
ShowMessage(Func2 + ' is Number ' + IntToStr(MyFunction) + '!');

Function Return Values

Although it is optional, it makes little sense to declare a function that does not return
a value. Notice in the above function examples that an expression of type returntype
is assigned to a variable named Result. The Result variable is a special variable that
is available only in functions. Always assign the return value of your functions to the
Result variable. The assignment may be found at any point within the function block,
although as it is a "result", this statement is often the last one.

Recursion

Recursion refers to the ability of a function to call itself. Using recursive techniques,
you can write very compact and efficient code that performs tasks that might be
otherwise unmanageable. Recursive, or "reentrant", functions may be programmed in
WealthScript. A classic example of a recursive function is one that calculates the
factorial of a number, x!.

Example

function Xfactorial(x: integer): float;
begin

40

© 2003-2006 WL Systems, Inc.

39 WealthScript Language Guide, Wealth-Lab Developer 4.0

var i: integer;
var f: float;
i := x - 1;
if i < 2 then // No more calls!
Result := x

else
Result := x * Xfactorial(i);

end;

{ test the function }
var y: float;
var j: integer;
for j := 0 to 10 do
begin
y := Xfactorial(j);
Print(IntToStr(j) + #9 + FloatToStr(y));

end;

2.11.4 Calling Functions and Procedures

Since procedures do not return values as do functions, some differences exist in the
manner in which they can be called. In both cases, remember that the function or
procedure must be declared before you can access it by name. Also, it's perfectly
valid to call functions from within functions, procedures from functions, etc.

Procedure Calls

There's only one way to call a procedure - by using its name in your script code as a
single statement. If the procedure has an argument list, you must supply properly-
typed expressions for each argument in the procedure declaration.

Example

{ This procedure colors the volume histogram of all up bars green and
all down or flat bars red. It is included with your installation of
Wealth-Lab Developer 4.0 in the "Studies" ChartScript folder }
procedure VolumeColor;
var Bar: integer;
begin
 for Bar := 1 to BarCount - 1 do
 if PriceClose(Bar) > PriceClose(Bar - 1) then
 SetSeriesBarColor(Bar, #Volume, #Green)
 else
 SetSeriesBarColor(Bar, #Volume, #Red);
end;

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

40

{ Execute the procedure by calling it }
VolumeColor;

Function Calls

Because functions return a result, more possibilities exist. As with procedures, use
the function's name and provide properly-typed expressions for each argument in
the function declaration.

· Most commonly, you will use a function like an expression. If the function returns
a boolean, for example, you can assign the function to a boolean variable. The
function call appears on the right side of the assignment.

· Likewise, you may use the same boolean function in any expression that requires
a boolean expression - as the conditional test expression in an If/Then statement
for instance.

· If you do not care about the function's result, you may call the function in the
same manner as a procedure - as a stand-alone statement. The function's
processing will be the same whether or not you choose to use its result in an
expression or store it in a variable.

Example

function MyFunc: integer;
begin
 Result := 100;
end;

var IntVar: integer;
Print(MyFunc + MyFunc); //Prints 200 to the debug window
IntVar := MyFunc; //IntVar now contains 100

2.11.5 Passing Parameters

You pass parameters to a function or procedure by defining a parameter list in the
function or procedure declaration. The parameter list occurs after the function or
procedure name, and contains a list of parameters enclosed in parenthesis. Each
parameter is declared by name and data type separated by a colon. Parameter
declarations with different data types should be separated by semicolons. You can
declare multiple parameters of the same data type by separating them by commas.

The parameter list that appears in the function/procedure declaration is in itself a
formal declaration of the variables that will be used in the function/procedure. Of
course, if you need other variables for interim calculation within the routine, they
must be declared using the conventional notation .

Note: You may see some examples of function or procedure calls in which two
empty parentheses are used for following the name, as in BarCount(),

which is the WealthScript function to return the total number of bars in the
chart. These are simply calls to functions/procedures with blank parameter
lists. In Wealth-Lab Developer 4.0 you can be sure that calling such routines
with or without the empty parentheses will yield the same result. However,
calls to COM methods containing blank parameter lists may require the
empty parentheses to be included.

10

© 2003-2006 WL Systems, Inc.

41 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

{ Declare Functions and Procedures }
function Cube(Param1: float): float;
begin
 Result := Param1 * Param1 * Param1;
end;

procedure WriteIt(Bar, Value: integer);
begin
 Print(IntToStr(Bar) + ': ' + IntToStr(Value));
end;

function MySMA(Bar, Series, Period: integer): float;
begin
 var i: integer;
 var total: float;
 total := 0;
 for i := Bar downto Bar - Period + 1 do
 total := total + GetSeriesValue(i, Series);
 Result := total / Period;
end;

{ Now call them }
var n, x: integer;
n := BarCount - 1;
x := Round(Cube(MySMA(n, #Close, 20)));
WriteIt(n, x);

By Reference or By Value

When the var statement is not used in a variable declaration within the argument list

of a procedure or function declaration, variable parameters are passed by value. This
means that a copy of the variable's value is created and "passed" to the
function/procedure for use. Changes made within the function/procedure to a variable
passed by value will not affect the original value of the variable in the caller, or calling
procedure.

The opposite is true when the var statement is used. In a function's or a procedure's

parameter list, the var statement marks the variable(s) to be passed by reference.

When passed by reference, changes to the variable within the function/procedure will
affect the value of the variable in the calling procedure as demonstrated below. (In
reality, the routine operates on the same variable and what is passed is actually a
pointer to that variable in computer memory.)

Example

procedure PassParams(var ChangeMe: integer; WontChange: integer);
begin
 ChangeMe := 100;
 WontChange := 100;
end;

var OneInteger, TwoInteger: integer;

OneInteger := 1;
TwoInteger := 2;
PassParams(OneInteger, TwoInteger);
ShowMessage('OneInteger is now ' + IntToStr(OneInteger));
ShowMessage('TwoInteger is (still) ' + IntToStr(TwoInteger));

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

42

Note that although a procedure does not provide a return result, it's perfectly legal to
use by-reference parameters in a procedure to alter variables in the calling routine.
The downside is that this advanced coding technique can lead to equally complex
problems that are difficult to trace since the same variables can be altered in more
than one procedure.

2.11.6 Scope of Variables

Variable scope is the extent to which your code has access to declared variables.
Depending on the location of a variable declaration, it may be accessible only by a
function, a procedure, the main ChartScript routine, or all of the above! Variables
declared for objects using the Type statement have their own special scope as
described in the Objects chapter.

Generally speaking, three levels of scope exist in your ChartScripts:

· Script-wide scope: Variables declared at the top of a ChartScript can be
referenced by any routine below the declaration.

· Procedure or function scope: Variables declared within a function or procedure
can be accessed only by the function or procedure in which they are declared.

· Main routine scope: Like script-wide scope, variables are available to routines
below the declaration, but because of its placement, these variables cannot be
accessed by code above the declaration.

These concepts are illustrated in the following example. Note that if you try to use the
MainRoutineScope variable within the Scoping procedure, an error would result.

Example

{ A variable declared here can be accessed by any
 procedure or routine below }
var ScriptScope: integer;

procedure Scoping();
{ Variables declared within a function or procedure can be
 accessed only by the function or procedure }
begin
var ProcedureScope: integer;

 ScriptScope := 100;
 ProcedureScope := 2;
end;

{ Variables declared below are not accessible by any routine above }
var MainRoutineScope: integer;

MainRoutineScope:= 1;
Scoping;
ShowMessage('ScriptScope set by Scoping procedure = ' +
 IntToStr(ScriptScope));
ScriptScope := 200;

118

117

© 2003-2006 WL Systems, Inc.

43 WealthScript Language Guide, Wealth-Lab Developer 4.0

2.11.7 Exiting a Procedure

Functions and procedures exit automatically upon processing the last statement
contained therein. To terminate a function or procedure prematurely so that Wealth-
Lab does not execute any of the statements that follow, use the exit statement.

When you call exit, program control is passed away from the current procedure

immediately, and program control resumes with the next statement following the
procedure call. If exit is found in the main body of the ChartScript (i.e., not within a

function or procedure), it terminates script processing altogether.

Syntax

exit;

Example 1

{ Don't run the script on the symbol 'T' }
var Bar: integer;
if GetSymbol = 'T' then
 exit;

for Bar := 20 to BarCount - 1 do
begin
{ Trading system here }
end;

The next example demonstrates the optimization technique used for custom indicators
in accessing their data. If the function has been called previously from elsewhere in
the script, the former result is found and returned to the caller. In this case, Exit
terminates the method immediately so as not to waste time recalculating all the
indicators values.

Example 2

{ Typical indicator usage }
function InverseFisherSeries(Series: integer): integer;
begin
 var Bar: integer;
 var sName: string;
 var Value, e2y, y: float;

 sName := 'InverseFisher(' + GetDescription(Series) + ')';
 Result := FindNamedSeries(sName);
 if Result >= 0 then
 Exit;
 Result := CreateNamedSeries(sName);
 for Bar := 0 to BarCount - 1 do
 begin
 e2y := exp(2 * GetSeriesValue(Bar, Series));
 Value := (e2y - 1) / (e2y + 1);
 SetSeriesValue(Bar, Result, Value);
 end;
end;

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

44

2.11.8 Native and Re-usable Functions

Native Functions and Procedures

WealthScript contains hundreds of built-in functions and procedures that you'll use
extensively in your scripts to control trading rules, plot indicators, and annotate the
chart. You call these functions and procedures just as you'd call one that you'd
created yourself. The WealthScript Function Reference and the Function QuickRef
contain a full list of the native functions and procedures available in WealthScript.

Including Functions and Procedures

You can build your own library of re-useable functions and procedures and include
them in different ChartScripts. This is a powerful capability that can save you hours of
copy and pasting effort, and makes it much easier to maintain your code. See the
Include Manager topic for more information.

2.12 Error Handling

When a ChartScript encounters a compilation or run-time error, processing stops and
an error message appears below the ChartScript Editor. You can click on the error
message to pinpoint the line of code that generated the error.

Other run-time and logic errors occurring in a function or procedure can be more
difficult to isolate and solve. This is because the error in the ChartScript Editor will
point to the statement calling the function or procedure. See the ChartScript
Integrated Debugger topic in the Wealth-Lab Developer 4.0 Users Guide for
information in troubleshooting these and other types of coding bugs.

Handling Errors

There might be cases where you expect that an error might occur, but you want to
continue processing in the script regardless. WealthScript uses the concept of
structured exception handling to let you handle errors.

Use the try/except/end statement block to enclose sections of code that might

contain errors. If an error occurs anywhere within the try and except statements,
program flow is transferred immediately into the first statement after the except. If
you want to handle errors silently just don't write any statements between the except
and the end.

In this example we try and store a value in a custom Price Series without having
created the Price Series using CreateSeries. We trap and report the error and continue
with execution of the script.

5

© 2003-2006 WL Systems, Inc.

45 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var MySeries: integer;
try
 SetSeriesValue(100, MySeries, 1.234);
except
 ShowMessage('CreateSeries wasn''t called!');
end;
ShowMessage('but Script Continues to Execute');

2.13 Arrays

An array is a collection of values of the same data type that you can access by index
number. For example, you can create an array that can hold 100 integer values, or
25 string values. You access the elements of an array by their index numbers. See
the COM Support Chapter in the Wealth-Lab User Guide for a description and
examples on COM Variant Arrays.

Declaring Arrays

Arrays are declared with a special form of the var statement. You provide the name

of the array and the upper and lower bounds, which must be a literal integer or a
declared constant that appears before the array declaration.

Example

{ Declare an array that can hold 100 integers }
var MyArray: array[1..100] of integer;

{ Declare an array that can hold 25 strings }
var BunchOfStrings: array[1..25] of string;

{ Use a constant to specify the upper bound }
const UB = 10;
var RootBeerFloats: array[0..UB] of float;

To declare a multi-dimensional array, simply append of array statements as shown

in the following example.

Example

{ Each element of this multi-dimensional array are assigned a value
 equal to the product of its indices }
var i, j: integer;
var arMulti: array[1..10] of array[1..20] of float;

{ Fill the array }
for i := 1 to 10 do
 for j := 1 to 20 do
 begin
 arMulti[i, j] := i * j;
 Print('[' + IntToStr(i)
 + ', ' + IntToStr(j) + '] = '
 + FloatToStr(arMulti[i, j]));
 end;

WealthScript Language Syntax

© 2003-2006 WL Systems, Inc.

46

Accessing Array Elements

Use the index number to access individual elements of the array. You can read the
values from an array, and set values to an array.

Example

var MyArray: array[1..100] of integer;
var number: integer;

number := MyArray[1] + MyArray[2];
MyArray[3] := number;

Looping through Array Elements

The various Looping Statements in WealthScript provide a powerful way to work with
array elements.

Example

var MyArray: array[1..100] of integer;
var i, number, TheSum: integer;
TheSum := 0;
for i := 1 to 100 do
 TheSum := TheSum + MyArray[i];

Creating Synchronized Arrays

The number of elements of an array must be specified in the var statement that

declares an array, and it must be a constant value. However, you can create a special
type of array that automatically contains the same number of elements as bars in your
chart. Just specify zero as both the upper and lower bounds of the array.

Example

{ Create an array synchronized to the number of bars in the chart }
var SmoothedAverage: array[0..0] of float;
var i: integer;
SmoothedAverage[0] := (PriceHigh(0) + PriceLow(0)) / 2;
for i := 1 to BarCount - 1 do
 SmoothedAverage[i] := (((PriceHigh(i) + PriceLow(i)) / 2) +
SmoothedAverage[i - 1]) / 2;

It can be useful to declare a synchronized array of an enumerated type to hold
state data for a particular bar in the chart.

Example

var Bar, AvgHi: integer;
type HiCond = (HiRise,HiFlat,HiFall);
var HiMktCond: array[0..0] of HiCond;

AvgHi := SMASeries(#High, 20);
for Bar := 20 to BarCount - 1 do
 If @AvgHi[bar] > @AvgHi[bar-1] then
 HiMktCond[bar]:= HiRise
 else if @AvgHi[bar] = @AvgHi[bar-1] then
 HiMktCond[bar]:= HiFlat
 else

13

© 2003-2006 WL Systems, Inc.

47 WealthScript Language Guide, Wealth-Lab Developer 4.0

 HiMktCond[bar]:= HiFall;

Passing Arrays as Parameters to Functions and Procedures

You can pass an array as a parameter to a Function or Procedure. To do this you must
use the type statement (normally used when creating new Object types) that

describes the type and bounds of the array. You then declare the array using this
type. You use the same type within the function or procedure parameter list.

Note: Types must be defined outside of a type declaration. In other words, you
cannot define a type within another type.

Ref: http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/topic?id=4691
Example

type TMyArray = array[0..0] of float;

{ Note AnArray is passed by reference }
procedure ZeroArray(var AnArray: TMyArray);
begin
 var i: integer;
 for i := 0 to BarCount - 1 do
 AnArray[i] := 0;
end;

var MyArray: TMyArray;
var Bar: integer;

{ Put values in the last 10 elements of MyArray }
for Bar := BarCount - 10 to BarCount - 1 do
begin
 MyArray[Bar] := Bar;
 Print('ZeroArray[' + IntToStr(Bar) + '] = ' +
 FormatFloat('#.0', MyArray[Bar]));
end;
ZeroArray(MyArray);
{ MyArray, which has the same number of elements as the chart,
 now has all of those elements initialized to zero. }
Print('');
for Bar := BarCount - 10 to BarCount - 1 do
 Print('ZeroArray[' + IntToStr(Bar) + '] = ' +
 FormatFloat('#.0', MyArray[Bar]));

Note: If the var statement were not included in the argument list of the procedure,

the array would be passed by value. In other words, a copy of the array is
made available to the procedure to which it is passed. Therefore, changes
made to the copy of the array (AnArray) will not affect the original array
(MyArray) in the calling procedure.

117

Working with Price Series

© 2003-2006 WL Systems, Inc.

48

3 Working with Price Series

3.1 Introduction to Price Series

In every ChartScript you will in some way change, manipulate, test, etc. a Price
Series. We recommend that you take some time to fully understand the concepts
explained in this chapter.

What is a Price Series?
This special internal data structure, which always has the same number of
elements as bars in the chart, provides quick access to your data and an easy way
to refer to it.

Handles to Price Series
To use a Price Series you just need to get a handle on it. See how in the topics in
this chapter.

Creating Your Own Price Series
Sometimes you'll want to generate a brand new series one element at a time.

Accessing a Single Value of a Price Series
These functions return individual values of standard price series.

Using @ Syntax to Access Values from a Price Series
Are you tired of typing the Set/GetSeriesValue function syntax? Use the @-
symbol shorthand notation instead.

Price Series Frequently-Asked Questions
... in case you still have some.

3.2 What is a Price Series?

A Price Series is a special type of internal data structure in WealthScript. Simply
put, a Price Series is a sequence of values, one value for each bar in the chart.
Consequently, you can think of a Price Series as a 1-dimensional array of values in
which the index of the array are the bar numbers of the chart.

In ChartScripts, you will refer to Price Series using handles. A handle is an integer
value used to reference a Price Series in memory. You don't have to worry about the
values of handles (Wealth-Lab takes care of these details for you), rather, using
WealthScript functions you will obtain and assign handles to your own well-named
integer variables to remind you of the contents of series to which the handle refers,
like "My15PeriodAvgSeries."

To learn more about handles, read the topics in the next section, Handles to Price
Series.

48

49

54

55

57

61

© 2003-2006 WL Systems, Inc.

49 WealthScript Language Guide, Wealth-Lab Developer 4.0

Characteristics of all Price Series:

· A Price Series is a series of data values of type float. Each value is single

precision, which has 7 to 8 significant digits.

· A Price Series always contains the same number of values as bars in your chart.

· A Price Series has a constant value, called a handle (of type integer) which you

use to make reference to the complete series of values.

See Also:

Standard Price Series and Their Constants
Functions that Return a Price Series Handle

3.3 Handles to Price Series

3.3.1 Overview

In Wealth-Lab Developer 4.0, the proper use of Price Series and their handles is
essential to obtaining accurate back-testing results. Once you have mastered these
concepts, you will be well on your way to understanding how to create trading
systems as simple or complex as you like.

Standard Price Series and Their Constants
Several pre-defined named constants provide access to Price Series that you will
continually use in your ChartScripts. Find out which ones they are.

Functions that Return a Price Series Handle
WealthScript contains a great number of functions that return handles of new
Price Series. With these functions, you can create indicators to your specification
or even perform operations across complete Price Series with just one statement!
However, to use a new Price Series, you'll have to designate your own handles.

Functions that Accept a Price Series Handle
When a WealthScript function calls for a Series as an integer argument, you must
insert a valid Price Series handle. By doing this, you're making reference to the
Price Series on which the function will operate.

Checklist for Creating Price Series Handles

Still have doubts? Follow this handy checklist for using Price Series handles in
ChartScripts. Note that the following is not necessary if you're going to use a
Standard Price Series constant, such as #Close or #Volume.

Step 1. Declare an integer variable that you will use as the handle for your new
Price Series.

Step 2. Assign a function that returns a Price Series handle, an integer, to your
variable. If this function is not CreateSeries, you're finished!

Step 3. If you used CreateSeries in step 2, then you should use the

SetSeriesValue function to assign values to your new series. If you don't
do this, the series will hold the value zero (0.0) for every element.

50

51

50

51

52

Working with Price Series

© 2003-2006 WL Systems, Inc.

50

3.3.2 Standard Price Series and Their Constants

Some Price Series are ubiquitous, such as the series of OHLC values. These are
referred to as the Standard Price Series. For these series, and for a few others
described below, Wealth-Lab has established "constant handles" that you can use to
rapidly access those series. Four of these pre-defined handles are #Open, #High,
#Low, and #Close.

The handle #Open always refers to the series of all the opening prices of a chart's
primary data source. Likewise, #High refers to the series of all the high prices of a
chart's data source, and so on.

Remember, these handles make reference to the entire series and not just one
particular value in the series. To find out how to obtain a single value from a Price
Series, see the topic, Accessing a Single Value of a Price Series .

Let's visualize what we have described by considering the following illustration.

Assuming that this chart's data source has no other values to the left or right (early or
later in time, respectively), we can observe four of the Standard Price Series, each
having 12 bars, which are numbered 0 to 11. Later, we'll show you how to
access a single value of a Price Series .

Completing the list of Standard Price Series we have #Volume, #OpenInterest,
#Average and #AverageC. The last two, which are handles to the average of other
Standard Price Series, merit a definition:

#Average
Returns the complete Average Price Series (all bars) as defined by the equation:
(High + Low) / 2

#AverageC
Returns the complete Average Price Series weighted by closing prices as defined
by the equation:
(High + Low + Close) / 3

55

55

© 2003-2006 WL Systems, Inc.

51 WealthScript Language Guide, Wealth-Lab Developer 4.0

3.3.3 Functions that Return a Price Series Handle

It's impossible to show examples using Price Series without describing WealthScript
functions that accept, and most often, return handles to Price Series. WealthScript
has many such functions, which generally fall into two groups - Indicator Series
Functions and Price Series Operator Functions.

Price Series Indicator Functions

By using WealthScript Indicator Series Functions, you will discover how easy it is to
create a new Price Series of averages, oscillators, statistical measurements, etc. Let's
demonstrate this by means of an example in which we create a new Price Series of the
5-period Weighted Moving Average of closing prices.

Example

{ Create a 5-period Weighted Moving Average Series
 from the series of closing prices }
var serWMA5: integer;
serWMA5 := WMASeries(#Close, 5);

// Plot the new series
PlotSeries(serWMA5, 0, #Blue, #Thick);

What's going on here? After declaring one integer variable, serWMA5, to hold the
handle of the new Price Series (the WMA series), we've created the new series using
just one statement. The WMASeries statement returns the handle of the complete

WMA series, which is assigned to serWMA5. Notice that one of the WMASeries
arguments was the pre-defined handle of the Standard Price Series of closing values,
#Close. Take a closer look at the example with typical values:

You'll notice that the first four values of the new series are zeroes. This is because the
5-period WMA series cannot be calculated until the fifth sample of data (Bar Number
4), therefore the initial samples are filled with zeroes. This is typical with indicators
that require seed data, such as with any moving average function.

See Also:

The Technical Indicator Functions category of the WealthScript Function
Reference contains detailed information and examples of all the intrinsic indicator
functions in Wealth-Lab Developer 4.0.

Price Series Operator Functions

Using Price Series Operator Functions you can perform operations on an existing Price
Series and store the result in another. For example, you may want to rescale an
entire series to normalize all of its values. The example below shows how you can
create a new Price Series by dividing each value in the #Close series by a single
value.

5

Working with Price Series

© 2003-2006 WL Systems, Inc.

52

Example

{ Divide every bar's closing value by the value in the variable dvsr }
var dvsr, serDivClose: integer;

dvsr := 2;
serDivClose := DivideSeriesValue(#Close, dvsr);
PlotSeries(serDivClose, 0, #Red, #Thin);

Finally, here's an example of what NOT to do:

Example

{ Don't use handles in ordinary math operations! }
var dvsr, serDivClose: integer;

dvsr := 2;
serDivClose := #Close / dvsr; // THIS IS A LOGIC ERROR!
PlotSeries(serDivClose, 0, #Red, #Thin);

You might think this would accomplish the same thing as in the preceding example.
Instead, the error "Not a valid Price Series" occurs when you try to refer to the new
Price Series in the PlotSeries statement. This is because ordinary division does not

create a new Price Series. You must use a WealthScript function that returns a Price
Series integer handle as in the previous example with DivideSeriesValue.

See Also:

The WealthScript Function Reference has detailed documentation for all Price
Series functions.

3.3.4 Functions that Accept a Price Series Handle

WealthScript contains numerous built-in functions that provide access to common
technical-analysis indicators. All of these functions, which may be applied to any
Price Series, are well documented in the WealthScript Function Reference , but let's
pick a familiar one to get a flavor for their use.

For example, you may like to obtain the simple moving average of a Price Series at a
specific bar. Simple enough (no pun intended), you would choose the SMA function
to return a Simple Moving Average. Here's the syntax for the SMA function that
returns a single float value:

5

5

© 2003-2006 WL Systems, Inc.

53 WealthScript Language Guide, Wealth-Lab Developer 4.0

SMA(Bar, Series, Period);

Item Description

Bar Integer. Numeric expression representing the Bar Number of
the chart for which you want to obtain the moving average
value.

Series Integer. The handle of a Price Series on which to base the
moving average. You may use any of the following:

· a Standard Price Series handle such as #Open, #Close,
#Volume, etc

· an integer variable to which a handle was previously
assigned; from a WealthScript function for example

· the complete syntax of any WealthScript function that
returns a Price Series [integer handle]

Period Integer. Numeric expression that is the Period of the moving
average.

Recalling that functions return values, the following example shows how to get the 10-
period SMA at the 51st bar and assign it to a variable of type float named mySma:

Example

var mySma: float;
mySma := SMA(50, #Close, 10);
ShowMessage('mySma = ' + FormatFloat('#0.00', mySma));

You may be asking, "Why is the argument 50 and not 51?" In programming, arrays
are typically, but not always, 0-based. Wealth-Lab internally uses 0-based arrays for
Price Series, consequently the first bar number of a chart is actually 0, the second bar
number is 1, and so on. This is an important tedious detail, but, in general you don't
have to be conscious of it.

In the previous example and in those of the topic
Functions that Return a Price Series Handle , only the series of price closes, #Close,
has been used. Note however, that any valid Price Series handle may be used for the
Series argument in a WealthScript function. In the example below, we use the
SMASeries function to return the handle of the complete 15-period SMA Price Series.

Example

{ Divide every bar's closing value by the value in the variable fd
 then take its 15-period Simple Moving Average }
var fd : float;
var serDivClose, serSMA: integer;

fd := 2.0;
serDivClose := DivideSeriesValue(#Close, fd);
serSMA := SMASeries(serDivClose, 15);
// Plot the new series
PlotSeries(serSMA, 0, #Red, #Thin);

In a subtle way, another important aspect of WealthScript functions has just been
introduced in the above examples. Nearly all indicators functions have two associated
forms: one that returns the value of the indicator on a specific bar, like the SMA
function, and, another that returns the complete Price Series of the indicator, as in the
SMASeries function. This is explained in greater detail in the topic,

Working with Technical Indicator Functions .

51

83

Working with Price Series

© 2003-2006 WL Systems, Inc.

54

3.4 Creating Your Own Price Series

You can create a new, blank Price Series and plug whatever values you need into it.
You may be wondering why you would bother storing calculated values into a Price
Series. Generally speaking, if you cannot find a WealthScript function or combination
of functions that generates the series or indicator you're looking for, you'll have to
resort to creating the series yourself.

If this sounds difficult, it's not. Simply use the CreateSeries function to prepare a

new Price Series and then the SetSeriesValue to place values into it. Later, use

the GetSeriesValue function to access the values within your newly created Price

Series. The latter of these functions is covered in its own topic,
Accessing a Single Value of a Price Series . For more information, refer to the
Checklist for Creating Price Series Handles .

Here's the syntax of the SetSeriesValue procedure:

Syntax

SetSeriesValue(Bar, Series, Value) ;

Item Description

Bar Integer. Numeric expression representing the Bar Number of
the chart for which Value is to be associated.

Series Integer. The handle of a Price Series.

Value Float. Numeric expression of the data to be assigned to Bar in
Series.

In the example below the functions PriceHigh and PriceLow are used to retrieve

values from the specified bar of the #High and #Low Standard Price Series. Using
these values we can create a new Price Series that is equal to the current bar's
midpoint between high and low. (You may recall this as being the #Average Standard
Price Series, but we'll create our own new series for the sake of example.) As we loop
through each of the chart's bars, a new value is calculated and inserted into the new
series using the SetSeriesValue function.

Example

var MIDPOINT, BAR: integer;
var fValue: float;

{ The CreateSeries function creates and assigns the handle of a
 new Price Series that is initially filled with zeroes }
MidPoint := CreateSeries;
for Bar := 0 to BarCount - 1 do
begin
 fValue := PriceLow(Bar) + (PriceHigh(Bar) - PriceLow(Bar)) /
2 ;
 SetSeriesValue(Bar, MidPoint, fValue);
end;
// Plot the new series
PlotSeries(MidPoint, 0, #Blue, #Thin);

55

49

© 2003-2006 WL Systems, Inc.

55 WealthScript Language Guide, Wealth-Lab Developer 4.0

BarCount

In order to work with Price Series properly, you first need to know how many bars of
data you have available in the chart. Use the BarCount function to return this

information.

Example

var BarsAvailable: Integer;
BarsAvailable := BarCount;

The next example cycles through the chart data and accumulates the closing prices for
"up" bars in one variable, and the closing prices for "down" bars in another variable,
and then divides the result.

Example

var SUMUP, SUMDOWN, SUMUPDOWN: float;
var BAR: integer;
SumUp := 0;
SumDown := 0;
for Bar := 1 to BarCount - 1 do
begin
 if (PriceClose(Bar) >= PriceClose(Bar - 1)) then
 SumUp := SumUp + PriceClose(Bar)
 else
 SumDown := SumDown + PriceClose(Bar);
end;
SumUpDown := SumUp / SumDown;

Note that in the example, the loop ends at BarCount - 1. This is because the first

bar of a chart has an index number of 0, the second bar has index number 1, and so
on. Consequently, you must terminate your loops at BarCount - 1, the last bar, or
earlier.

You may also have noticed that the loop started at 1 instead of 0. This was necessary
due to the argument of the second PriceClose statement: (Bar - 1). If Bar were

allowed to be zero, the argument would have evaluated to -1, which does not refer to
any bar of the chart, therefore a run-time error would have resulted.

See Also:

Using "@" Syntax to Access Values from a Price Series

3.5 Accessing a Single Value of a Price Series

Single Values of Standard Price Series

WealthScript has easy-to-remember functions that return the core price and volume
values from your ChartScript data source. These functions are PriceOpen,

PriceHigh, PriceLow, PriceClose, Volume, OpenInterest, PriceAverage,

and PriceAverageC. They return a single value at a specific bar from the

Standard Price Series that they describe, consequently, it is not necessary to
specify the Price Series as a function argument.

The general syntax for this group of Data Access functions, all of which return a
number of type float, is shown below.

57

50

Working with Price Series

© 2003-2006 WL Systems, Inc.

56

Syntax (general)

 functionname(Bar) ;

Item Description

functionname Any one of the data access function names: PriceOpen,
PriceHigh, PriceLow, PriceClose, Volume, OpenInterest,
PriceAverage, or PriceAverageC.

Bar Integer. Numeric expression representing the bar of the chart
from which data is to be retrieved.

GetSeriesValue Function

To obtain a single price value from any series, use can use the GetSeriesValue
function. Generally speaking, however, you will this function to obtain values from
Price Series created using the CreateSeries function. As we have just seen,

shorthand methods exist to retrieve single values from Standard Price Series .
Later, you'll discover that Technical Indicators Functions also have a more-
intuitive method to obtain their value at a specific bar.

GetSeriesValue returns a float value of the series at the Bar number.

Syntax

GetSeriesValue(Bar, Series) ;

Item Description

Bar Integer. Numeric expression representing the bar of the chart
from which data is to be retrieved.

Series Integer. The handle of a Price Series.

Note: It's perfectly legal to use GetSeriesValue to retrieve, for example, the

closing price of Bar by passing #Close as the Price Series handle. However,
PriceClose is a shorthand statement that always refers to the #Close

Price Series and therefore gives your code better readability.

In the illustrations below, GetSeriesValue is used to obtain the values from the

Price Series MidPoint. MidPoint is the handle to a Price Series we created in the
example for Creating Your Own Price Series .

55

83

54

© 2003-2006 WL Systems, Inc.

57 WealthScript Language Guide, Wealth-Lab Developer 4.0

The arrow diagram indicates that if the integer expression BarNum evaluates to 182,
the GetSeriesValue function will return the value of 17.31 when MidPoint is specified.
Likewise, the PriceClose statement evaluates to 17.19, which is the closing price at

bar number 182.

3.6 Using @ Syntax to Access Values from a Price Series

A simpler method is available to access values in a Price Series. If you precede the
Price Series handle variable with a "@", you can access the values in the Price Series
as if it were an array. You can read and write values to a Price Series using this
syntax. This eliminates (*see Note) the need to code GetSeriesValue and
SetSeriesValue, and can substantially reduce the verbiage in a script's code.

Example

var Series: integer;
var x: float;
Series := CreateSeries;

SetSeriesValue(0, Series, 123.45);
{ becomes }
@Series[0] := 123.45;

x := GetSeriesValue(0, Series)
{ becomes }
x := @Series[0];

Note: The @ syntax is not compatible with Price Series whose handles are stored in a
declared array as the following example demonstrates. In this case, you must

Working with Price Series

© 2003-2006 WL Systems, Inc.

58

use the GetSeriesValue or SetSeriesValue WealthScript functions, as
required.

Example

var Bar, i: integer;
var h: array[0..1] of integer;

{ Create 2 price series and store their handles in the array }
h[0] := WMASeries(#Close, 5);
h[1] := WMASeries(#Close, 20);

{ Retrieve the value of each series on the last bar }
Bar := BarCount - 1;
for i := 0 to 1 do
 Print(FloatToStr(GetSeriesValue(Bar, h[i])));

{ This is not valid! }
for i := 0 to 1 do
 Print(FloatToStr(@h[i][Bar]));

3.7 Series Math

3.7.1 Practice

Let's take some time to drive home some points that some users seem to have trouble
grasping (especially those coming from other technical analysis platforms). Please
take the time to do these simple exercises and check your answers in the next topic.

Exercise 1

Imagine that you want to create a Price Series that holds the change in closing price
relative to the first bar of the chart. To do this, you need to obtain the value of the
first bar of the chart and subtract it from the closing prices from all of the remaining
bars. How? Try to plot the new resultant series in a new pane.

Exercise 2

Similar to Exercise 1, create a Price Series that holds the percentage change in
closing price relative to the first bar of the chart. Plot the resultant series. Use the
following formula:

 PctChange = 100 * (CurrentPrice / ValueOnFirstBar - 1)

Exercise 3

In both of the preceding examples, we performed math operations on Price Series by
subtracting, multiplying, and dividing by a single constant value. Now let's use two
different Price Series as the operands by finding the average closing price between the
#High and #Low series. Use the following formula and plot the resultant series:

AvgClosingPrice = (High + Low + Close)/ 3

Exercise 4

Create and plot the difference of the current closing price minus the closing price from
2 bars ago.

© 2003-2006 WL Systems, Inc.

59 WealthScript Language Guide, Wealth-Lab Developer 4.0

Exercise 5

After reviewing the answers to the above exercises, explain the main difference in the
techniques used between the "Answer A's" and the "Answer B's".

3.7.2 Answers

Please try performing the exercises on your own first before peeking at the
answers.
It's better to make the mistakes now!

Exercise 1

{ Answer A }
var DiffSer1: integer;
DiffSer1 := SubtractSeriesValue(#Close, PriceClose(0));

{ Answer B }
var Bar, DiffSer2: integer;
DiffSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
 @DiffSer2[Bar] := PriceClose(Bar) - PriceClose(0);

{ Create a pane to plot the new series }
var DiffPane: integer = CreatePane(100, true, true);
PlotSeriesLabel(DiffSer1, DiffPane, #Blue, #Thick, 'Difference from
Bar 0');
PlotSeriesLabel(DiffSer2, DiffPane, #Red, #Histogram, 'Difference from
Bar 0');

As you can see there are at least 2 correct answers. Notice though, that Answer A
utilizes a special WealthScript function, SubtractSeriesValue, to subtract a single value
from each element in the Price Series identified in its first parameter. This results in
fewer statements and code that executes faster.

Exercise 2

{ Answer A }
var PctSer1, DivSer, DiffSer: integer;
DivSer := DivideSeriesValue(#Close, PriceClose(0));
DiffSer := SubtractSeriesValue(DivSer, 1);
PctSer1 := MultiplySeriesValue(DiffSer, 100); }

{ Answer B }
var Bar, PctSer2: integer;
PctSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
 @PctSer2[Bar] := 100 * (PriceClose(Bar) / PriceClose(0) - 1);

{ Create a pane to plot the new series }
var PctPane: integer = CreatePane(100, true, true);
PlotSeriesLabel(PctSer1, PctPane, #Blue, #Thick, 'Pct Change from Bar
0');
PlotSeriesLabel(PctSer2, PctPane, #Red, #Histogram, 'Pct Change from
Bar 0');

Working with Price Series

© 2003-2006 WL Systems, Inc.

60

Again, we can perform the same calculation in at least two different ways - the choice
is yours! Use whichever makes the most sense to you. Note that the solution in
Answer A can be also written without the use of the interim variables. Below we use a
block-formatting technique to help show the relationship of the parameters to their
functions.

{ Answer A2 }
var PctSer1: integer;
PctSer1 := MultiplySeriesValue(
 SubtractSeriesValue(
 DivideSeriesValue(#Close, PriceClose(0)),
 1),
 100);

Exercise 3

{ Answer A1 }
PlotSeries(#AverageC, 0, #Gray, #Thick);

{ Answer A2 }
var AvgCSer1: integer;
AvgCSer1 := DivideSeriesValue(
 AddSeries(AddSeries(#High, #Low), #Close),
 3);

{ Answer B }
var Bar, AvgCSer2: integer;
AvgCSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
 @AvgCSer2[Bar] := (PriceHigh(Bar) + PriceLow(Bar) + PriceClose(
Bar)) / 3;

{ Plot the new series in the Price Pane, 0 }
PlotSeriesLabel(AvgCSer1, 0, #Fuchsia, #Dotted, 'Avg Closing Price A1'
);
PlotSeriesLabel(AvgCSer2, 0, #Blue, #Thin, 'Avg Closing Price B');

Did you recognize this as the formula for the #AverageC Standard Price Series ?

Exercise 4

{ Answer A1 }
var DiffSer1: integer;
DiffSer1 := MomentumSeries(#Close, 2);

{ Answer A2 }
var DiffSer2: integer;
DiffSer2 := SubtractSeries(#Close, OffsetSeries(#Close, -2));

{ Answer B }
var Bar, DiffSer3: integer;
DiffSer3 := CreateSeries;
for Bar := 2 to BarCount - 1 do
 @DiffSer3[Bar] := PriceClose(Bar) - PriceClose(Bar - 2);

{ Plot the new series in a new Pane }
var DiffPane: integer = CreatePane(100, true, true);
PlotSeriesLabel(DiffSer1, DiffPane, #Gray, #ThickHist, 'Difference A1'
);
PlotSeriesLabel(DiffSer2, DiffPane, #Fuchsia, #Histogram, 'Difference

50

© 2003-2006 WL Systems, Inc.

61 WealthScript Language Guide, Wealth-Lab Developer 4.0

A2');
PlotSeriesLabel(DiffSer3, DiffPane, #Blue, #Thick, 'Difference B');

A1: The WealthScript function MomentumSeries provides the easiest solution. Many
of the WealthScript Indicator functions provide ready-made solutions for the
most common operations, and only through experience can you get familiar with
them.

A2: Here we delay the #Close series by 2 bars using OffsetSeries. After that, we
simply perform a series difference operation on the original #Close series and its
offset.

B: You can always fall back to doing the calculations one bar at a time and filling
the Price Series created by you. Note that the loop must start at Bar #2 here.
Why? Try putting 0 or 1 for the starting the loop index and execute the script
again (F5). What happens?

Exercise 5

Answer A's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.
2. Use the result of a WealthScript *Series function to assign a series to the
variable.

Answer B's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.
2. Use CreateSeries to assign a new blank price series (filled with zeroes) to the
variable.
3. Loop over bars in the chart to fill the new series with values.

3.8 Price Series FAQs

How do I get the data from the Open, High, Low, Close, or Volume of a bar?

The preferred method is to use the WealthScript functions specifically designed for
this purpose: PriceOpen(Bar), PriceHigh(Bar), PriceLow(Bar),

PriceClose(Bar), Volume(Bar), OpenInterest(Bar), Average(Bar),

AverageC(Bar), where Bar is the Bar Number of the bar for which you want the

data.

Example

{ Get the opening price of the last bar in the chart }
var fOpen: float;
var Bar: integer;
Bar := BarCount - 1;
fOpen := PriceOpen(Bar);

Equally effective, you may use the general syntax for getting data from any Price
Series, GetSeriesValue or its shorthand @ syntax .57

Working with Price Series

© 2003-2006 WL Systems, Inc.

62

Example

{ Get the opening price of the last bar in the chart }
var fOpen: float;
var Bar: integer;
Bar := BarCount - 1;
fOpen := GetSeriesValue(Bar, #Open);

{ or use the shorthand @ syntax }
fOpen := @#Open[Bar];

How do I get an indicator's value at a specific bar?

Each indicator has a syntax form that is specifically designed for this purpose. If
you know in advance which indicator you will be using, like SMA, RSI, StochK, etc.

you can use its syntax. For more information see Accessing Indicator Values in
the chapter Working with Technical Indicator Functions .

Example

{ Find the 10-period Simple Moving Avg at Bar Number 50 }
var mySma: float;
mySma := SMA(50, #Close, 10);
ShowMessage('mySma at Bar Number 50 = ' + FormatFloat('#0.00',
mySma));

Sometimes you will not know in advance which Price Series you will be using. This
may sound strange, but it's the basis of the manner in which re-useable functions
and procedures work. In this case, use the general syntax for getting data from any
Price Series, GetSeriesValue or its shorthand @ syntax .

Example

{ Returns the number of bars ending with EndBar since
 Series2 crossed over Series1. }
function BarsSinceCrossOver(EndBar, Series1, Series2: integer):
integer;
begin
 var i, CntBar: integer;

 CntBar := 0;
 for i:= EndBar downto 0 do
 if GetSeriesValue(i, Series2) < GetSeriesValue(i, Series1) then
 break
 else
 CntBar := CntBar + 1;

 Result := CntBar;
end;

{ test the function by passing the handles from two different Price
Series }
var b, MySMAHandle, Bar: integer;

MySMAHandle := SMASeries(#Close, 20);
PlotSeries(MySMAHandle, 0, #blue, #thin);
Bar := BarCount - 1;

{ Pass MySMAHandle as Series1 and #High as Series2 to the function }
b := BarsSinceCrossOver(Bar, MySMAHandle, #High);
Print('The number of bars since cross over is: ' + IntToStr(b));

83

83

57

© 2003-2006 WL Systems, Inc.

63 WealthScript Language Guide, Wealth-Lab Developer 4.0

{ Draw a circle on the bar just prior to crossover }
DrawCircle(8, 0, Bar - b, PriceHigh(Bar - b), #red, #thick);

How can I access a Price Series from a symbol other than the one in my
ChartScript?

You can obtain information from Price Series that are not part of the primary
ChartScript Standard Price Series by using the GetExternalSeries function. See

its entry in the WealthScript Function Reference for more information.

See Also: Plotting Indicators Based on Other Symbols

5

67

Painting the Chart

© 2003-2006 WL Systems, Inc.

64

4 Painting the Chart

4.1 Overview

WealthScript provides a set of functions to control how your chart information is
displayed. You can plot indicators, create new chart panes, add text, annotations, and
drawing objects, or even draw bitmap images. Whenever you need to
programmatically perform display tasks in the Chart window, open the Cosmetic Chart
category to find the function that serves your purpose.

To view a chart, open a ChartScript by selecting File/New ChartScript. In the
ChartScript window, the "Chart" tab is selected (by default) to view the chart of the
item selected in the DataSource Tree.

Chart Panes
It is not essential that your code displays additional information on the chart. A
trading system will function the same if you choose not to draw lines, add
annotations, or plot indicators on the chart. However doing so can help you
troubleshoot your scripts, give you visual affirmation that your system is
functioning as designed, or even provide insight for improving methods.

Creating New Panes
The default panes for price and volume is just one possibility. See how to make
new panes to plot additional indicators.

Plotting an Indicator in a Pane
Tell Wealth-Lab where and how you want to plot your Price Series by specifying
the pane's index and drawing style. Also plot indicators based on symbols other
than your primary symbol.

Plotting Multiple Symbols
Instead of drawing just a single #Close Price Series of another symbol, display all
of the available information in full OHLC bar or candlestick representations.

Specifying Colors
Give life to your charts by adding color to bars, text, indicators, backgrounds, and
more!

Drawing Text in a Pane
Did you forget what that blue line on the chart represents? Leave no doubt by
adding colorful text legends and other useful annotations.

Drawing Objects in a Pane
Make your charts come to life by programmatically drawing objects such as lines,
rectangles, and ellipses. You'll be amazed with the way some users are able to
visually express even esoteric concepts in Wealth-Lab Developer 4.0 - like
probability distributions and frequency spectrums!

65

65

67

68

69

70

70

© 2003-2006 WL Systems, Inc.

65 WealthScript Language Guide, Wealth-Lab Developer 4.0

4.2 Chart Panes

Panes refer to the subdivided areas of a chart in which price, volume, and other data
is presented. A basic chart contains two panes - one that displays price information
and another that displays volume. Because it contains less information, the volume
Pane is typically smaller than the price Pane.

Useful Chart Panes facts:

1. When it does not make sense to plot an indicator's Price Series in the price or
volume panes, you can create new panes to display the additional information.

2. Conversely, if the volume pane is not important to you, use the HideVolume
function to make more room for other panes.

3. You can manually resize chart panes by dragging the line that divides two
adjacent panes.

4. Override an auto-scaling of a pane using the SetPaneMinMax WealthScript

function.

Pane Indices

Each chart pane has an associated integer index that is used whenever a WealthScript
function requires a Pane argument. Use this index to specify the pane that will
receive the action of a drawing or plotting function. The two most common panes, the
price and volume panes, always have indices of 0 and 1, respectively.

In previous chapters, we've already seen the PlotSeries statement used, so let's

look at its syntax:

PlotSeries(Series, Pane, Color, Style);

With emphasis on the Pane argument, if we want to plot a series in the price pane we
would pass the value 0 (or a numeric expression that evaluates to 0) as Pane.

Example

{ Connect the high values in the price pane by a thick blue line
 and envelope the volume histogram with a thick green line }
var PricePane: integer;
PricePane := 0;
{ The Pane argument can be a number or a numeric expression }
PlotSeries(#High, PricePane, #Blue, #Thick);
PlotSeries(#Volume, 1, #Green, #Thick);

4.3 Creating New Panes

You can create new chart panes to draw other indicators and Price Series using the
CreatePane function. This WealthScript function returns the integer value of the

new pane's index. Therefore you should assign CreatePane to an integer variable in

order to prepare a new pane that you'll use later in a plotting or drawing function.
Although the Price and Volume panes have indices of 0 and 1, respectively, you should
never assume that newly-created panes will have indices of 2, 3, 4, etc. The
function's syntax is:

CreatePane(Height, AbovePrices, ShowGrid): integer;

65

Painting the Chart

© 2003-2006 WL Systems, Inc.

66

Specify the Height as an integer in pixels of the new pane in the first parameter. A
height of 100 is a good general-purpose value. Pass a boolean value as AbovePrices
to indicate whether this pane will appear above (true) or below (false) the price pane.
ShowGrid is another boolean used to control whether or not grid lines are drawn for
the new pane. If you do not enable the standard grid lines you can call
DrawHorzLine to manually draw your own lines at specific values on the pane.

Your new pane will automatically scale to the various Price Series that you plot within
it. You can use the SetPaneMinMax function to override these calculated values.

In the following example a new Pane is created to draw RSI (Relative Strength Index).
Since RSI can fluctuate between 0 and 100, the Pane is set to min/max at these
values. The default grid is disabled, and we draw our own horizontal lines at the 70
and 30 levels.

Example

var MyRSI, PaneRSI: integer;
MyRSI := RSISeries(#Close, 14);
PaneRSI := CreatePane(100, true, false);
SetPaneMinMax(PaneRSI, 0, 100);
PlotSeries(MyRSI, PaneRSI, #Navy, #Thick);
DrawHorzLine(30, PaneRSI, #Silver, #Dotted);
DrawHorzLine(70, PaneRSI, #Silver, #Dotted);
DrawHorzLine(50, PaneRSI, #Gray, #Dotted);
DrawText('RSI 14 day', PaneRSI, 4, 4, #Navy, 8);

Notice that each time a new pane is added, it is automatically separated from the
others by a thin horizontal line. For aesthetic reasons you may wish to remove these
lines. To do so, simply add the HidePaneLines function to your ChartScript code.

© 2003-2006 WL Systems, Inc.

67 WealthScript Language Guide, Wealth-Lab Developer 4.0

4.4 Plotting an Indicator in a Pane

As we've seen, the PlotSeries function plots the specified Price Series in the

desired Pane. Since PlotSeries can accept any Price Series, you now see the value of
being able to obtain the handle to an indicator, and to creating your own custom Price
Series. For reference, the syntax is as follows:

PlotSeries(Series, Pane, Color, Style);

After specifying the Price Series and the Pane, you then pass the desired Color (using
the color formulated as described in the topic Specifying Colors) and a drawing
style. The drawing style can be one of the following constants:

#Thin Normal Solid Line

#Dotted Dotted Line

#Thick Thick Solid Line

#Histogram Histogram Format

#ThickHist Thick Histogram

#Dots Dots

Example

{ Plot a 30 day SMA in green and a 200 day SMA in red }
PlotSeries(SMASeries(#Close, 30), 0, #Green, #Thin);
PlotSeries(SMASeries(#Close, 200), 0, #Red, #Thin);

Tip: Pass -1 to the function SetSeriesBarColor to prevent drawing of an indicator
for the specified bar(s). This may be useful during periods when an
indicator's value is invalid or in transition.

Plotting Indicators Based on Other Symbols

After working with WealthScript a short time, you'll see that plotting a symbol's Price
Series and indicators based on those Price Series is simply a matter of accessing their
data, and more precisely, obtaining a handle to their data. Once you have a reference
to the data series, you can use it for plotting, and more importantly for calculations
that lead to trading decisions.

Either of the WealthScript functions, GetExternalSeries or SetPrimarySeries, can be
used to access data for a symbol other than the one selected in a ChartScript's
DataSource tree. Generally speaking, SetPrimarySeries is used when you want to be
able to access all the Standard Price Series of another symbol, or perhaps to
generate a trading signal on the selected symbol while looping through a WatchList.
GetExternalSeries returns a handle to only a single named Series for another symbol,
and is sufficient for most operations requiring the use of external data.

The following two examples, which highlight the use of these functions, produce
identical results.

69

50

Painting the Chart

© 2003-2006 WL Systems, Inc.

68

Example

{ Plot HPQ and its 50-day SMA along with my chart using
GetExternalSeries }
var HPQClose, HPQ50, HPQPane: integer;
HPQClose := GetExternalSeries('HPQ', #Close);
HPQ50 := SMASeries(HPQClose, 50);
HPQPane := CreatePane(150, true, true);
PlotSeries(HPQClose, HPQPane, #Blue, #Thick);
PlotSeries(HPQ50, HPQPane, #Black, #Dotted);

Example

{ Plot HPQ and its 50-day SMA along with my chart using
SetPrimarySeries }
var HPQClose, HPQ50, HPQPane: integer;
SetPrimarySeries('HPQ');
HPQClose := #Close;
HPQ50 := SMASeries(HPQClose, 50);
RestorePrimarySeries;
HPQPane := CreatePane(150, true, true);
PlotSeries(HPQClose, HPQPane, #Blue, #Thick);
PlotSeries(HPQ50, HPQPane, #Black, #Dotted);

4.5 Plotting Multiple Symbols

It's easy to plot a full OHLC representation of a symbol other than the one selected in
a ChartScript's DataSource tree. Using PlotSymbol allows you to create a reference
plot of another symbol, however it does not provide access to its data. To access Price
Series data of an external symbol, see the topic
Plotting Indicators Based on Other Symbols .

Syntax

PlotSymbol(Symbol, Pane, Color, Style);

Example

var P: integer;
PlotSymbol('MSFT', 0, #Silver, #Candle);
P := CreatePane(100, true, true);
PlotSymbol('IBM', P, #Blue, #OHLC);

Conversely, you may have data for four Price Series that are not associated with a
symbol. These could be data that you have created based on calculations from an
indicator, for example. To combine these Price Series into a single OHLC
representation, use the PlotSyntheticSymbol function.

Syntax

PlotSyntheticSymbol(Symbol, OpenSeries, HighSeries, LowSeries, CloseSeries,
Pane, Color, Style)

67

© 2003-2006 WL Systems, Inc.

69 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var RSIO, RSIH, RSIL, RSIC, RSIPANE: integer;
RSIO := RSISeries(#Open, 14);
RSIH := RSISeries(#High, 14);
RSIL := RSISeries(#Low, 14);
RSIC := RSISeries(#Close, 14);
RSIPane := CreatePane(100, true, true);
PlotSyntheticSymbol('RSICandle', RSIO, RSIH, RSIL, RSIC, RSIPane,
#Red, #Candle);
DrawLabel('RSI Candles', RSIPane);

If you run the example above, notice that the candles will often times appear
incorrect. This is because the RSI of low prices is not always less than the RSI to
open, high and close, so the candle values do not always form into traditionally
correct candles.

4.6 Specifying Colors

Many of the WealthScript Chart functions require parameter types that describe a
Color value. WealthScript uses a simple mechanism to pass color information. Colors
are broken down into different intensities for red, green and blue (RGB). Each
intensity level can have a value between 0 (no intensity) to 9 (full intensity). A single
3 digit number expresses a complete color value.

900 = Bright Red 090 = Bright Green 009 = Bright Blue
550 = Olive 050 = Dark Green 444 = Dark Gray

You can also use the following special constants to specify color values:

#Black, #Maroon, #Green, #Olive, #Navy, #Purple, #Teal, #Gray, #Silver,

#Red, #Lime, #Yellow, #Blue, #Fuchsia, #Aqua, #White, and finally #WinLoss

(used primarily for PerfScripts)

Finally, the three constants that follow refer to lightly-shaded colors often used with
SetBackgroundColor to fill the chart's background or SetPaneBackgroundColor
to color a pane's background. Nevertheless, these too can be passed as a value to
any WealthScript function argument requiring Color.

#RedBkg, #BlueBkg, #GreenBkg

Coloring Bars

You can color individual bars using the SetBarColor function. Or, specify the colors

used for up versus down bars with the SetBarColors function.

Example

{ Color all bars that reach a 20-day high green }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
 if PriceHigh(Bar) = Highest(Bar, #High, 20) then
 SetBarColor(Bar, #Green);

106

Painting the Chart

© 2003-2006 WL Systems, Inc.

70

See Also:

SetColorScheme and SetSeriesBarColor in the WealthScript Function Reference.

4.7 Drawing Text in a Pane

Use the DrawText function to annotate a Chart Pane with text.

DrawText(Value, Pane, X, Y, Color, Size);

The first parameter is a string expression that contains the text to be drawn. The
second parameter is the pane's index. The next two parameters specify the x, y
position of the text, in pixels. A position of 0, 0 represents the top left of the Pane.
The next parameter specifies the color to use. The last parameter indicates the font
size. A value of 8 is standard size for drawing text.

Since you specify an absolute position within the pane, this function is most useful to
create a legend for indicators and other Price Series.

Example

PlotSeries(#High, 0, #Blue, #Thick);
PlotSeries(#Low, 0, #Red, #Thick);

{ Make a legend for the plotted series }
DrawText('#High Series', 0, 100, 4, #Blue, 8);
DrawText('#Low Series', 0, 100, 16, #Red, 8);

WealthScript contains additional functions with which to annotate your charts with
text using varying degrees of control. For more information, see their descriptions in
the WealthScript Function Reference:

AnnotateBar, AnnotateChart, DrawLabel

4.8 Drawing Objects in a Pane

Wealth-Lab Developer 4.0 provides two toolbars, Drawing and Drawing2, which are
filled with drawing objects to employ in manually annotate charts. The Drawing2
toolbar contains the Trendline Tool, whose values at any bar can be found by your
WealthScript code even when drawn manually! For more information, see
TrendLineValue in the Function Reference or visit the Chart Drawing Tools discussion
in the User Guide.

If drawing chart objects manually doesn't appeal to you, then of course Wealth-Lab
Developer 4.0 has a programmatic solution with WealthScript. Using functions from
the Cosmetic Chart category, you have the ability to draw circles, diamonds, ellipses,
lines, rectangles, and polygons (diamonds and triangles).

The example below provides a sampling of a few of the drawing objects available to
you in ChartScripts. Run the example on a Daily DataSource by clicking on several
different symbols in the ChartScript window.

Example

var BAR, Bar1, Bar2, Radius: integer;

© 2003-2006 WL Systems, Inc.

71 WealthScript Language Guide, Wealth-Lab Developer 4.0

var x1, x2, y1, y2, l1, l2, Price1, Price2: float;

{ Circle any 100 day Low }
for Bar := 100 to BarCount - 1 do
begin
 if PriceLow(Bar) = Lowest(Bar, #Low, 100) then
 DrawCircle(8, 0, Bar, PriceLow(Bar), #Red, #Thick);
end;

{ Draw a circle around an arbitrary point }
Bar1 := BarCount - 40;
Bar2 := BarCount - 20;
SetBarColor(Bar1, #Blue);
SetBarColor(Bar2, #Blue);

y1 := PriceClose(Bar1);
y2 := PriceClose(Bar2);
DrawCircle2(Bar1, y1, Bar2, y2, 0, #Blue, #Thin);

{ Find the last 13% reversal peak and trough }
Bar1 := TroughBar(BarCount - 1, #Low, 13);
Price1 := PriceLow(Bar1);
Bar2 := PeakBar(BarCount - 1, #High, 13);
Price2 := PriceHigh(Bar2);

{ Draw a diagonal line and a rectangle between the previous peak and
trough }
DrawLine(Bar1, Price1, Bar2, Price2, 0, #Red, #Thick);
DrawRectangle(Bar1, Price1, Bar2, Price2, 0, #Green, #Thin, #GreenBkg,
True);

{ Draw ellipses to highlight peaks and troughs }
DrawEllipse(Bar1 - 4, Price1 * 1.02, Bar1 + 4, Price1 * 0.98, 0,
#RedBkg, #Thin, #RedBkg, true);
DrawEllipse(Bar2 - 4, Price2 * 1.02, Bar2 + 4, Price2 * 0.98, 0,
#BlueBkg, #Thin, #BlueBkg, true);

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

72

5 Writing Your Trading System Rules

5.1 Overview

A Trading System has steadfast rules that are carried out independently of what you
think may be the outcome of the trade. Consequently, Trading System rules are the
conditions under which you decide to enter and exit a trade.

Invariably, when deciding to program a new Trading System, you'll start by either
verbalizing rules, drawing pictures, or writing pseudo code to collect your thoughts.
(For this purpose, and also for documenting your scripts, you can make use of the
ChartScript Description view.) Once you become proficient with WealthScript, you
may find that it's just as easy to put down your thoughts in code directly into the
ChartScript code editor!

Scripting Trading Rules
If you can imagine it, almost certainly you can test it in Wealth-Lab Developer 4.0.
First, you'll have to translate your ideas into code. This chapter introduces the
most important functions necessary to simulate real-life trading orders.

Implementing Trading System Rules
You can use whatever logic based on price, technical indicators, date information,
or whatever else you can think of in your entry and exit rules. However, if you
discover a trading system that achieves unimaginable returns, it's quite likely your
code includes a postdictive error.

Managing Multiple Positions
Wealth-Lab Developer 4.0 assigns a number to each new Position entered. You
can access this information with the functions presented in this topic, and in doing
so, you'll be able to write trading systems that add Positions by averaging up or
down. As always, it's you're choice!

5.2 Scripting Trading Rules

5.2.1 Overview

The most powerful feature of WealthScript is the ability to embed Trading System
rules in your ChartScripts. Whenever your ChartScript executes, Wealth-Lab
Developer 4.0 displays all of the trades that your System generated in clear buy and
sell arrows on the chart, provided that they are enabled. The ChartScript Performance
Results view also lists the overall System performance, and the Trades view contains a
detailed listing of all trades that were generated.

If you're just becoming familiar with WealthScript, the following topics provide an
introduction to programming Trading Systems in a cumulative fashion.

The Main Loop
Each time a script is executed, generally it should start from the first bar at which
all your indicators are valid and continue to the final bar in the chart.

Triggering a Market Buy Order
Learn how to simulate entering long positions with Market orders.

72

78

79

73

74

© 2003-2006 WL Systems, Inc.

73 WealthScript Language Guide, Wealth-Lab Developer 4.0

Triggering a Limit or Stop Buy Order
Limit orders offer more control over the entry price of a trade. In addition, stop
orders permit you to enter a trade with confirmation that the market for the
security is moving in favor of the trade's intended direction.

Checking for Open Positions
Your trading strategy will change once you have entered a position. In single-
Position-only trading systems, you'll be looking for the exits if you're already
holding a position.

Using Automated Stops
Let Wealth-Lab Developer 4.0 worry about getting you out of a trade. It's a
simple as adding 2 statements.

Selling Short
Theoretically, it's true that selling short carries unlimited risk. However, just as
you may test long strategies in Wealth-Lab Developer 4.0 without risking real
cash, you may do the same with short or mixed strategies.

5.2.2 The Main Loop

Every Trading System must have a main loop that cycles through the data in your
chart. This is accomplished with a typical "for loop", as shown below. Although the

first bar number of a ChartScript's DataSource is 0, your for loop should start from at
least 1 to ensure that Market orders can be placed. In order to place a Market order
the system needs a "basis price," which is the closing price of the previous bar.

Example

var BAR: integer;
{ ChartScript Main Loop }
for Bar := 30 to BarCount - 1 do
begin
{ Trading rules go here, and are executed once for every bar in the
chart }
end;

Here, the for loop starts at the 30th bar of data. You should set your main loop's

starting point based on the technical indicators that you're using. For example, if you
use a 30 bar SMA and a 14 bar RSI in your rules, choose the longer of the two
indicators and set your starting for loop value to 30. The main loop typically ends at

BarCount - 1, which the number of the last bar in all Price Series. For more

discussion, see the article on Stability of Indicators in the Wealth-Lab.com
Knowledge Base.

Finally, notice that no reference to time exists in controlling the loop, only consecutive
bar numbers. Unless you use WealthScript Time Frame functions to specifically
manipulate a DataSource's native time frame, you the same ChartScript will work
equally well with Daily bars as for Intraday bars, for example.

75

75

76

77

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=118
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

74

5.2.3 Triggering a Market Buy Order

Use the BuyAtMarket function to trigger a market buy order.

BuyAtMarket(Bar, SignalName);

The first parameter contains the Bar number to execute the trade. WealthScript
Trading System signals are usually triggered using the bar's closing value,
consequently the order should be placed on the bar following the one that generated
the signal (Bar + 1). When trading on a daily basis, this is analogous to receiving a

signal based on the closing price of one day and buying at the open of the next day.

The second function parameter is a SignalName that you choose to identify the trading
signal that triggered the trade. This data is later found in the Trades view and is
useful in your system analysis if you have a system that uses more than one type of
entry. If you don't need a signal name, just pass a blank string as shown in the
Example.

Example

var BAR: integer;
{ This simple ChartScript buys when prices cross above a 14 day SMA }
for Bar := 15 to BarCount - 1 do
begin
 if PriceClose(Bar) > SMA(Bar, #Close, 14) then
 if PriceClose(Bar - 1) <= SMA(Bar - 1, #Close, 14) then
 BuyAtMarket(Bar + 1, '');
end;

Notice above that the main loop begins at 15, even though we're using a 14 day SMA.
This is because we're also looking 1 bar back in the chart (Bar - 1) so we bumped

up our starting index to compensate for this.

Tip! Instead of testing the crossover condition manually as in the script above, use
the WealthScript CrossOver function to determine if one series crosses over
another on a specific bar. The script then becomes:

var BAR: integer;
for Bar := 15 to BarCount - 1 do
begin
 if CrossOver(Bar, #Close, SMASeries(#Close, 14)) then
 BuyAtMarket(Bar + 1, '');
end;

Simulating Market-On-Close

The WealthScript function BuyAtClose allows you to simulate a Buy Market-On-Close

order.

BuyAtClose(Bar, SignalName);

In this case, the trade will enter long at the closing value of Bar. In actual trading, a
broker cannot guarantee that a Market-On-Close order will execute at exactly the
closing price. Consequently, you may wish to make use the Slippage feature found
under Tools|Options (F12)|Trading Costs/Control.

© 2003-2006 WL Systems, Inc.

75 WealthScript Language Guide, Wealth-Lab Developer 4.0

5.2.4 Triggering a Limit or Stop Buy Order

You can also use the BuyAtStop and BuyAtLimit to simulate stop and limit buy

orders. A price must be specified with these order types, therefore an additional
argument exists for that purpose.

BuyAtStop(Bar, StopPrice, SignalName);

StopPrice is the price at which a simulated market order is placed. A position is
established at the StopPrice if the opening price of Bar is less than or equal to
StopPrice and the bar's high value is greater than or equal to StopPrice. However, if
the opening price of Bar gaps above StopPrice, a position is established at the
opening price of Bar. If neither of these conditions are true, then no position is
established.

BuyAtLimit(Bar, LimitPrice, SignalName);

For BuyAtLimit a position is established at LimitPrice, if the open of Bar is greater

than LimitPrice and the low of Bar is less than LimitPrice. If the opening price of Bar
is less than or equal to LimitPrice, a long position is established at the opening price
of Bar. Finally, if the prices fail to fall low enough to the limit objective, no position is
established.

There is a chance that these orders might not be fulfilled, so these functions return
boolean values indicating whether or not the trades were placed.

Example

var BAR: integer;
{ Issue a Limit Order to buy at current bar's close or lower only }
for Bar := 15 to BarCount - 1 do
begin
 if CrossOver(Bar, #Close, SMASeries(#Close, 14)) then
 BuyAtLimit(Bar + 1, PriceClose(Bar), '');
end;

5.2.5 Checking for Open Positions

It's fine that we can now use our Trading Systems to open long Positions, but how do
we close the Positions? WealthScript offers the capability to construct single-Position-
only trading systems, or systems that can manage multiple Positions. We'll go over
single-Position-only systems for now since it's a simpler concept.

In a single-Position trading system, we need to see if our last Position is active. Use
the LastPositionActive function to get this information. If our last Position is

active, we can branch to our sell rules, otherwise we can see if our buy rules present
the opportunity to initiate a new Position.

Example

var BAR: integer;
{ A simple, single-position Trading System }
for Bar := 15 to BarCount - 1 do
begin
 if LastPositionActive then
 begin

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

76

 if PriceClose(Bar) <= SMA(Bar, #Close, 14) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 if CrossOver(Bar, #Close, SMASeries(#Close, 14)) then
 BuyAtLimit(Bar + 1, PriceClose(Bar), '');
 end;
end;

Closing Out a Position

You can see from the example above that the SellAtMarket function is one way to

close out an open long Position. The function takes three parameters.

SellAtMarket(Bar, Position, SignalName);

The first parameter is the Bar in which to close out the Position. The second
parameter is the Position Number that we want to sell. Since WealthScript can
support trading systems that manage multiple positions we need a way to tell the exit
rule which position we want to sell. For systems that manage a single Position at a
time we can use the LastPosition function to return the Position number of the

open Position.

Just as BuyAtMarket has the counterparts BuyAtClose, BuyAtStop and

BuyAtLimit, so does SellAtMarket have SellAtClose, SellAtStop and

SellAtLimit. Notice the four arguments in the syntax of the latter functions:

SellAtStop(Bar, StopPrice, Position, SignalName);

SellAtLimit(Bar, LimitPrice, Position, SignalName);

The StopPrice and LimitPrice arguments retain the same significance as in their "Buy"
counterparts. Be aware that if you use the stop or limit sell functions, prices may not
reach your stop or limit price, so the trade may not execute.

5.2.6 Using Automated Stops

WealthScript provides six functions that let you apply automated exits to your trading
systems. You can call one or more of these functions at the start of your script to
install these "automated stops", or simply AutoStops. At the start of your main
trading loop, call the ApplyAutoStops function to execute the stops. WealthScript
will cycle through your open Positions and apply the stops for you automatically. For
more information, see the article Using Automated Exits on the Wealth-Lab.com site.

The function SetAutoStopMode allows you to control how the parameters of
AutoStops are interpreted: as percentage (default), point, or dollar values. This is
specified using one of the following three constants in the function's argument:
#AsPercent, #AsPoint, or #AsDollar. See its entry in the Function Reference for

more information.

The syntax of the applicable AutoStop functions and their abridged descriptions are
found below. Note that [percentage] is the default interpretation if the
SetAutoStopMode is not employed in the ChartScript.

© 2003-2006 WL Systems, Inc.

77 WealthScript Language Guide, Wealth-Lab Developer 4.0

InstallStopLoss(StopLevel);

StopLevel expresses the maximum [percentage] of loss for an open Position. A gap
in prices may result in a loss greater than percentage of StopLevel.

InstallTrailingStop(Trigger, StopLevel);

Trigger is the Position's profit [percentage] that must be reached on a closing basis
to activate the stop, and, StopLevel is the percentage of the total profit that must be
lost (pull back) to trigger the stop. StopLevel is always expressed as a percentage
and is not affected by SetAutoStopMode.

InstallBreakEvenStop(Trigger);

Trigger is the Position profit [percentage] that must be reached to activate the
breakeven stop.

InstallReverseBreakEvenStop(LossLevel);

LossLevel is the [percentage] loss that must be reached to activate a breakeven
stop limit.

InstallProfitTarget(TargetLevel);

TargetLevel, the profit target level, expresses the [percentage] profit desired to
trigger an automatic exit of an open Position.

InstallTimeBasedExit(Bars);

Bars represents the number of bars after which a position is automatically closed.

Example

var BAR: integer;
{ Use automated Stops to close out the position }
InstallStopLoss(20);
InstallProfitTarget(40);
InstallTrailingStop(20, 50);
InstallBreakEvenStop(10);
InstallReverseBreakEvenStop(20);
PlotStops;
for Bar := 15 to BarCount - 1 do
begin
 if LastPositionActive then
 ApplyAutoStops(Bar)
 else
 begin
 if CrossOver(Bar, #Close, SMASeries(#Close, 14)) then
 BuyAtLimit(Bar + 1, PriceClose(Bar), '');
 end;
end;

5.2.7 Selling Short

Each buy and sell function has a corresponding function for going short and covering a
short Position. Replace the "Buy" with "Short" in the function name to initiate a short
Position. Replace "Sell" with "Cover" to close a short Position. The Automated Stops
can be used for short Positions as well as long.

For more information on these functions, see their entries in the Trading System

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

78

Control chapter in the WealthScript Function Reference.

Entering Long Entering Short
BuyAtClose ShortAtClose
BuyAtLimit ShortAtLimit
BuyAtMarket ShortAtMarket
BuyAtStop ShortAtStop

Exiting Long Positions Exiting Short Positions
SellAtClose CoverAtClose
SellAtLimit CoverAtLimit
SellAtMarket CoverAtMarket
SellAtStop CoverAtStop

5.3 Implementing Trading System Rules

You can use whatever logic based on price, technical indicators, date information, or
whatever else you can think of in your entry and exit rules. Get as complicated and
creative as you like, but be careful; often times the simpler the trading system, the
more robust it will be. Consult the WealthScript Function Reference for a complete
list of functions that you can use in your system rules, or with the main icon toolbar
visible, View|Icon Bar, type Ctrl+K to open the QuickRef.

Example

var BAR: integer;

{ Buy if Price is higher than the Price of 3 days ago, and 100 day EMA
is moving up. Sell if Price is lower than the price of 3 days ago, or
100 day EMA is moving down. }
for Bar := 101 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if (PriceClose(Bar) < PriceClose(Bar - 3))
 or (EMA(Bar, #Close, 100) < EMA(Bar - 1, #Close, 100)) then
 SellAtMarket(Bar + 1, LastPosition, '');
 end
 else
 begin
 if (PriceClose(Bar) > PriceClose(Bar - 3))
 and (EMA(Bar, #Close, 100) > EMA(Bar - 1, #Close, 100)) then
 BuyAtMarket(Bar + 1, '');
 end;
end;

Never Look Ahead!

Be sure that your trading system doesn't take advantage of information that it would
have no way of accessing in the real world! For example, don't look ahead at Price
Series or indicator values. Also, be sure to execute your entry and exit orders at the
following bar (typically Bar + 1) to avoid using information from the current bar that
you'd have no way of knowing at market open. In system testing these types of
errors are termed peeking or postdictive errors.

5

© 2003-2006 WL Systems, Inc.

79 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

{ This System takes advantage of future information! It buys and sells
at the market open on the same bar that it examines closing price! }
var BAR: integer;
for Bar := 1 to BarCount - 1 do
begin
 if LastPositionActive then
 begin
 if PriceClose(Bar) < PriceClose(Bar - 1) then
 SellAtMarket(Bar, LastPosition, '');
 end
 else
 begin
 if PriceClose(Bar) > PriceClose(Bar - 1) then
 BuyAtMarket(Bar, '');
 end;
end;

The Trading System above would give you an idea of how well you could do in the
market if you had access to supernatural abilities. Although the violation is subtle,
you'd be surprised at how much it can impact the bottom line of trading system
evaluation!

5.4 Managing Multiple Positions

WealthScript provides the capability to create trading systems that can manage
multiple open Positions. You can use this feature to write systems that average down,
for example.

Several functions, which found in the Position Management chapter of the
WealthScript Function Reference , are available to help you work with information
about System Positions. Some of the most important functions are described here.

PositionCount;
returns the total number of Positions that have been created.

LastPosition;
returns the Position number of the last-entered Position. Position numbers range
from 0 to PositionCount - 1. Note that LastPosition = PositionCount -

1.

LastLongPositionActive;
returns the Position number of the last long Position.

LastShortPositionActive;
returns the Position number of the last short Position.

Other WealthScript Position functions return information about a specific Position. You
pass a Position number to these functions:

PositionActive(Position);
returns True if the Position is currently open.

PositionEntryPrice(Position);
returns the entry price of the Position. See also PositionExitPrice.

PositionEntryBar(Position);
returns the integer Bar number on which the Position was established. See also

5

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

80

PositionExitBar.

PositionLong(Position);
returns True if the Position is long and False if it is short. See also
PositionShort.

When working with multiple Positions, you typically have a secondary loop within your
main loop that goes through each Position and determines whether it should be closed
out.

Place your Position closing loop above any system entry trading rules. This will
prevent the sell logic from being applied to Positions that are opened on the very
same bar.

Example

{ This Trading System buys whenever RSI crosses above 30, and closes
all open positions when it crosses below 70. }
var BAR, P: integer;
for Bar := 15 to BarCount - 1 do
begin
 if RSI(Bar, #Close, 14) < 70 then
 if RSI(Bar - 1, #Close, 14) >= 70 then
 begin
 for p := 0 to PositionCount - 1 do
 if PositionActive(p) then
 SellAtMarket(Bar + 1, p, '');
 end;
 if RSI(Bar, #Close, 14) > 30 then
 if RSI(Bar - 1, #Close, 14) <= 30 then
 BuyAtMarket(Bar + 1, '');
end;

Splitting Positions

If your strategy includes the purchase (or short sale) of a single position and then
closing off parts of it in multiple separate trades, you can split the original position
using the SplitPosition function. See the SplitPosition tutorial in the Wealth-
Lab Knowledge Base.

Note: Currently, separate positions cannot be merged or combined.

Shortcut to Closing all Open Positions

Instead of looping through the individual Positions in a multiple-Position strategy, you
can use the special #All constant in place of a parameter that requires a Position

number to close all open long or short Positions at once.

Example

var BAR: integer;
for Bar := 20 to BarCount - 1 do
begin
 if CrossOverValue(Bar, CMOSeries(#Close, 20), -40) then
 BuyAtMarket(Bar + 1, 'CMO')
 else if CrossUnderValue(Bar, CMOSeries(#Close, 20), 40) then
 SellAtMarket(Bar + 1, #All, 'CMO');
end;

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=48
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

© 2003-2006 WL Systems, Inc.

81 WealthScript Language Guide, Wealth-Lab Developer 4.0

Optimizing Processing of Active Positions

For sure, the #All shortcut is quick to deal with one or more Positions that will be
exited at the same time. Some trading systems, however, have different stops, profit
targets, or other exit logic for each individual Position. In these cases, it is necessary
to process each active Position, one at a time, to execute the intended logic. To find
the active positions, however, it is not necessary to loop over all the Positions as
shown in the RSI trading system above. Doing so can significantly slow down
ChartScripts that create many Positions.

Two design patterns are frequently used that optimize processing speed in these
cases.

Design Pattern 1

Here, interim variables are declared to hold the ActivePositionCount and the number
of active Positions that have been processed. Since Positions that are opened earlier
are usually closed out first, the PositionCount loop counts backwards, starting with
the most-recent Position. As each active Position is found, the Processed variable is
incremented and compared to APCount, and, when equal the loop is terminated
since all known active Positions have been processed.

 var p, APCount, Processed: integer;

 Processed := 0;
 APCount := ActivePositionCount;
 for p := PositionCount - 1 downto 0 do
 begin
 if PositionActive(p) then
 begin

 { do something with the active position p here }

 Inc(Processed);
 if Processed = APCount then
 break;
 end;
 end;

For an example of pattern 1 in action, see
Interacting Dynamically with Portfolio Level Equity at the Wealth-Lab.com
Knowledge Base.

Design Pattern 2

In this ingenious pattern, the variable p is initialized to the number of the most-
recent active Position + 1. The repeat/until nested loop then finds the very next
active position by decrementing p by one. The process is repeated by the outer loop
only for the number of active positions.

 var a, p: integer; // (in variable declarations)

 p := LastActivePosition + 1; {* In a SimuScript replace with p :=
PositionCount; *}
 for a := 1 to ActivePositionCount do
 begin
 repeat
 Dec(p);
 until PositionActive(p);

34

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=6
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Writing Your Trading System Rules

© 2003-2006 WL Systems, Inc.

82

 { do something with the active position p here }

 end;

© 2003-2006 WL Systems, Inc.

83 WealthScript Language Guide, Wealth-Lab Developer 4.0

6 Working with Technical Indicator Functions

6.1 Overview

WealthScript provides native functions for dozens of technical indicators. Each of these
technical indicator functions has two different syntax forms. The first form returns the
value of an indicator at a specific bar in the chart. The second form returns the Price
Series handle of the indicator, which you can then pass to functions such as
PlotSeries or AddSeries.

Accessing Indicator Values
You could use the GetSeriesValue function to access values of a technical

indicator series, but there's a much more intuitive way using the first form of
indicator syntax.

Accessing Indicator Price Series Handles
As outlined in the chapter Working with Price Series , handles are used to refer
to a complete Price Series. The value that the second form of indicator syntax
returns is, in fact, a handle.

For further reference:

The Technical Indicator Functions section of the WealthScript Function Reference
contains a complete listing of the technical indicator functions available. Also, the
Wealth-Lab Developer 4.0 Function QuickRef contains a complete example of each
native indicator in use.

6.2 Accessing Indicator Values

Use the first form of the indicator function to return the indicator's value at a specific
bar in the chart. This form of syntax is commonly an abbreviation, or possibly an
acronym, which describes the indicator.

Syntax (Indicator first form, general syntax):

indicatorabbr(Bar[, Series[, ParameterList]]);

Although Bar is always required when using the first form, the brackets [] indicate
optional arguments that depend on the parameters particular to the indicator. For a
typical example, let's turn our attention to the Simple Moving Average value function.
Its syntax abbreviation (indicatorabbr) is SMA and the function takes 3 parameters:

SMA(Bar, Series, Period);

Bar The Bar number at which we're interested in obtaining the
Simple Moving Average.

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

Period The Period of the moving average.

The example below prints the Simple Moving Average value for each bar to the Debug

83

84

48

5

Working with Technical Indicator Functions

© 2003-2006 WL Systems, Inc.

84

Window. If you run this script and examine the output in the Debug Window you'll
notice that the first 29 lines are zero. This is because we're requesting the value of
the 30 day moving average, so the first indicator value isn't available until the 30th
bar.

Example

var Bar: integer;
var SMA_Value: float;
for Bar := 0 to BarCount - 1 do
begin
 SMA_Value := SMA(Bar, #Close, 30);
 Print(FloatToStr(SMA_Value));
end;

Indicator Calculation

The first time you call one of the native technical indicator functions or a properly-
formed custom indicator, Wealth-Lab calculates the indicator across the complete
Price Series. Subsequent calls to the indicator function return pre-calculated values.
Because of this, you can be sure that repeated calls to access indicator values will be
as quick as possible and that unnecessary recalculation is not performed.

6.3 Accessing Indicator Price Series Handles

The second form of the indicator function returns the handle to the complete indicator
Price Series (see the Working with Price Series topic). These functions are always
named the same as their first-form counterparts, but with the word "Series"
appended. So, for example, the Simple Moving Average function is named
SMASeries. Since these functions return the handle that refers to the complete Price

Series, they do not include the Bar parameter.

Syntax (Indicator second form, general):

indicatorabbrSeries([Series[, ParameterList]]);

Now, we complete our explanation with the syntax of the most well-known indicator.

SMASeries(Series, Period);

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

Period The Period of the moving average.

You can pass an indicator Price Series handle to any WealthScript function that is
looking for a Price Series parameter. For example, PlotSeries. The example below

obtains the handle to the Simple Moving Average and plots it on the chart.

Example

var nHandle: integer;
nHandle := SMASeries(#Close, 30);

48

© 2003-2006 WL Systems, Inc.

85 WealthScript Language Guide, Wealth-Lab Developer 4.0

PlotSeries(nHandle, 0, #Red, #Thick);

Accessing Data from Files

© 2003-2006 WL Systems, Inc.

86

7 Accessing Data from Files

7.1 Overview

You can access data from external text files from within your WealthScript code by
using the File Access Functions. The File Access Functions provide a way to create,
read from, and write to external files.

Creating and Opening Files
Just as Price Series use handles to refer to the data entire series, you'll need a file
handle to point to a file on your computer. The two functions that create and
open files return an value that you assign to an integer variable, which is then
used as the file handle.

Reading and Writing
Once you have a file handle saved in an integer variable, you use it as a reference
to read and write from the file.

Closing Files
Wealth-Lab automatically closes files that you open from within a script, but you
may do it yourself if you like. Read this topic to discover some subtleties in file-
access operations during WatchList Scans and $imulations.

7.2 Creating and Opening Files

Each of the functions described below return an integer "File Handle" that is used in
subsequent File Access function calls.

Syntax:

FileCreate(FileName);

FileOpen(FileName);

FileName is a string expression that describes the full path of the file to be created
and/or opened. If FileName does not include a path, then the file will be
created/opened from the Wealth-Lab Developer 4.0's main directory. If a directory
path is specified, it must exist otherwise an error will result.

Use the FileCreate function to create and open a new, empty file. If FileName

already exists, it will be deleted and a new file created in its place. See important
aspects of FileCreate when used in WatchList Scans or $imulations under the topic

Closing Files .

The FileOpen function is used to open an existing file. Nevertheless, if FileName

does not exist, FileOpen will create it.

Example

var NewFile, OldFile: integer;
NewFile := FileCreate('c:\windows\temp\wltemp.txt');
OldFile := FileOpen('c:\windows\win.ini');

86

87

88

88

© 2003-2006 WL Systems, Inc.

87 WealthScript Language Guide, Wealth-Lab Developer 4.0

To create a file that includes the symbol name in use by the ChartScript, you can use
the GetSymbol function as shown in the next example.

Example

var NewFile: integer;
NewFile := FileCreate('c:\windows\temp\' + GetSymbol + '.txt');

7.3 Reading and Writing

Use the FileRead function to read a line from a file, and the FileWrite function to

write a line to a file.

Syntax:

FileWrite(File, Line);

FileRead(File);

File is the File Handle that was returned from either FileCreate or FileOpen. Line

is a string expression of the data to be "written" or output to File.

FileWrite always appends the data string specified in the Line parameter to the end

of the file. Additionally, the write operation automatically appends carriage return and
line feed characters, Chr(13) + Chr(10), to Line.

Each time FileRead is encountered in your script, it reads the next line from File and

returns the data as a string. Consequently, you normally find a FileRead statement

within a loop that continues until the end of file is encountered.

Read and write file operations maintain separate file pointers, so you can even read
from a file created with FileOpen and write to the same File Handle without

disrupting the read.

Use the FileEOF (end of file) function to determine if there are any more lines of data

to be read from a file. The function returns a boolean True if the file pointer has
encountered the end of file.

Syntax:

FileEOF(File);

Example

{ Create a copy of the Win.ini file in the Temp directory }
var NewFile, OldFile: integer;
var s: string;
NewFile := FileCreate('c:\windows\temp\wltemp.txt');
OldFile := FileOpen('c:\windows\win.ini');
while not FileEOF(OldFile) do
begin
 s := FileRead(OldFile);
 FileWrite(NewFile, s);
end;

Accessing Data from Files

© 2003-2006 WL Systems, Inc.

88

7.4 Closing Files

Files are automatically closed after the script completes processing. During WatchList
Scans or $imulations, files are automatically closed after the complete Scan or
$imulation. Consequently, when opening a file using FileCreate, each individual

ChartScript run during a Scan or $imulation can append lines of data to a single
output file without deleting the file that was created at the beginning of the Scan or
$imulation.

You have the option, nevertheless, to close the file explicitly via the FileClose
function.

Syntax:

FileClose(File);

File is the integer File Handle that was returned from either FileCreate or

FileOpen.

Since files are closed automatically after the script completes, this function has limited
use. During Scans or $imulations if you truly want FileCreate to delete the

previously created file of the same name, include the FileClose function in the

script.

© 2003-2006 WL Systems, Inc.

89 WealthScript Language Guide, Wealth-Lab Developer 4.0

8 Understanding Time Frames

8.1 Overview

WealthScript provides a set of special functions for accessing data from higher time
frames. You can easily create weekly or monthly data from a daily chart. Likewise,
you can access daily data from an intraday chart. You can also access higher-time-
frame intraday data from an intraday chart, provided that the higher-time-frame data
can be created from the lower level bars. For example, a chart of 10-minute bars can
be created using 1 or 5-minute bars, but not with 4-minute bars.

It may not be immediately obvious why you would want to use higher-time-frame
data when data of greater granularity (lower time frame) is available. Imagine
though, that you'd like your trade setup to be based on a strong underlying trend
turning positive, such as a moving average of weekly bars. When this condition is
true, you might trigger the trade Wealth-Lab Developer 4.0 based on some pre-
determined Daily price movement. In Wealth-Lab Developer 4.0 you can do this task
with the same single set of Daily price bars!

As the following topics are very closely linked, it's best to review them in order.

Accessing a Higher Time Frame
Depending on the time frame of your underlying data, different functions are
utilized to scale your data in other time frames.

Expanding the Series
Once you have the Price Series in a higher time frame, it will be necessary to
synchronize it with the original time scale to be useful in ChartScript plotting
functions, for example. After you've done this conversion, you can use the new
series just like any other Price Series in the original time frame.

Accessing Higher Time Frame Data by Bar
You may forego the rather simplistic operation of expanding the entire series and
use another set of functions to find the corresponding bar number of the higher-
time-frame series in the original Price Series.

Scaling and Trading
The technique of compressing data is used to create indicators that you later
project back to the original base time frame in which your trades are executed.
Do not confuse the purposes of WealthScript Time Frame functions with Wealth-
Lab's scaling tools.

See Also: Synchronization Options in the Wealth-Lab Developer 4.0 User Guide.

8.2 Accessing a Higher Time Frame

The first step in accessing data from a higher time frame is to use one of the special
"SetScale" functions to change to the desired time scale. WealthScript provides
SetScaleWeekly and SetScaleMonthly that can be called from a daily chart, and

SetScaleDaily and SetScaleCompressed that can be called from an intraday

chart. You'll receive a compilation error if you try to use one of these functions with
data of an incompatible time frame.

89

91

93

94

Understanding Time Frames

© 2003-2006 WL Systems, Inc.

90

Summary of Time Frame Compression Options

Base Time Frame Compression Function Resulting Time Frame

Intraday SetScaleCompressed Intraday (higher time frame)
Intraday SetScaleDaily Daily
Daily SetScaleWeekly Weekly
Daily SetScaleMonthly Monthly

Example

{ Obtain the weekly closing prices from a daily chart }
var WeeklyClose: integer;
SetScaleWeekly;
WeeklyClose := #Close;
RestorePrimarySeries;

Note the call to RestorePrimarySeries at the end of the script. You should always

call RestorePrimarySeries after you're finished operating in the higher time

frame.

To get an idea of what's going on behind the scenes, let's inspect the #Close and
WeeklyClose series of a typical, albeit very small, data sample.

The WeeklyClose series contains roughly 1/5 the number of values as the primary
Daily series, and, the data values are taken from the last calendar day of the week -
the weekly close - which in this case is Friday. If you looped through the bars before
the call to RestorePrimarySeries you would find that the bars retain the calendar day
of the first calendar day of the week (Monday). This is really immaterial, and you'll
see why when you Expand the Series to use its data in your ChartScript.

Expanding the Weekly Series

The example above returned the weekly closing Price Series for our daily data. If our
daily chart had 1000 bars, the "WeeklyClose" Price Series would roughly contain only
200 bars (5 trading days per week). If you tried to use this Price Series in a function
such as PlotSeries, you'd receive an error (or no result), because the weekly Price
Series has fewer bars than the daily Price Series. There are two ways to "expand" the
higher-time-frame data and make it available for use from within the lower level
chart: Expanding the [entire] Series and
Accessing Higher Time Frame Data by Bar .

91

91

93

© 2003-2006 WL Systems, Inc.

91 WealthScript Language Guide, Wealth-Lab Developer 4.0

8.3 Expanding the Series

The first method of accessing the higher time frame data is arguably simpler.
WealthScript provides special functions to automatically expand the higher-time-frame
data. You can use the DailyFromWeekly and DailyFromMonthly functions in daily

charts, and the IntraDayFromDaily or IntradayFromCompressed functions in

intraday charts. After calling the appropriate function to expand the higher-time-
frame Price Series, use GetSeriesValue to obtain the value of the converted series

at a particular Bar Number.

Summary of Timeframe Expansion Options

Base Time Frame Expansion Function Use After Compression With

Intraday IntradayFromCompressed SetScaleCompressed
Intraday IntradayFromDaily SetScaleDaily
Daily DailyFromWeekly SetScaleWeekly
Daily DailyFromMonthly SetScaleMonthly

These functions return a new Price Series that is synchronized to the lower time frame
data. The expanded Series contains a number of repeated values. For example, a
weekly series converted to a daily series generally will have 5 repeated values in a
row, one for each day of the week.

Note: Upon expansion, alignment of compressed data is greatly affected by the
Compressed Price Series Alignment Option .

The example below shows how to convert the weekly data to a daily series for
plotting. This effectively overlays the weekly close over the daily chart.

Example

var WeeklyClose, WeeklySynched: integer;
SetScaleWeekly;
WeeklyClose := #Close;
RestorePrimarySeries;
WeeklySynched := DailyFromWeekly(WeeklyClose);
PlotSeries(WeeklySynched, 0, #Red, #Dotted);

At this point you can use the WeeklySynched series the same as any other Price
Series in the Daily time frame.

Apply indicators, such as a Weighted Moving Average, to the compressed (higher-
time-frame) Price Series prior to using an expansion function. This may be done
before or after the call to RestorePrimarySeries. Adding to our previous example,

we demonstrate how to do this.

Example

{ Create a 5-period Weighted Moving Avg of the weekly price series
derived
 from daily data and then use it in the Daily time frame. }
var WeeklyClose, WeeklySynched, AvgWeekly, AvgWeeklySynched: integer;
SetScaleWeekly;
WeeklyClose := #Close;
AvgWeekly := WMASeries(WeeklyClose, 5);
RestorePrimarySeries;
WeeklySynched := DailyFromWeekly(WeeklyClose);
AvgWeeklySynched := DailyFromWeekly(AvgWeekly);
PlotSeries(WeeklySynched, 0, #Red, #Dotted);
PlotSeries(AvgWeeklySynched, 0, #Blue, #Dotted);

91

Understanding Time Frames

© 2003-2006 WL Systems, Inc.

92

Compressed Price Series Alignment Option

It's important not to "look ahead" while back testing trading systems as this will cause
postdictive errors in your scripting that usually leads to overly-inflated profits. If
you're not careful, this can be easy to do when synchronizing an expanded Price
Series.

You have control of how to align and display data from a compressed Price Series.
This option is provided by selecting Tools | Options (or by striking the F12 function
key) and then the Synchronization tab.

Considering again the previous examples of overlaying compressed Weekly data on
top of its corresponding Daily Price Series, let's inspect the same sample data set to
see how these options affect the outcome. Here, we observe the result of the
repeated data values after the DailyFromWeekly function call based on the selection
indicated. We'll refer to these as Options #1, #2, and #3 from top to bottom.

© 2003-2006 WL Systems, Inc.

93 WealthScript Language Guide, Wealth-Lab Developer 4.0

When testing a trading system using compressed data in a more granular time frame
(i.e., expanded), it's clear from these illustrations that either Option #1 or #3 must be
selected. The difference in the first (default) and third options is one of a self-
imposed delay. In other words, if you were to run an end-of-day Scan with Option #1
on Friday (after the close), you could generate trading signals for Monday's open
based on the current week's data. In contrast, with Option #3, this data would not be
available until Monday night's Scan. Either method is acceptable and which one you
choose depends on your methodologies.

If Option #2 were selected, you would incorrectly be using data only available at a
later time in actual trading, as you can verify in the illustration above. Nevertheless,
you may wish to see the data using the second convention for charting purposes, or to
create some sort of idealized trading system. For these reasons it is available for your
discretional use.

For a graphical interpretation of this discussion using Daily/Intraday time frames, see
the following Knowledge Base article: http://www.wealth-lab.com/cgi-
bin/WealthLab.DLL/kbase?id=77

8.4 Accessing Higher Time Frame Data by Bar

The second method of accessing the higher-time-frame data is to determine the bar
number in the higher-time-frame Price Series that corresponds to the bar number in
the lower level Price Series. WealthScript provides special functions to do this:
GetWeeklyBar and GetMonthlyBar for daily charts and GetDailyBar and

GetCompressedBar for intraday charts. Once you have determined the

corresponding bar number, you can use GetSeriesValue to obtain the value of the

converted series at that bar.

Summary of Get Bar Options

Base Time Frame "Get Bar" Function Use After Compression With

Intraday GetCompressedBar SetScaleCompressed
Intraday GetDailyBar SetScaleDaily
Daily GetWeeklyBar SetScaleWeekly
Daily GetMonthlyBar SetScaleMonthly

The example below first grabs the weekly closing price series. It then goes through
each bar of the daily chart and finds the corresponding weekly closing prices for the
previous 2 weeks. If the previous week's close was higher than the close 2 weeks
ago, the script colors the daily bar green. After running the example, a look at the
Debug Window resulting from the Print statement will provide additional insight.

Example

var WeeklyClose, Bar, BarWeekly: integer;
SetScaleWeekly;
WeeklyClose := #Close;
RestorePrimarySeries;

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=77

Understanding Time Frames

© 2003-2006 WL Systems, Inc.

94

for Bar := 12 to BarCount - 1 do
begin
 BarWeekly := GetWeeklyBar(Bar);
 Print(IntToStr(BarWeekly) + ', ' + IntToStr(Bar));
 if GetSeriesValue(BarWeekly - 1, WeeklyClose)
 > GetSeriesValue(BarWeekly - 2, WeeklyClose) then
 SetBarColor(Bar, #Green);
end;

Let's recap.

The difference between the two methods of accessing higher-time-frame data is
subtle. After RestorePrimarySeries, in the "expansion" method, we simply create

another new Price Series that contains repeated values synchronized with the original
Price Series. Expanding the higher-time-frame series in this way is necessary if you
want to plot its values using the PlotSeries function.

In the less-intuitive method above, the higher-time-frame series is never expanded.
Its values are obtained by finding bar numbers that correspond between the two time
frames. Since the repeated values associated with the series-expansion method do
not exist, we have an advantage in memory savings.

8.5 Scaling and Trading

The Time Frame functions discussed in the preceding topics are probably the most
difficult to understand of the WealthScript functions, yet once you have mastered
them, you will see how easy it is to create complex trading systems based on data and
indicators in other time frames.

Two concepts relating to time frames are necessary to understand. The first is that
you can Scale the data in the primary series using the using the Scale toolbar for

ChartScripts (, ,) and the Scale tab controls in the $imulator, Rankings,
and Scans tools. Scaling in this manner re-creates the data into a new base time
frame, which allows you to generate trades in the new scale. Note that the
ChangeScale function serves this same purpose, but it is useful only in the

ChartScript window.

Unlike the aforementioned scaling features of Wealth-Lab, the Time Frame functions
do not change the base time frame and therefore do not allow you to make trades on
resultant Price Series. This group of functions allow you to create indicators in more
compressed time frames that must be restored or projected back to the original base
time frame.

Scaling and Time Frame Notes:

1. Transforming intraday data to multiples of its underlying interval using the Scale
toolbar is currently available only for ChartScript windows. A similar intraday
scaling feature does not exist for the $imulator, Scans, and Rankings.

2. It is not possible to place trades on a Primary Series that has been time-
compressed from within a script using SetScaleCompressed or

SetScaleDaily, for example. These WealthScript Time Frame functions allow

you only to generate indicators and other Price Series in a more compressed
time frame that must be referenced back to the base time frame.

© 2003-2006 WL Systems, Inc.

95 WealthScript Language Guide, Wealth-Lab Developer 4.0

9 Creating a Custom Indicator

9.1 Overview

You can create custom technical indicators in Wealth-Lab Developer 4.0 that are
treated just like native indicators. Custom indicators are scripts composed of two
functions (as are native indicators). One function returns the value of the indicator at
a specific bar. The second function returns a handle to the complete Price Series for
the indicator.

A custom indicator is nothing more than a specially formed ChartScript that is stored
in the "Indicators" folder. Custom indicators appear in the Indicator list within the
main icon tool bar panel, which is docked on the left side of the screen. You can
distinguish custom indicators from native WealthScript indicators because they have a
red cross next to the function symbol.

Using the New Indicator Wizard
Even for experienced users, the New Indicator Wizard is a great place to start to
generate the boilerplate code for your indicator. After defining a few parameters,
you'll only have to program how the indicator is calculated. It's a snap!

The Guts of a Custom Indicator
If you're a code hound, you'll probably be interested in the details of how Wealth-
Lab can calculate so quickly the value of your indicator each time you reference it
in a ChartScript. (The secret is that it calculates the entire indicator series once
only!)

Other Possibilities
There's always more than one way to code an idea. Coding an indicator is not an
exception to this rule.

96

99

101

Creating a Custom Indicator

© 2003-2006 WL Systems, Inc.

96

9.2 Using the New Indicator Wizard

You can use the New Indicator Wizard to help produce a new custom indicator. The
Wizard generates the required boilerplate code for the indicator, and stores the
ChartScript in the "Indicators" folder. Start the New Indicator Wizard from the file
menu by selecting File|New Indicator Wizard, or by simply striking Ctrl+I.

Note: You must know how to work with Price Series before attempting to create
custom indicators.

Step 1. Indicator Name

The first step of the Wizard is to select the new indicator's name. You cannot
select a name of an existing ChartScript or a native WealthScript function.
The Wizard uses the indicator name to create two user-defined functions in
the resulting ChartScript code. The first function adopts the name of the
indicator, and the second function appends the word "Series" to the indicator
name.

Step 2. Indicator Parameters

The next step of the Wizard is to select the parameters that the indicator will
accept. Here you are actually creating the parameter list that appears in the
indicator's function declarations. Select one of the names provided in the
Parameter Name drop down box, or type your own variable name.

Note: Do not use variables named Bar, sName, or Value. The Indicator
Wizard reserves these names for its output.

48

© 2003-2006 WL Systems, Inc.

97 WealthScript Language Guide, Wealth-Lab Developer 4.0

Before clicking "Add Parameter", select the data type of your variable from
the other drop down box. Continue this process for as many parameters as
are necessary.

If any of the parameters is destined to be a Price Series handle, you should
include the word "Series" in the parameter name and select "integer" as the
data type. Wealth-Lab Developer 4.0 looks for the word "Series", and if
found will provide the list of Price Series constants (#Open, #High, #Low,

#Close, #Volume, #Average) whenever the indicator's Properties Dialog is

displayed, after dragging and dropping an indicator on a chart pane for
instance.

When finished adding parameters, select the "OK" button to create the
indicator script.

Step 3. New Indicator Wizard Output

The New Indicator Wizard uses the information you provided to create a new
ChartScript and places it in the "Indicators" folder. This ChartScript contains
the skeleton code that the custom indicator requires. You have to now fill in
the portion of the code that actually calculates the indicator's value. The
following code snippet is part of the resulting ChartScript:

Result := CreateNamedSeries(sName);
for Bar := Period to BarCount - 1 do
begin
{ Calculate your indicator value here }
 Value := 0;
 SetSeriesValue(Bar, Result, Value);
end;

Your job is to replace the statement, Value := 0; with code that calculates
the value of the indicator. Depending on the complexity of your indicator,
this may be a few or many statements. Note that this code is already within
a for loop that cycles through each bar of the chart. Your code should
ultimately assign a numeric expression (other than zero) to the variable
Value, the value of your indicator at Bar, which is conclusively stored in the
indicator's series using SetSeriesValue. In other words, you're filling the

blank series created by CreateNamedSeries bar by bar.

Note that the special variable Result is used as the handle to the indicator's
Price Series. It's important that when setting the series value at each bar
that you use the Result handle. When finished, don't forget to save your
work!

Note: Do not create another series using CreateSeries and then assign

its handle to Result. This will have the effect of assigning an
unnamed series to Result, and therefore subsequent calls to the
indicator series or attempting to obtain a specific value at a single bar
will return zero value.

Custom Indicators Derived from Other Indicators

As we've just seen, the Indicator Wizard provides a code template for creating
indicators that are built bar by bar. However, many custom indicators can be derived
more efficiently by combining existing indicators with series math using
Price Series operator functions like AddSeries, MultiplySeries, MultiplySeriesValue,

58

51

Creating a Custom Indicator

© 2003-2006 WL Systems, Inc.

98

etc. In these cases, since the indicator is not built bar by bar in WealthScript, we
need to make modifications to the wizard code's *Series function. The Indicator
Wizard is still valuable because it generates the proper function declarations and
parameter lists.

As an example, let's recreate the BBandLower indicator in custom indicator form. As
the following image shows, we've invoked the Wizard by striking Ctrl+I (or from the
File menu), named our indicator MyBBandLower, and added the required parameters
and Data Types.

Creating a WealthScript version of the BBandLower indicator.

Upon clicking OK to the Parameters dialog, MyBBandLower is saved to the Indicators
folder and is immediately registered in the main Indicators toolbar. Since we know
that the lower Bollinger Band is calculated by subtracting the StdDevSeries multiplied
by the specified standard deviations from the simple moving average of the same
Period, we can express it as follows:

function MyBBandLowerSeries(Series: Integer; Period: Integer; SD:
Float): integer;
begin
 var Diff: integer;
 var sName: string;

 sName := 'MyBBandLower(' + GetDescription(Series) + ',' + IntToStr(
Period) + ',' + FloatToStr(SD) + ')';
 Result := FindNamedSeries(sName);
 if Result >= 0 then
 Exit;

 Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
 Result := SubtractSeries(SMASeries(Series, Period), Diff);
 SetDescription(Result, sName);
end;

Take note of the major changes to the MyBBandLowerSeries code generated by the
Indicator Wizard:

· CreateNamedSeries is not necessary because our indicator is created as the result
of another indicator function.

· The for/do loop is eliminated. It's not necessary to calculate the indicator's value
on a bar by bar basis.

· SetDescription assigns a string name, sName, to the description of our final
Result series. As explained in a subsequent topic , Wealth-Lab uses99

© 2003-2006 WL Systems, Inc.

99 WealthScript Language Guide, Wealth-Lab Developer 4.0

descriptions to access indicators whose values have already been calculated.

Wealth-Lab, however, automatically creates unique internal descriptions for native
indicators, and consequently it is actually not required to form the sName description
and assign it to the result using SetDescription. Therefore, we can simplify the
custom indicator code even further as follows:

function MyBBandLowerSeries(Series: Integer; Period: Integer; SD:
Float): integer;
begin
 var Diff: integer;
 Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
 Result := SubtractSeries(SMASeries(Series, Period), Diff);
end;

Or simply,

function MyBBandLowerSeries(Series: Integer; Period: Integer; SD:
Float): integer;
begin
 Result := SubtractSeries(
 SMASeries(Series, Period),
 MultiplySeriesValue(StdDevSeries(Series, Period), SD)
);
end;

9.3 Deleting a Custom Indicator

Unless you're clairvoyant, not all the custom indicators that you create will be useful,
and therefore you'll need a means to remove them. Since Custom Indicators (and
Studies) are simply special ChartScripts saved in the "Indicators" folder, to delete a
custom indicator you simply have to remove its ChartScript using normal Explorer
procedures:

1. Open the ChartScript Explorer (Ctrl+O)
2. Navigate to the "Indicators" folder. (To remove a Study, go to the "Studies"

folder.)
3. Locate the Custom Indicator or Study.
4. Click the item to highlight it, and strike the Delete key on the keyboard.

After confirming the deletion, the Custom Indicator will no longer appear in the main
Icon Bar under the "Indicators" section.

9.4 The Guts of a Custom Indicator

The New Indicator Wizard does the work of setting up the custom indicator for you,
but it may be helpful to understand how custom indicators work internally. The
following information is not required to create a custom indicator, so read on only if
you are interested in the details.

Like all native WealthScript indicator functions, a custom indicator is composed of two
functions. The first function returns the value of the indicator at a specific bar. The
second function (with the word "Series" appended to it) returns the handle to the
complete Price Series.

Creating a Custom Indicator

© 2003-2006 WL Systems, Inc.

100

For example, if we created a custom indicator called "Test", we wind up with two
functions, one called Test and another called TestSeries.

function Test(Bar: integer; Series: Integer; Period: Integer): float;
begin
 Result := GetSeriesValue(Bar, TestSeries(Series, Period));
end;

The implementation of Test just grabs the value at the desired bar by calling
GetSeriesValue. The second parameter of GetSeriesValue is a Price Series

handle. In this case, we pass the second custom indicator function. So, in essence,
the Test function always passes control to the TestSeries function to actually obtain
its value.

This means that all of the work to calculate the indicator values is accomplished in the
TestSeries function. Here, we use some special WealthScript functions to make sure
that we only construct the indicator Price Series once, the first time Test or
TestSeries is referenced, which leads to increased performance of the script.

We'll assume that the Test indicator had 2 integer parameters, Series and Period.
The first thing the TestSeries function does is create a string that uniquely identifies
the requested indicator series.

sName := 'Test(' + GetDescription(Series) + ',' + IntToStr(Period)
+ ')';

Now that the function has a unique string that identifies this Price Series, it can see if
the Price Series was previously created.

Result := FindNamedSeries(sName);

if Result >= 0 then
 Exit;

The FindNamedSeries function looks for a Price Series with a certain internal name.

If a Price Series with the specified name was found, the series was already calculated,
so we just assign it to the Result variable and exit the function. If the Price Series
wasn't created, then we need to create it and populate it with indicator values.

Result := CreateNamedSeries(sName);
for Bar := Period to BarCount - 1 do
begin
{ Calculate your indicator value here }
 Value := 0;
 SetSeriesValue(Bar, Result, Value);
end;

The CreateNamedSeries function is similar to the frequently used CreateSeries.

It too creates an empty Price Series. The difference is that CreateNamedSeries
associates an internal name to the Price Series. We can then use FindNamedSeries
to retrieve the Price Series by that name.

Related Topic: SetDescription

© 2003-2006 WL Systems, Inc.

101 WealthScript Language Guide, Wealth-Lab Developer 4.0

9.5 Other Possibilities and FAQs

The method that the New Indicator Wizard uses to build a custom indicator is only one
possibility. Another way to proceed would be to calculate and return the indicator
value within the Test function itself. Then, in the TestSeries function, loop through
each bar and call the Test function to assign the value. This method would be more
optimal for ChartScripts that access indicator values sporadically and do not access
the complete Price Series for the indicator.

If desired, submit your correctly-formed custom indicators to the
WealthScript Code Library. This will then be available as a custom indicator on the
web site and in Wealth-Lab Developer 4.0 when users perform a "Download
ChartScripts" action.

I saved a custom indicator to the 'Indicators' folder but it doesn't appear in
the Indicators icon bar?

A new custom indicator will be added to the icon bar if:

· you used the New Indicator Wizard to create the custom indicator, and,
· the indicator was added automatically following a Community Download.

Otherwise, if you added the indicator by saving a ChartScript to the Indicators
folder, the indicator will appear in the icon bar the next time you start Wealth-Lab
Developer 4.0.

How do I use Custom Indicators?

Answer: just like any other native technical indicator .
The main difference is that you must make your script aware of the custom
indicator's code by placing a special "include" comment at the top of your
ChartScript that identifies the name of the custom indicator script. The Include
Manager can help in locating custom indicators and placing these special $Include
comment(s).

For example, assume that you wanted to use the custom indicator VK_WH which
has been saved as VK WH Band in the Indicators folder. A typical process would be
as follows:

1. Open a ChartScript (Ctrl+O) to which you wish to add the indicator or start with
a new one (Ctrl+N).

2. Click the Editor view and strike F6 to launch the Include Manager.

3. Locate the VK WH Band script, place a check mark next to it and click OK. This
action automatically places the required {$I 'VK WH Band'} comment at the top
of the ChartScript.

4. At this point, unless you're very familiar with the parameter list of this indicator,
you'll need to refer to the indicator's code and Description to use it properly. The
following code show is an example that simply plots the indicator. Note that the
VK_WHSeries function is defined in the 'VK WH Band' indicator script.

Example

{$I 'VK WH Band'}
var VK_WHSer: integer;

96

83

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=LibrarySubmit.htm
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

Creating a Custom Indicator

© 2003-2006 WL Systems, Inc.

102

VK_WHSer := VK_WHSeries(#Close, 5, 20);
PlotSeriesLabel(VK_WHSer, 0, 009, #Thin, 'VK_WH(#Close,5,20)');

Where can I use Custom Indicators?

You can use custom indicators in any ChartScript or IndexScript (Index-Lab).
Custom Indicators are not valid in CommissionScripts, PerfScripts, or SimuScripts.

© 2003-2006 WL Systems, Inc.

103 WealthScript Language Guide, Wealth-Lab Developer 4.0

10 CommissionScripts

10.1 Overview

You should always include real-world trading costs to add fidelity to your backtesting.
The Options Dialog, Tools|Options (F12), includes a Trading Costs/Control tab that
provides selections for commissions and slippage that you will experience in real-
world trading.

If your broker uses a flat-fee commission for each trade, then you may select the "per
Trade" One Way Commission option, which simply deducts a fixed amount from each
trade in a simulation. Likewise, the "per Share" option reduces a trade's gross profit
or loss by the number of shares multiplied by the value entered. Still, these simple
commission options do not include other small adjustments that your broker can make
on a per trade basis, such as the SEC fee for sale transactions in the U.S., which at
the time of this writing is $0.0468 per $1,000.

Some brokers use graduated commission schedules or base their fees on a percentage
of trade volume. CommissionScripts give you complete control over calculating simple
to the most complex commission schedules used by brokers worldwide.

CommissionScript Variables
Wealth-Lab makes specific trade data available to your script through the use of
special 'CM' variables. You'll need these in order to calculate commissions. You'll
assign the final commission value to the CMResult variable, for example.

Creating and Testing CommissionScripts
CommissionScripts are a special type of ChartScript that contain logic only for
calculating commissions. After completing the code, save the script to the special

 CommissionScripts ChartScript folder. You'll then be able to select it for use as
the CommissionScript in the Options Dialog.

10.2 CommissionScript Variables

CommissionScripts work by having access to the following special variables, which
Wealth-Lab loads with values that apply to the trade being processed. Each item's
return type is provided below and is further defined in the WealthScript Function
Reference as well as in the QuickRef:

CMShares : integer;
CMPrice : float;
CMEntry : boolean;
CMSymbol : string;
CMDataSource : string;
CMOrderType : integer;
CMResult : float;

Using these special 'CM' variables, you can emulate the your broker's calculation and

assign the result to the CMResult variable. Once complete, save the script to the
CommissionScripts ChartScript folder. At this point, the script will be available as a
selection in the CommissionScript dropdown control in the Options Dialog.

When using CommissionScripts, Wealth-Lab executes the selected CommissionScript

103

104

5

CommissionScripts

© 2003-2006 WL Systems, Inc.

104

for each trade processed during a simulation - once for each entry and and once for
each exit signal. The value calculated and assigned to the CMResult variable will
then be used as the trade's commission cost.

Wealth-Lab reduces the account equity by the commission amount on the bar on
which the trade takes place. Net profit reported for each trade in the Trades view
includes all entry and exit (if closed) commissions.

WealthScript Functions Compatible with CommissionScripts

You can declare any of the standard variable data types for use in a
CommissionScript as well as object types. However, not all WealthScript functions are
available for use in CommissionScripts. Generally speaking, in addition to the special
'CM' variables and GetGlobal/SetGlobal system functions, you may use only the

Math and String categories of WealthScript functions in CommissionScripts. Though
most commission calculations are expected to require only the most basic math
functions, it should be clear that some Math functions cannot be utilized, including:

Correlation, LinearRegLine, LineExtendX, LineExtendY, and

TrendLineValue

Finally, user-defined functions and procedures may be declared at the top of a
CommissionScript, however, {$Includes} cannot be used.

10.3 Creating and Testing CommissionScripts

Creating a CommissionScript

The procedure to make a CommissionScript is quite simple:

Step 1: Open a New ChartScript (Ctrl + N) and select the Editor Tab.

Step 2: The template (or skeleton) code will not be useful, so clear it to create a
fresh workspace.

Step 3: Using the aforementioned 'CM' variables program your broker's logic and
assign the final result to CMResult.

Step 4: Save the script (Ctrl + S) to the CommissionScripts ChartScript
folder.

The following sample CommissionScript is based on a commission structure with the
following characteristics:

· 1¢ per share up to 500 shares
· ½¢ for shares over 500 shares
· $1 minimum

Example

if CMShares <= 500 then
 CMResult := CMShares * 0.01
else
 CMResult := (500 * 0.01) + ((CMShares - 500) * 0.005);

if CMResult < 1 then
 CMResult := 1;

11

© 2003-2006 WL Systems, Inc.

105 WealthScript Language Guide, Wealth-Lab Developer 4.0

Testing a CommissionScript

Most CommissionScripts will be straightforward in nature and will certainly be
simplistic to all but the most novice programmer. Nevertheless, typos and other
errors can slip into our code so it's necessary to exercise a CommissionScript prior to
committing it to a large $imulation process. The following guidelines may help in
building confidence that your CommissionScript is functioning properly:

1. After saving the script to the CommissionScripts folder, be sure to select
the CommissionScript for use in the Options Dialog|Trading Costs/Control tab.

2. To more easily isolate trading costs due to commissions, disable Slippage.

3. Begin by executing the CommissionScript by itself in a ChartScript window.
Though you will not be able to determine that your commission algorithm is
functioning correctly, running the script gives you a chance to correct syntax
errors. If you corrected errors, save and close the CommissionScript.

4. Open a ChartScript of your choice that contains trading system rules and execute
it. Determine the gross profit of a trade based on the number of
shares/contracts and entry/exit prices. Subtract the Net Profit provided in the
Trades view from the calculated gross profit. The result will be the value(s)
calculated by the CommissionScript.

5. Re-activate Slippage, if desired.

Remarks:

• If you find that no commissions are ever deducted when using your commission
script, check the script for errors.

• Commissions are shared equally between split positions in the ChartScript
window. However, due to the way the $imulator operates internally, all
commissions are retained by the initial position in a split.

PerfScripts

© 2003-2006 WL Systems, Inc.

106

11 PerfScripts

11.1 Overview

PerfScripts, or Performance Scripts, are Scriptable Performance Reports. You can
customize Wealth-Lab Performance Reports to display whatever performance metrics
that you can imagine using the PerfScript feature. Performance Scripts must be saved

to the special PerfScripts folder, where a sample named "Standard PerfScript" is
included with your Wealth-Lab Developer 4.0 installation that duplicates the standard
Wealth-Lab Performance Report.

When enabled on the Performance View tab of the ChartScript Window or $imulator
tools, Wealth-Lab will execute a PerfScript four times to process All Trades
(Long+Short), Long Only, Short Only, and Buy & Hold positions. Since Wealth-Lab
automatically makes the appropriate group of positions available to the PerfScript
during each of the four runs, it's not necessary to write special code to test position
types (long, short, etc.).

PerfScript Functions

Creating PerfScripts

Using PerfScripts

11.2 PerfScript Functions

PerfScripts have a repertoire of dedicated functions that the QuickRef and
WealthScript Function Reference describe in detail. The first five functions enable you
to control the format of the metrics that you add to Wealth-Lab's ChartScript and
$imulator Performance Views. Wealth-Lab calculates account exposure and facilitates
its access through the AccountExposure function.

PerfAddCurrency

PerfAddPct

PerfAddString

PerfAddNumber

PerfAddBreak

AccountExposure

StartingCapital

CashInterest

MarginLoan

TotalCommission

In addition to these PerfScript-specific functions, you can also use WealthScript
functions from the Data Access, Date/Time, File Access, Technical Indicators, Math,
Position Management, Price Series, and String categories. It should be clear that not
all functions in these categories lend themselves to PerfScript analysis, such as the
"Set" Position Management functions.

106

107

108

© 2003-2006 WL Systems, Inc.

107 WealthScript Language Guide, Wealth-Lab Developer 4.0

Concept Note

A performance script processes equity curve data and the individual trading details
from all symbols following a $imulation or ChartScript Window execution.
References to Standard Price Series like #Close, #Volume, etc. cannot be permitted
in PerfScripts because the idea of a Primary Series does not exist. Consequently,
Price Series functions like ATR, MFI, etc. that require Standard Price Series cannot
be used in PerfScripts. Generally, only a custom series created during the execution
of the PerfScript, e.g., the result of the CreateSeries function, can be used as an
argument for Price Series functions that accept an integer Series argument, such as
SMA, Momentum, BBandLower, etc.

PerfScript Constants

#WinLoss Each of the PerfAdd functions contains a Color parameter that

controls the metric's text color in the report. #WinLoss paints

positive values green and negative values red. In addition, you can
use any of the standard color constants or a 3-digit number.

#Bold, #Italic Each of the PerfAdd functions contains a Style parameter that

controls the appearance of the metric's Label in the report. You can
pass #Bold, #Italic, or 0 for regular style.

#Equity Standard handle to the Equity curve series (PerfScript only) in
Portfolio Simulation Mode. In Raw Profit Mode, this handle returns
the Profit curve.

11.3 Creating PerfScripts

Of the PerfScript functions, four are used to add data to a performance record, which
is simply a single row of text in the Performance Report. Each row must have a
unique Label. Depending on the type of data to be displayed, you'll reference this
Label in one of the PerfAdd functions: PerfAddCurrency, PerfAddNumber,

PerfAddPct, or PerfAddString. Consequently, the same performance record can

display different types of data as required for All Trades, Long Only, etc.

For example, for any performance metric that involves a division, you should include
logic to detect if the divisor is zero prior to the division operation. If it is, then you
can use PerfAddString to show 'INF'. Otherwise, use one the other functions to

display a number with the appropriate format. Likewise, you can catch and
handle the error .

Start with the Standard

A sample PerfScript called "Standard PerfScript" that duplicates and adds to the
standard Wealth-Lab Performance Report will be included in the PerfScripts
ChartScript folder, where all PerfScripts must be maintained. A second sample,
"Standard PerfScript with Interest" includes the use of the CashInterest,

MarginLoan, and TotalCommission functions. The standard scripts are the best

place to start when creating your customized PerfScript. Save one of the "standards"
with a different name and start deleting or adding the calculations for metrics that you
would like to see displayed. With the standard as a model, it's not likely that you'll

69

44

PerfScripts

© 2003-2006 WL Systems, Inc.

108

need any help to create custom formulas for new performance metrics.

PerfScript Errors

After writing a new PerfScript or editing an existing one, run the script in the
ChartScript window by clicking any symbol. Doing this will allow you to correct syntax
errors and most run-time errors in the script prior to actually using it to generate a
report. Other PerfScript errors may not be caught in the "ChartScript Mode". For
example, since Trading System functions are not compatible with PerfScripts, yours
should not actually create trades. If it does, this mistake will not be detected until
Wealth-Lab executes the script during a ChartScript's post processing to generate the
actual performance report.

During a ChartScript's post processing, any irregularity in a PerfScript will generate an
error dialog like the one below. It will identify in which of the four PerfScript runs the
error occurred (All Trades, Long Only, Short Only, or Buy & Hold), the line number and
error text, and finally the actual line of code. As a consequence of an error, a
performance report will not be generated.

A dialog notifies you of run-time errors during the execution of a PerfScript.

Tip: Add metrics specific to Raw Profit and Portfolio Simulation Mode by testing if
StartingCapital = 0. Like in the PerfScript sample, a boolean variable
bRawProfit is set early on to control the output for the two modes.

Note that PerfScripts (like the sample) may contain several "BarCount" loops that
cycle through all the bars in the chart to calculate various ratios or indices. Since a
PerfScript is executed 4 times, it can take several minutes to complete processing if
the DataSource has tens of thousands of bars. This is not an error!

11.4 Using PerfScripts

The controls for using PerfScripts are located at the top of the Performance View in the
$imulator and ChartScript Windows. The selections are independent between tools,
and the last configuration in both is maintained for the next use.

Use a PerfScript

Check this option if you want to enable the use of the PerfScript selected in the drop
down control immediately to the right. When selected, Wealth-Lab's usual
performance reporting is disabled.

AutoRun PerfScript Applies to: ChartScript Window

With "Use a PerfScript" selected, you can choose whether or not it is executed
automatically (ChartScript Window only). When this option is not checked, the

108

© 2003-2006 WL Systems, Inc.

109 WealthScript Language Guide, Wealth-Lab Developer 4.0

Performance report will remain blank until you click the PerfScript icon to run it on
demand.

ChartScript Window PerfScript Control.
Click the icon to execute a PerfScript manually.

Tip: If you do not regularly look at the Performance Report, deselect "AutoRun
PerfScripts" to optimize resources - especially when trading using Real-Time
ChartScript Windows.

Usage Notes

Unless you need to calculate a metric that is not already included in the standard
Wealth-Lab Performance Reports, there is no reason to even use PerfScripts. Due to
the scripting "speed penalty", a sample PerfScript will take one to two orders longer to
generate the same result as with the equivalent compiled code. Largely for this
reason, you can uncheck AutoRun PerfScript so that you are not unnecessarily utilizing
computer resources at times during system development and debugging when you're
not likely to even look at the Performance View.

The "Script Timeout value" in Options | System Settings | General Settings does
not pertain to PerfScripts. Consequently, you should give ample time for a PerfScript
to complete its processing.

Warning! PerfScripts might take a long time (possibly several minutes) to
compute on very large data sets.

SimuScripts

© 2003-2006 WL Systems, Inc.

110

12 SimuScripts

12.1 Overview

When you think "SimuScript", think "Position Sizing". Although Wealth-Lab Developer
4.0 provides four of the most popular position sizing methods for Portfolio $imulations
(Fixed Dollar/Margin, Fixed Share/Contract, Percent of Equity, and Maximum Risk
Percent) you may have other ideas of how you would like to size your positions.

SimuScripts are an advanced feature of Wealth-Lab Developer 4.0 that let you
experiment with your very own position-sizing rules in the $imulator as well as in the
ChartScript, Rankings, and Scans tools when Portfolio Simulation mode is selected. A

SimuScript is a special type of ChartScript that must be stored in the SimuScripts
ChartScript folder.

SimuScript Function Notes
Only a subset of WealthScript functions are eligible for use in SimuScripts.
However, SimuScripts have a special constant and dedicated functions that make
it easy to write simple or complex algorithms to determine sizing for new
positions.

How do SimuScripts Work?
The final result of a SimuScript will set the position size using one of three special
SimuScript functions, which can size a position by percent of equity, fixed cash
value, or by a specific number of shares.

Creating a SimuScript
In reality, a SimuScript is used like a procedure that is called each time your
trading rules take a new position. If writing trading rules for ChartScripts is easy,
then SimuScripts are almost child's play. A SimuScript can be as simple as one
line of code!

Testing a SimuScript
Coding a SimuScript is arguably more simple than writing a ChartScript. Knowing
a few more details about testing SimuScripts can make testing and debugging
them simpler too.

Learn more about SimuScripts

A great way to learn more about SimuScripts is to review the SimuScript entries in the
Function QuickRef. Each entry has a complete SimuScript example that will give you
plenty of ideas. For a list of functions that are available see the SimuScript Functions
topic in the WealthScript Function Reference .

12.2 SimuScript Function Notes

SimuScripts support a subset of WealthScript functions, and include a collection of
functions specific to position sizing. These include functions that return Portfolio
Equity, Cash, DrawDown and many other values that may be useful in determining a
position size. Availability of WealthScript functions for use in SimuScripts to include

110

112

112

114

5

© 2003-2006 WL Systems, Inc.

111 WealthScript Language Guide, Wealth-Lab Developer 4.0

the following categories of functions:

· Math Functions
· String Functions
· SimuScript-Specific Functions
· Data Access
· Date/Time
· File Access
· Indicators
· Position Management
· Price Series

Consequently, the following categories of functions cannot be used for SimuScripts:

· Alerts
· Cosmetic Charts
· System
· Time Frame
· Trading System
· PerfScripts
· CommissionScripts

SimuScript Use of BarCount

Generally speaking, SimuScript-specific functions that have WealthScript counterparts
retain the same meaning when used in SimuScripts or in ChartScripts (e.g.,
PositionLong, PositionShort, etc.).

An exception worth noting is the slightly different meaning of the BarCount function

when used in a SimuScript. While in a ChartScript BarCount returns the total

number of bars in the chart, in a SimuScript the function returns the total number of
bars processed at the time the SimuScript is executed. To return the current Bar
Number on which the Position is being processed, use BarCount - 1 just as you do

in ChartScripts.

The #Current Constant

In more complex SimuScripts you may want to retrieve data that are specific to the
Position being processed. For example, you may have stored the value of an RSI
indicator at the bar on which you entered the Position in your ChartScript using the
SetPositionData function. In your SimuScript, you can access this data using the

GetPositionData SimuScript function. You may then decide to take additional

shares for more oversold values of RSI, for instance.

To recall the Position data that was stored for the Position currently being processed
by the SimuScript, you pass the constant #Current to the GetPositionData
function. In a similar way, you can use this constant for any variety of SimuScript
functions that require a Position number as an argument.

Example

{ Risk half as many shares for short positions.
 Note: this is a complete SimuScript! }
if PositionShort(#Current) then
 SetPositionSizeShares(100)
else

SimuScripts

© 2003-2006 WL Systems, Inc.

112

 SetPositionSizeShares(200);

12.3 How do SimuScripts Work?

Position sizing, no matter how simple, is an integral part of any trading system. If
you do not wish to use one of the four position-sizing options offered by the Portfolio
$imulator, you have the option to create a SimuScript to size your positions.

Select a specific SimuScript to use in the Portfolio $imulation control, which is a
common control in both the $imulator and ChartScript windows. The selected
SimuScript will be executed once for each trade generated during a $imulation. You
do not have to make a specific reference to a SimuScript in your ChartScript code.
Wealth-Lab Developer 4.0 automatically executes the SimuScript whenever a "BuyAt"
or "ShortAt" WealthScript function results in processing a new Position.

The goal of the SimuScript is to assign a position size to the current Position. The
SimuScript does this by calling one of three functions during its execution:

SetPositionSizeFixed(CashValue);
 Instructs the Portfolio $imulator to assign a fixed CashValue to a position. To
eliminate a Position entirely, use this function by passing a zero value for
CashValue.

SetPositionSizePct(PercentOfEquity);
 Instructs the Portfolio $imulator to assign a percentage of total portfolio Equity to
a position. To eliminate a Position entirely, use this function by passing a zero
value for PercentOfEquity.

SetPositionSizeShares(NumberOfShares);
 Instructs the Portfolio $imulator to assign a fixed number of shares to a position.
To eliminate a Position entirely, use this function by passing a zero value for
NumberOfShares.

Note: If your portfolio does not contain sufficient funds to acquire the full size of
the position, the trade will not be placed. Your SimuScript can test for
existing cash using the Cash function and reduce the position size, if

desired, prior to calling one of the SetPositionSize functions.

The main thing to keep in mind when writing a SimuScript is that the script is
processing only a single Position. The Portfolio $imulator calls the script one time
for each Position that it needs to process.

12.4 Creating a SimuScript

You begin writing a SimuScript just as you would a normal ChartScript - starting with
a New ChartScript Window. It's likely that you'll want to start fresh, so delete the
template code in the ChartScript Editor if necessary. Only your position-sizing
requirements and imagination can tell you how to proceed from this point. Your final
SimuScript may be as simple as a single statement or even more complex than the
ChartScript that will eventually use it!

Here we provide an example of a typical SimuScript with medium complexity. It

© 2003-2006 WL Systems, Inc.

113 WealthScript Language Guide, Wealth-Lab Developer 4.0

provides the same function as the Portfolio $imulator's Maximum Risk Percent
position-sizing model with an extra twist. It dynamically adjusts the percentage of
risk based on the changing equity of a portfolio during a $imulation. As equity grows,
the SimuScript increases the percent of the equity risked on each trade, and vice
versa. You can adjust the settings to your tastes by modifying the constant values
and saving the script. Remember, all SimuScripts must be saved in the SimuScripts
folder.

Example

{ SimuScript for increasing Percent Risk with growing Equity }
var fPctRisk, fEquity, CashSize: float;
var fStop, fBasis: float;
var Factor, FinalSize: integer;

{ These settings will increase the Risk by 0.2% for every $10,000 of
 equity growth }
const IncreaseRisk = 10000;
const RiskIncrement = 0.002;
const MinRiskCash = 75000;
const MinRisk = 0.005; // Risk at least 0.5% on each trade
const MaxRisk = 0.06; // Don't risk more than 6% on a single trade

{ Store values in variables for easy reference }
fEquity := Equity(BarCount - 1);
fStop := GetPositionRiskStop(#Current);
fBasis := PositionBasisPrice(#Current);

if fEquity < MinRiskCash then
 fPctRisk := MinRisk
else
begin
 Factor := (fEquity - MinRiskCash) Div IncreaseRisk;
 fPctRisk := MinRisk + (RiskIncrement * Factor);
 if fPctRisk > MaxRisk then
 fPctRisk := MaxRisk;
end;

{ Calculate the size in shares, and then in cash }
FinalSize := Trunc((fEquity * fPctRisk) / Abs(fBasis - fStop));
CashSize := FinalSize * fBasis;

{ If the position size is greater than the account equity,
 allow the trade to take place if fully in cash }
if CashSize > fEquity then
 FinalSize := Trunc(fEquity / fBasis);

SetPositionSizeShares(FinalSize);

Note the use of the function GetPositionRiskStop to retrieve the value of your

stop level. To properly employ this SimuScript, you must use
SetPositionStopLevel in your ChartScript code. Pass the price level of the initial

stop immediately before entering a trade to this function. Only then can the
SimuScript determine risk percentage with respect to your portfolio's equity level.
See its QuickRef description for an example.

Note: SetPositionStopLevel supersedes SetPositionRiskStop.

Using this SimuScript on a winning system with Starting Capital of say, $500,000, will
yield the same results as the Portfolio $imulator's Maximum Risk Percent with a 6%
setting. With a losing system, this SimuScript could save you money!

SimuScripts

© 2003-2006 WL Systems, Inc.

114

See Also: Only One Trade per Symbol from the Wealth-Lab on-line articles
archives.

12.5 Testing a SimuScript

Since SimuScripts only size positions and do not contain trading rules, it's not possible
to know that they will function correctly by running the script by itself. They must be
used in a Portfolio Simulation environment.

Guidelines to test and troubleshoot SimuScripts

1. Start by executing the SimuScript by itself. Although it's not likely that you can
determine if the SimuScript sizing method functions in the manner in which you
had intended, running the script gives you an opportunity to correct syntax errors.

Note: If using the #Current constant to refer to the current position being
processed, you can expect the error, List Index Out of Bounds (-1). At
this point, the general syntax of the SimuScript is correct and you may
proceed with system testing.

2. When your SimuScript's general syntax is correct, you're ready to test the
SimuScript in the $imulator or from another ChartScript using the common
Position Sizing control in Portfolio Simulation mode as shown below.

Note: All functions are not equally available for SimuScripting in the
ChartScript window as in the $imulator. Refer to the WealthScript
Function Reference or QuickRef for information on specific functions if
in doubt.

Choosing a SimuScript for Portfolio Simulation mode in the ChartScript window.

3. Use the $imulator or a ChartScript to build confidence that your SimuScript is
functioning properly by initially testing one symbol only. After running the
$imulation, you can easily check to see if the first several trades are correctly
sized by inspecting the Trades view.

5

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11

© 2003-2006 WL Systems, Inc.

115 WealthScript Language Guide, Wealth-Lab Developer 4.0

4. If errors occur during a $imulation, the Errors view will be shown automatically.
Also, you'll likely see the message, "No Trades were generated by this $imulation
run". Check the Errors view for detailed information.

12.6 SimuScript FAQs

Can I use SimuScripts in the ChartScript Window?

Yes, however you cannot use a SimuScript that accesses Position data using
GetPositionData from the ChartScript Window. See the description for
SetPositionData for more information. If you need to pass Position data to a
SimuScript in any tool other than the $imulator, use SetGlobal/GetGlobal, or
alternatively make use of the SignalName parameter of the BuyAt or ShortAt entry
signals. In the latter case, retrieve the data with PositionSignalName.

Is it possible to use #OptVars in SimuScripts?

Not directly. Instead, you could write the current value of an #OptVar into global
memory via SetGlobal at the start of ChartScript processing and retrieve the value
in your SimuScript with GetGlobal.

I want to size differently according to the symbol. How?

Use PositionSymbol to test the #Current symbol. A Case statement is ideal here
so that you can easily add different symbols to test.

Example

{* SimuScript *}
var sizeEqPct: float;

{ Assign sizing according to symbol }
case PositionSymbol(#Current) of
 'GOOG':
 sizeEqPct := 8.0;
 'AAPL', 'MFST', 'INTC':
 sizeEqPct := 6.5;
 else
 sizeEqPct := 5.0; // 5% for any other symbol
end;
SetPositionSizePct(sizeEqPct);

How can I limit one Position per symbol?

Generally, ChartScripts are written to manage single Positions. But you may be
dealing with a multi-Position script and want to analyze its return using a one-
position-per-symbol strategy. A SimuScript would first need to determine if any
active Position has the same symbol as the Positions currently being sized, and the
solution is presented in the Knowledge Base:
Allowing only one Trade per Symbol in the $imulator.

I only want to allow 3 new entries per day. How?

30

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11

SimuScripts

© 2003-2006 WL Systems, Inc.

116

Please see the Max Entries per Day SimuScript in the Wealth-Lab Code Library.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/libraryview?item=239
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

© 2003-2006 WL Systems, Inc.

117 WealthScript Language Guide, Wealth-Lab Developer 4.0

13 Objects

13.1 Overview

WealthScript is a fully object-oriented scripting language, and support creation of
classes, inheritance, and polymorphism. An Object is a type of variable that
contains both data items and the functions and procedures (referred to collectively as
methods) required to operate on the data.

To be sure, object-oriented programming (OOP) is not a trivial topic to grasp for
novice programmers. Although the re-useable quality of objects make some tasks
simple to accomplish, these techniques are not necessary to get a lot of mileage out of
Wealth-Lab Developer 4.0. For those just becoming familiar with WealthScript and
who are unfamiliar with OOP, mastering the use of the programming techniques
described in the previous sections will provide you with plenty of capability in
designing robust trading systems.

If you're already familiar with OOP, the topics in this chapter will introduce you to the
proper WealthScript syntax to design, create, and destroy your objects. Visual Basic
programmers familiar with OOP will discover the explicit object-declaration section
that is hidden from them when creating their class objects, but otherwise the
transition to using WealthScript objects should be quick. Please note that it is not our
intention to teach OOP as many other in-depth resources are available on the subject.

Object Type Declarations
Generally speaking, objects, types, and classes are synonyms in programming
terminology. A good part of the work in creating an object is declaring its parts.

Providing Access via Properties
Properties are those parts of which an object consists. Just as a car may be
painted red, have a moon roof, and travel at 200 kph, an object has properties
that define it. Depending on the manner in which you declare an object's
properties, you can access or even change their values - just like you can change
the color of a red car to blue.

Creating and Using Instances of a Type
Unlike red cars with moon roofs, it doesn't cost so much to create new objects.
However, objects use memory and computer resources, consequently when they
have served their purpose it's best to destroy them.

Putting it all Together
The complete script for the TProfitTracker is presented here with test code to put
the object through its paces. Later, you can save the TProfitTracker object in the
"Studies" folder and use it in any ChartScript that you wish by including it with the
Include Manager.

Inheritance
You can create an object that descends from another one. The new object will
inherit all of the variables, functions, procedures, and properties defined in the
ancestor.

Polymorphism
You can create functions and procedures in a type that can change their behavior
in descendant types. In object-oriented programming this type of feature is
known as polymorphism.

118

119

121

122

123

125

Objects

© 2003-2006 WL Systems, Inc.

118

The TList Object
Arrays are indispensable in programming, however, they may not always be the
best choice for storing values of related items. The TList object is great when you
don't know how many items you will be needing beforehand, therefore you may
add to it, and remove from it, as you please. It's convenient since it takes care of
all the "dimensioning" for you. Additionally, the TList has other properties and
methods that would be very tedious to manage with plain vanilla arrays, and for
this reason the TList is a good introduction to using objects - appropriate for even
beginners!

13.2 Object Type Declarations

The Type Statement

You use the type statement to define a new type of Object. You can then create one

or more instances of the object later in your code. The type statement contains three

sections in which you can declare variables and functions/procedures.

private
Items declared in this section are available only to the Object's own functions or
procedures.

protected
Items declared here are also available to Objects that are inherited from this Object.

public
Items declared in the public section are available anywhere.

Example

{ This is the skeleton for creating a new type of object
 When creating a new class, replace TMyObject with your class name }
type TMyObject = class
private
protected
public
end;

Variables in a Type

You can declare variables in any of the three sections in your type. Going forward our
example will revolve around a new Object type that will know how to calculate and
deliver information on the average profit generated per trade from your trading
system.

Example

type TProfitTracker = class
private
 AvgProfit: integer;
protected
public
end;

Our new Object type, TProfitTracker, now contains one integer variable, AvgProfit.
Notice that when you declare variables in any of the three sections of the type you

126

© 2003-2006 WL Systems, Inc.

119 WealthScript Language Guide, Wealth-Lab Developer 4.0

don't use the var statement.

Methods in a Type

Each of the three sections in a type can also contain functions or procedures, referred
collectively as object methods. You declare the functions or procedures normally,
then provide the implementation after the type declaration itself. Below we add a
single new procedure to our type.

Note that the function is declared in the public section, and it is implemented after the
end of the type statement. The syntax TProfitTracker.Execute lets WealthScript know

that you're implementing the Execute procedure of the TProfitTracker type.

Also notice that the Execute procedure creates a new Price Series using
CreateSeries (see Creating Your Own Price Series) and assigns it to the private

variable "AvgProfit".

Example

type TProfitTracker = class
private
 AvgProfit: integer;
protected
public
 procedure Execute;
end;

procedure TProfitTracker.Execute;
var
 Bar, count, p: integer;
 profit: float;
begin
 AvgProfit := CreateSeries;
 for Bar := 0 to BarCount - 1 do
 begin
 count := 0;
 profit := 0;
 for p := 0 to PositionCount - 1 do
 begin
 if PositionExitBar(p) <= Bar then
 begin
 Inc(count);
 profit := profit + PositionProfit(p);
 end;
 end;
 if count > 0 then
 SetSeriesValue(Bar, AvgProfit, profit / count);
 end;
end;

13.3 Providing Access via Properties

What are Properties?

Properties are a special feature of objects. A property can provide read-only or read-
write access to data within its Object. You declare a property in any of the three type

54

Objects

© 2003-2006 WL Systems, Inc.

120

sections (although it usually makes the most sense to declare them in the public
section).

A property can be given a read accessor that specifies a function or variable to use
to obtain the property's value. It can also be given a write accessor to specify a
procedure to use for storing the property's value.

If a read accessor function is declared for a property, then whenever the property is
referenced in code, the value is obtained by executing the read accessor function (or
grabbing the value from the variable). Similarly, if a write accessor procedure is
declared for a property, whenever the property is assigned a value, the value is
passed through the write accessor procedure.

Our TProfitTracker creates a new Price Series, but stores it in a private variable. We
can provide read-only access to this variable by creating a property that returns the
value from the variable. Then, anyone using this object will be able to access the
AvgProfit Price Series but will not be able to modify it.

Example

type TProfitTracker = class
private
 AvgProfit: integer;
protected
public
 procedure Execute;
 property AvgProfitSeries: integer read AvgProfit;
end;

Declaring Accessor Methods

The following sample creates a new type called TSample. TSample contains a single
integer property, "Sample", with a read and write accessor methods. It also contains
a private integer variable called "FSample" that stores that property value internally.
This variable is often called the "Field variable" and is conventionally named the same
as the property but preceded by an "F". The read accessor method simply returns the
value from the FSample variable. Note that we could have eliminated the read
accessor method in this case and replaced it with the variable itself as follows:

property Sample: integer read FSample write SetSample;

The write accessor, however, performs some special processing on the incoming
value. It restricts the value to be within the range of 0 to 100 before assigning it to
the underlying FSample variable.

type TSample = class
private
 FSample: integer;
 function GetSample: integer;
 procedure SetSample(n: integer);
protected
public
 property Sample: integer read GetSample write SetSample;
end;

function TSample.GetSample: integer;
begin
 Result := FSample;
end;

© 2003-2006 WL Systems, Inc.

121 WealthScript Language Guide, Wealth-Lab Developer 4.0

procedure TSample.SetSample(n: integer);
begin
 FSample := n;
 if FSample > 100 then
 FSample := 100;
 if FSample < 0 then
 FSample := 0;
end;

13.4 Creating and Using Instances of a Type

Creating an Object Instance

Now that we know how to declare types of Objects, we need to learn how to create
instances of these types. You can create one or more instances of a type in your
WealthScript code. Each instance maintains its own internal copy of any data
elements declared within the type.

To create an instance of an Object you must first declare a variable to store the
instance using a standard var statement. You can then create the instance of the
Object using a new type of statement called the constructor. The constructor is
simply the name of the type followed by a ".Create".

Example

var AProfitTracker: TProfitTracker;
AProfitTracker := TProfitTracker.Create;

Note that we first declared a variable of the type "TProfitTracker". We then assigned a
value to the variable using the new constructor style statement.

If required, you can take advantage of the Create constructor method to initialize your
object. The way to do it is to create your own Create constructor. The code you put
in the constructor's method will be called whenever an instance of the class is created.
The TProfitTracker class does not require a special initialization method, but we
include the following example for completeness.

Example

type MyClass = class
 constructor Create;
end;

constructor MyClass.Create;
begin
 ShowMessage('Instance Created');
end;

var Instance: MyClass;
Instance := MyClass.Create;

Freeing Instances

In Wealth-Lab Developer 4.0, WealthScript employs the programming concept of a
garbage collection to clean up objects that are no longer being accessed. Destructors

Objects

© 2003-2006 WL Systems, Inc.

122

need not be used and objects are freed automatically when they are no longer
referenced, or at the end of a script. Consequently, there is no need to explicitly free,
or destroy, object instances that you create.

Note: In previous versions of Wealth-Lab you were responsible for destroying object
instances by calling their Free method. The Free method is no longer
required, and you should remove calls to the Free method in your scripts.

Accessing Properties of Objects

Once you have one or more instances of your Object created, you can access their
properties. Use the "Variable.Property" dot-style notation to access an object's
properties.

Example

{ Access the Average Profit Series }
var n: integer;
n := AProfitTracker.AvgProfitSeries;

{ This will trigger an error, since we didn't define a write accessor
for the property }
AProfitSeries := 0;

Executing Methods of an Object

Use the same dot-style notation to execute any functions or procedures defined within
an Objects's type.

Example

{ Tell the object to do its thing }
AProfitTracker.Execute;

13.5 Putting it all Together

Below is the complete script for the TProfitTracker, and some test code to put the
Object through its paces. Note that we've made the TProfitTracker more intelligent.
The Object now tracks whether or not the average profit per trade Price Series was
constructed using a private boolean variable "bExecuted". It then uses the read
accessor method to construct the Price Series by calling the Execute method if
required.

Example

type TProfitTracker = class
private
 FAvgProfitSeries: integer;
 bExecuted: boolean;
protected
 function GetAvgProfit: integer;
public
 procedure Execute;
 property AvgProfitSeries: integer read GetAvgProfit;

© 2003-2006 WL Systems, Inc.

123 WealthScript Language Guide, Wealth-Lab Developer 4.0

end;

function TProfitTracker.GetAvgProfit: integer;
begin
 if not bExecuted then
 Execute;
 Result := FAvgProfitSeries;
end;

procedure TProfitTracker.Execute;
var
 Bar, count, p: integer;
 profit: float;
begin
 bExecuted := true;
 FAvgProfitSeries := CreateSeries;
 for Bar := 0 to BarCount - 1 do
 begin
 count := 0;
 profit := 0;
 for p := 0 to PositionCount - 1 do
 begin
 if PositionExitBar(p) <= Bar then
 begin
 Inc(count);

 profit := profit + PositionProfit(p);
 end;
 end;
 if count > 0 then
 SetSeriesValue(Bar, FAvgProfitSeries, profit / count);
 end;
end;

{ A simple channel breakout system to test the object }
var Bar: integer;
for Bar := 4 to BarCount - 1 do
begin
 if LastPositionActive then
 SellAtStop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
 else
 BuyAtStop(Bar + 1, Highest(Bar, #High, 3), '');
end;

{ Use the TProfitTracker object now }
var AProfitTracker: TProfitTracker;
var AvgProfitPane: integer;
AProfitTracker := TProfitTracker.Create;
AvgProfitPane := CreatePane(100, true, true);
SetPaneMinMax(AvgProfitPane, 0, 0);
PlotSeries(AProfitTracker.AvgProfitSeries, AvgProfitPane, #Green,
#ThickHist);

13.6 Inheritance

Deriving One Type from Another

You can create an object that descends from another one. The new object will inherit

Objects

© 2003-2006 WL Systems, Inc.

124

all of the variables, functions, procedures, and properties defined in the ancestor. The
new object will be able to access all of the items declared in the protected or public
section of the ancestor, but not from the private section.

To specify that a type is derived from a parent, place the type of the ancestor in
parenthesis after the type name in the type statement:

Example

type Ancestor = class
private
protected
public
end;

type TDescendant = class(TAncestor)
private
protected
public
end;

TObject Type

Actually, all types ultimately descend from a base type called TObject. TObject
provides the default constructor and destructor. The system assumes that new types
are derived from TObject even when no ancestor type is provided.

Example

{ The following 2 type statements are identical }
type TMyType = class
private
protected
public
end;

type TMyType = class(TObject)
private
protected
public
end;

Descendant Types Can Access Protected Items

You can access variables, functions and procedures that were declared in the
protected section of an ancestor type from within the functions and procedures of the
derived type.

Example

type TMyType = class
private
 var1: integer;
protected
 var2: integer;
public
 var3: integer;
end;

© 2003-2006 WL Systems, Inc.

125 WealthScript Language Guide, Wealth-Lab Developer 4.0

type TMyType2 = class(TMyType)
private
protected
public
 function GetResult: integer;
end;

function TMyType2.GetResult: integer;
begin
 Result := var3; {Public ... this is legal}
 Result := var2; {Protected ... this is legal}
 Result := var1; {Private ... NOT ACCESSABLE}
end;

13.7 Polymorphism

Polymorphic Methods

You can create functions and procedures in a type that can change their behavior in
descendant types. In object-oriented programming this type of feature is known as
polymorphism. To flag a function or procedure as being polymorphic, add the
keyword virtual after the declaration. Then, in your derived class, re-declare the

function or procedure with the override keyword.

In this example we create a type that returns the average price at any given bar by
adding the high and low and dividing by two. We then created an inherited type that
changes the implementation of the function by factoring closing price into the
calculation. The code at the bottom of the script illustrates the polymorphic behavior.
We declare a variable of the type of the ancestor type (often called the base class),
but use the constructor of the descendant type when creating the instance of the
object. So, even though the object is stored in a variable type of the ancestor, it uses
the descendant's function implementation when calculating the average price.

Example

type TAverager1 = class
private
protected
public
 function GetAvg(Bar: integer): float; virtual;
end;

type TAverager2 = class(TAverager1)
private
protected
public
 function GetAvg(Bar: integer): float; override;
end;

function TAverager1.GetAvg(Bar: integer): float;
begin
 Result := (PriceHigh(Bar) + PriceLow(Bar)) / 2;
end;

function TAverager2.GetAvg(Bar: integer): float;
begin
 Result := (PriceHigh(Bar) + PriceLow(Bar) + PriceClose(Bar))

Objects

© 2003-2006 WL Systems, Inc.

126

/ 3;
end;

var Avg: TAverager1;
Avg := TAverager2.Create;

Print(FloatToStr(Avg.GetAvg(0)));

Accessing the Inherited Behavior

Your polymorphic procedures and functions can access the behavior of the ancestor by
using the inherited keyword. Here we change the implementation of the GetAvg

function of the descendant class to access and then modify the result from the
ancestor's function.

Example

function TAverager2.GetAvg(Bar: integer): float;
begin
 Result := inherited GetAvg(Bar);
 Result := (Result + PriceClose(Bar)) / 2;
end;

13.8 The TList Object

13.8.1 Overview

The TList class provides a list object. You can add and remove items to the list, as
well as sort the items. You can access the items in the list by index number. The first
item in the list is index zero, and the last item is index Count - 1.

A TList is great when you don't know how many items you will be needing beforehand,
therefore you may add to it and remove from it as you please. It's convenient since it
takes care of all the "dimensioning" for you. However, with these advantages, you
will pay a small performance penalty in speed when compared to accessing an
array .

TList stores data items as Variants , which is a special data type that can be used to
store any other basic type, such as string or float. Consequently, items retrieved

using the Item and Data methods from the TList are of type variant. You can also use
the TList to store a collection of object types using the AddObject method. To retrieve
the instance of an object, use the Object method.

The TList object is not available for use in SimuScripts.

The following example, which stores all of the closing values in the chart into a TList
object, demonstrates the use of many of the TList methods. In the example, the TList
object sorts its members, and finally, the sorted closing values are written to the
Debug Window by iterating through the list.

Example

{ Declare Variables }
var Bar: integer;
var lst: TList;

45

11

© 2003-2006 WL Systems, Inc.

127 WealthScript Language Guide, Wealth-Lab Developer 4.0

var f: float;

{ Create an instance of a TList }
lst := TList.Create;

{ Fill the TList with Closing Values of the Chart }
for Bar := 0 to BarCount - 1 do
begin
 f := PriceClose(Bar);
 lst.Add(f);
end;
{ Sort the values }
lst.SortNumeric;

{ Print the sorted values to the Debug Window
 Note: here, lst.Count is equal to BarCount }
for Bar := 0 to lst.Count - 1 do
begin
 f := lst.Item(Bar);
 Print(FormatFloat('#,###.00', f));
end;

You can also pass a TList to a procedure. When doing this, the TList object is passed
by reference to the procedure. This means that any changes (Add, Delete, Clear, etc.)
made to the the TList in the procedure will also effect the TList object in the calling
procedure as demonstrated in the next example.

Example

function MySum(aTL: TList): integer;
var n: integer;
begin
 Result := 0;
 for n := 0 to aTL.Count - 1 do
 Result := Result + aTL.Item(n);
{ Delete the last item in the TList }
 aTL.Delete(aTL.Count - 1);
end;

var lst: TList;
var isum: integer;

{ Program execution begins here }
lst := TList.Create;
lst.Add(3);
lst.Add(5);
lst.Add(8);
lst.Add(13);

isum := MySum(lst);
ShowMessage('The sum of the TList is ' + IntToStr(isum));
ShowMessage('The list now has ' + IntToStr(lst.Count) + ' items');

13.8.2 TList Functions

13.8.2.1 Add

The Add method returns an integer index of the added Value.

Objects

© 2003-2006 WL Systems, Inc.

128

Syntax

object.Add(Value);

Item Description

object An object expression of type TList.

Value Variant. A variable or expression of any of the primitive
data types .

Remarks

· Adds the specified item, Value, to the list.
· Returns the index number of the added Value. The Add method returns the index 0

for the first item added to a TList.
· Use the Item method with the integer index returned by the Add method to

retrieve a Value in a TList.
· If the Delete , SortNumeric , or SortString methods are used after adding an

item to a TList, it's likely that the index of the item returned by the Add will change.

Note:

You may implement this method as shown in the The TList Object example , or
alternatively by assigning the function to an integer variable.

FAQ: How can I add a record type to a TList?

You cannot add a record to a list, but you can add an object, which can contain
different data elements just like a record type. For more information, see the
AddObject method of a TList.

13.8.2.2 AddData

The AddData method returns an integer index of the added Value and associated
Data.

Syntax

object.AddData(Value, Data);

Item Description

object An object expression of type TList

Value Variant. A variable or expression of any of the primitive
data types .

Data Variant. A variable or expression of any of the primitive
data types .

Remarks

· Returns the index number of the added Value.
· Adds the specified item, Value, to the list along with additional Data.
· Use the Item method with the integer index returned by the AddData method to

11

131

136 137 137

126

12

129

11

11

131

© 2003-2006 WL Systems, Inc.

129 WealthScript Language Guide, Wealth-Lab Developer 4.0

retrieve a Value in the TList.
· Access the Data at a later time using the Data method with the integer index

returned by the AddData method.
· If the Delete , SortNumeric , or SortString methods are used after adding an

item to a TList, it's likely that the index of the item returned by the AddData will
change.

Tip:

You can easily store more than one value in either the Value or Data fields by using
a delimited string variable or expression as shown in the example below. Later, you
must parse the string to retrieve the individual values.

This example demonstrates how to stores a TList of 8% peaks containing the peak
value as well as its date and bar number, which are stored as Data in the form of a
comma delimited string.

Example:

var lst: TList;
var Bar, PkSe, i, dte: integer;
var f, fP: float;

lst := TList.Create;

{ Obtain a series of 8% Peaks and plot them on the chart }
PkSe := PeakSeries(#High, 8);
PlotSeries(PkSe, 0, #Red, #Dots);

f := 0.0;
for Bar := 1 to BarCount - 1 do
begin
 { if a new peak is detected, add it to the list with its date value }
 dte := GetDate(Bar);
 fP := @PkSe[Bar];
 if f <> fP then begin
 lst.AddData(fP, IntToStr(dte) + ',' + IntToStr(Bar));
 f := fP;
 end;
end;

{ Print the peak number, peak value, date, and bar
 to the debug window }
for i := 0 to lst.Count - 1 do
 Print('Peak #' + IntToStr(i + 1) + ': ' +
 Chr(9) + FormatFloat('#.00', lst.Item(i)) +
 Chr(9) + lst.Data(i));

See Also:

Item Method , Data Method , Peak Indictor, Plot Series

13.8.2.3 AddObject

The AddObject method returns an integer index of the added Value and associated
instance of Object.

Syntax

obj.AddObject(Value, Object);

131

136 137 137

131 131

Objects

© 2003-2006 WL Systems, Inc.

130

Item Description

obj An object expression of type TList

Value Variant. A variable or expression of any data type or an
instance of an object.

Object TObject. An instance of an Object type to store in the TList.

Remarks

· Returns the index number of the added Value.
· Adds the specified item, Value, to the list along with the specified instance of

Object.
· Use the Item method to retrieve the Values of the TList.
· Access the Object at a later time using the Object method with the integer index

returned by the AddObject method.

Typical usage

See Object method example

13.8.2.4 Count

The Count method returns an integer of the number of items held in the list.

Syntax

object.Count();

Item Description

object An object expression of type TList

Remarks

· Returns the the total number items that a currently held in the TList specified by
object.

Typical usage

See The TList Object example

13.8.2.5 Create

The Create method returns an instance of a TList object

Syntax

TList.Create;

Remarks

· Creates an instance of a TList object.
· See this TList Object Example for typical usage.

118

131

134

134

126

126

© 2003-2006 WL Systems, Inc.

131 WealthScript Language Guide, Wealth-Lab Developer 4.0

13.8.2.6 Data

The Data method returns a variant data value that was stored in the list via
AddData .

Syntax

object.Data(Index);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the data
item in the TList.

Remarks

· Returns the data value that was stored in the list via AddData .
· The item is returned as a variant data type, but you can assign this to a variable of

the appropriate data type. For example, if the data were stored as 'AMGN', you
cannot assign this to an integer or float type. Rather, it should be assigned to a
string or another variant. On the other hand, if the data were stored as '34.22',
you may assign this to a variable of type float, string, or variant. In the last case,
you could also assign the variant type to an integer type (the variant number
would be rounded when assigned), but you must be careful when making such
assignments due to the possibility of an overflow.

Typical usage

See AddData example

13.8.2.7 Item

The Item method returns a variant value that was stored in the list as Value via
Add or AddData .

Syntax

object.Item(Index);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the TList
value.

Remarks

· Returns the value that was stored in the list via Add or AddData .
· The item is returned as a variant data type, but you can assign this to a variable of

the appropriate data type. For example, if the data were stored as 'AMGN', you
cannot assign this to an integer or float type. Rather, it should be assigned to a
string or another variant. On the other hand, if the data were stored as '34.22',
you may assign this to a variable of type float, string, or variant. In the last case,
you could also assign the variant type to an integer type (the variant number

128

128

128

127 128

127 128

Objects

© 2003-2006 WL Systems, Inc.

132

would be rounded when assigned), but you must be careful when making such
assignments due to the possibility of an overflow.

Typical usage

See The TList Object or AddData examples

13.8.2.8 IndexOf

The IndexOf method returns an integer value that is the index in the list for the item
specified in the Value parameter.

Syntax

object.IndexOf(Value);

Item Description

object An object expression of type TList.

Value Variant variable or expression identifying the value to be found
in the TList.

Remarks

· Returns the index value for the specified Value. Values are added to the TList via
the Add , AddData , or AddObject functions.

· The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

· If the specified Value could not be found in the list, the function returns -1.

Example

var lst: TList;
var n: integer;

{ Create TList }
lst := TList.Create;

{ Fill list with text strings }
lst.Add('Zero');
lst.Add('One');
lst.Add('Two');
lst.Add('Three');
lst.Add('Four');
lst.Add('Five');

{ Sort the list }
lst.SortString;

{ Find the index of the specified string, will be last in the list
after alpha sort }
n := lst.IndexOf('Zero');
ShowMessage(IntToStr(n));

13.8.2.9 IndexOfData

The IndexOfData method returns an integer value that is the index in the list for the

126 128

127 128 129

© 2003-2006 WL Systems, Inc.

133 WealthScript Language Guide, Wealth-Lab Developer 4.0

secondary data item specified in the Value parameter.

Syntax

object.IndexOfData(Value);

Item Description

object An object expression of type TList.

Value Variant variable or expression identifying the secondary data
value to be found in the TList.

Remarks

· Returns the index value for the specified secondary data Value. Secondary data
Values are added to the TList via the AddData function.

· The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

· If the specified secondary data Value could not be found in the list, the function
returns -1.

Example

var lst: TList;
var n: integer;

{ Create TList }
lst := TList.Create;

{ Fill with symbols and PE ratios }
lst.AddData(12.5, 'MSFT');
lst.AddData(17.6, 'GE');
lst.AddData(6.7, 'MCD');
lst.AddData(2.1, 'CSCO');
lst.AddData(8.4, 'SUNW');
lst.AddData(-12.7, 'AOL');

{ Find the PE for MSFT }
n := lst.IndexOfData('MSFT');
ShowMessage(FloatToStr(lst.Item(n)));

13.8.2.10 IndexOfObject

The IndexOfObject method returns an integer value that is the index in the list for
the object instance specified in the Value parameter.

Syntax

obj.IndexOfObject(Value);

Item Description

obj An object expression of type TList.

Value An instance of an object type to be found in the TList.

Remarks

128

118

Objects

© 2003-2006 WL Systems, Inc.

134

· Returns the index value for the specified object instance. Objects are added to the
TList via the AddObject function.

· The first item in the list has an index value of zero, and the last item has an index
value of obj.Count - 1.

· If the specified object instance could not be found in the list, the function returns -1.

Typical usage

See IndexOfData example

13.8.2.11 Object

The Object method returns the object instance that was previously added to a TList
by the AddObject method.

Syntax

obj.Object(Index);

Item Description

obj An object expression of type TList

Index Integer variable or expression identifying the index of the
TObject in the list.

Remarks

· When retrieving the TObject of Index from the TList, use the as operator to convert

the return value to its original class.

Example

type TMyObject = class(TObject)
private
protected
public
 procedure Shout;
end;

procedure TMyObject.Shout;
begin
 ShowMessage('Arrrggghhh!');
end;

var lst: TList;
var mo: TMyObject;
lst := TList.Create;
mo := TMyObject.Create;
lst.AddObject(123.45, mo);
mo := lst.Object(0) as TMyObject;
mo.Shout;

13.8.3 TList Procedures

13.8.3.1 ChangeItem

Syntax

129

132

129

© 2003-2006 WL Systems, Inc.

135 WealthScript Language Guide, Wealth-Lab Developer 4.0

object.ChangeItem(Index, Value);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the item
to change in the TList.

Value Variant variable or expression of the new Value to be stored in
the TList at Index.

Remarks

· Changes the initial value that was stored in the list via Add or AddData to a
new Value.

Note

The example demonstrates that ChangeItem operates on equally well on items
added through Add or AddData . You normally create TLists that are
collections of closely-related items, and therefore you should use either Add or
AddData throughout the TList. Otherwise, attempting to access non-existent
data could lead to unpredictable results.

Example

var lst: TList;
var i1, i2: integer;

lst := TList.Create;

i1 := lst.Add('SUNW');
i2 := lst.AddData('AMGN',9.15);
Print(lst.Item(i1));
Print(lst.Item(i2) + ', ' + FloatToStr(lst.Data(i2)));

{ Whoops, I meant CSCO! }
lst.ChangeItem(i1, 'CSCO');
lst.ChangeItem(i2, 'CSCO');
Print(lst.Item(i1));
Print(lst.Item(i2) + ', ' + FloatToStr(lst.Data(i2)));

lst.Free;

13.8.3.2 Clear

Syntax

object.Clear();

Item Description

object An object expression of type TList

Remarks

· Clears the contents of the list

127 128

127 128

127

128

Objects

© 2003-2006 WL Systems, Inc.

136

Note

If you attempt to access a non-existent TList item or data, immediately following the
Clear method for example, an out of bounds error will occur.

13.8.3.3 Delete

Syntax

object.Delete(Index);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the item
to delete in the TList.

Remarks

· Deletes the item in the list specified by Index.
· Following the Delete method, the indices of all TList items that appear after the

deleted item are decremented by one.

Example

var lst: TList;
var i: integer;
var symbol: string;

lst := TList.Create;

lst.Add('SUNW');
lst.Add('T');
lst.Add('BA');
lst.Add('MSFT');
lst.Add('GM');

{ Find 'BA' in the list and Delete it }
for i := 0 to lst.Count - 1 do
begin
 if lst.Item(i) = 'BA' then begin
 lst.Delete(i);
 break; // break out of loop
 end;
end;

{ Print the list in the debug window }
for i := 0 to lst.Count - 1 do
 print(lst.Item(i));

lst.Free;

13.8.3.4 Free

Syntax

object.Free;

© 2003-2006 WL Systems, Inc.

137 WealthScript Language Guide, Wealth-Lab Developer 4.0

Item Description

object An object expression of type TList.

Remarks

· Destroys the TList object to free resources previously allocated to the TList object.

· Due to the introduction of the garbage collection in Wealth-Lab Developer 4.0, it
is no longer necessary to explicitly destroy objects, such as TLists, through the use
of the Free method.

13.8.3.5 SortNumeric

Syntax

object.SortNumeric();

Item Description

object An object expression of type TList

Remarks

· Sorts the values in the list as numbers from least to greatest.
· You should ensure that integers or floats were added to the list, otherwise the

results could be unpredictable.

Example

{ create a list of ascending closing prices of the last 10 chart bars }
var lst: TList;
var Bar, n: integer;

lst := TList.Create;
for Bar := 0 to BarCount - 1 do
 lst.Add(PriceClose(Bar));

lst.SortNumeric;

Print('Ascending');
for n := 0 to lst.Count - 1 do
 Print(FormatFloat('#.00', lst.Item(n)));

Print('');
Print('Descending');
for n := lst.Count - 1 downto 0 do
 Print(FormatFloat('#.00', lst.Item(n)));

13.8.3.6 SortString

Syntax

object.SortString();

Item Description

121

Objects

© 2003-2006 WL Systems, Inc.

138

object An object expression of type TList

Remarks

· Sorts the values in the list as strings.
· The sort order is determined by a case-sensitive string comparison (binary compare)

of all items in the list, from least to greatest.

In the example, the string 'ba' will be sorted to the end of the list since lowercase
characters have greater ASCII codes than uppercase characters.

Example

var lst: TList;
var i: integer;
var symbol: string;

lst := TList.Create;

lst.Add('SUNW');
lst.Add('ba');
lst.Add('BA');
lst.Add('MSFT');
lst.Add('GM');

lst.SortString;

{ Print the list in the debug window }
for i := 0 to lst.Count - 1 do
 print(lst.Item(i));

lst.Free;

Index
- # -
#All constant 79

#AsDollar 76

#AsPercent 76

#AsPoint 76

#Average 50

#AverageC 50

#Bold 106

#Close 50

#Color 69

#ColorBkg 69

#Current constant 110

#Dots (dotted line style) 67

#Dotted (dotted line style) 67

#Equity 106

#High 50

#Histogram (histogram plot style) 67

#Italic 106

#Low 50

#Open 50

#Thick (thick line style) 67

#ThickHist (thick histogram plot style) 67

#Thin (thin line style) 67

#Volume 50

#WinLoss 106

- @ -
@ syntax 57

GetSeriesValue 57

SetSeriesValue 57

- A -
AnnotateBar 70

AnnotateChart 70

ApplyAutoStops 76

arrays 45

accessing 45

array 45

declaring 45

multi-dimensional 45

synchronized 45

AutoRun PerfScript 108

- B -
BarCount 54

Use in SimuScript 110

boolean 11

break 34

BuyAtClose 74

BuyAtLimit 75

BuyAtMarket 74

BuyAtStop 75

by reference 40

by value 40

- C -
casting 13

chart 64

painting 64

panes 65

plotting 64

ChartScript Editor 5

closing positions 79

CMDataSource 103

CMEntry 103

CMOrderType 103

CMPrice 103

CMResult 103

CMShares 103

CMSymbol 103

colors 69

specifying 69

COM Support 5

combining positions 79

comments 8

CommissionScript 103

CMDataSource 103

CMEntry 103

CMOrderType 103

CMPrice 103

CMResult 103

CMShares 103

CMSymbol 103

compatibility 103

variables 103

creating 104

testing 104

CommissionScripts Overview 103

constants 16

16

declaring 16

© 2003-2006 WL Systems, Inc.

139 WealthScript Language Guide, Wealth-Lab Developer 4.0

constants 16

pre-defined 16

constructor 121

CreatePane 65

- D -
datetime 11

declaring 14

delimiters 8

drawing 70

objects (programatically) 70

DrawLabel 70

DrawText 70

- E -
enumerated types 13

error 44

handling 44

exceptions 44

exit 43

- F -
FAQs 115

SimuScripts 115

float 11

for (looping statement) 32

Free 121

functions 35

arguments 40

calling 39

declaring 37

executing 39

parameters 40

syntax 37

- G -
garbage collection 121

GetSeriesValue 55

- H -
handle 51

HidePaneLines 65

- I -
indicator 96

custom 96

inheritance 123

InstallBreakEvenStop 76

InstallProfitTarget 76

InstallReverseBreakEvenStop 76

InstallStopLoss 76

InstallTimeBasedExit 76

InstallTrailingStop 76

instances of objects 121

integer 11

- K -
Knowledge Base 79

- L -
LastLongPositionActive 79

LastPosition 79

LastShortPositionActive 79

looping statements (summary) 32

- M -
Max Entries per Day 115

merging positions 79

- N -
New Indicator Wizard 96

- O -
object oriented programming 117

objects 117

accessing properties 121

constructor 121

creating 121

declaring 118

freeing 121

functions and procedures 118

inheritance 123

instances 121

methods 118

overview 117

© 2003-2006 WL Systems, Inc.

140Index

objects 117

polymorphism 125

properties 119

read accessor 119

variables 118

write accessor 119

OOP 117

operations 18

boolean 19

logical 21

mathematical 18

string 25

operator 18

and 21

div 18

modulo 18

not 25

or 22

standard 18

xor 24

assignment 14

orders 75

limit 75

market 74

market-on-close 74

selling short 77

stop 75

Overview 103

CommissionScripts 103

- P -
painting the chart 64

panes 65

creating 65

hide lines 65

hide volume 65

peeking 78

PerfScript 106

constants 106

creating 107

errors 107

functions 106

Overview 106

using 108

PlotSeries 67

PlotSymbol 68

PlotSyntheticSymbol 68

plotting 64

external symbols 68

indicators 67

objects (programatically) 70

style 67

synthetic symbols 68

polymorphism 125

position sizing 110

PositionActive 79

PositionCount 79

PositionEntryBar 79

PositionEntryPrice 79

PositionLong 79

positions 75

closing 75, 79

combining 79

merging 79

multiple 79

open 75

split 79

splitting 79

Price Series 48

accessing values 61

accessing values from 55

alignment 91

characteristics 48

constant handles 50

creating 54

expanding 91

external 61

functions that accept 52

handle 51

overview 48, 49

standard 50

synchronization 91

procedures 35

arguments 40

calling 39

declaring 36

executing 39

parameters 40

syntax 36

- R -
record types 12

recursion 37

recursive functions 37

reentrant functions 37

repeat (looping statement) 34

return values (functions) 37

© 2003-2006 WL Systems, Inc.

141 WealthScript Language Guide, Wealth-Lab Developer 4.0

- S -
Scale 65

scripting 72

main loop 73

overview 72

trading rules 72

SellAtClose 75

SellAtLimit 75

SellAtMarket 75

SellAtStop 75

semicolon 8

Series Math 59

answers 59

practice 58

SetAutoStopMode 76

SetDescription 96

SetSeriesBarColor 67

SetSeriesValue 55

SimuScript 110

#Current 110

BarCount 110

coding 112

creating 112

errors 114

Functions 110

how they work 112

testing 114

SimuScripts 110

FAQs 115

Overview 110

Portfolio $imulator 110

position sizing 110

slash 8

double 8

splitting positions 79

Stability of Indicators 73

state machines 13

statements 8, 26

break 34

case 30

conditional 26

for loop 32

if/then 26

if/then/else 26

repeat loop 34

while loop 33

stops 76

automated 76

string 11, 25

shorthand 25

Chr 25

comparison 25

style 67

syntax 7

@ symbol 57

- T -
TList 126

TList methods 126

Add 127

AddData 128

AddObject 129

ChangeItem 134

Clear 135

Count 130

Create 130

Data 131

Delete 136

Free 136

IndexOf 132

IndexOfData 132

IndexOfObject 133

Item 131

Object 134

SortNumeric 137

SortString 137

TProfitTracker 122

trading rules 72

implementation 78

looking ahead 78

- U -
Use a PerfScript 108

- V -
variables 9

assigning 14

data types 11

declaring 10

enumerated types 13

initializing 14

naming rules 10

record types 12

scope 42

variant 11

Volume 65

hide pane 65

© 2003-2006 WL Systems, Inc.

142Index

- W -
WealthScript 5

definition 5

AnnotateBar 70

AnnotateChart 70

ApplyAutoStops 76

BarCount 54

BuyAtClose 74

BuyAtLimit 75

BuyAtMarket 74

BuyAtStop 75

CreatePane 65

CreateSeries 54

DrawCircle 70

DrawCircle2 70

DrawEllipse 70

DrawLabel 70

DrawLine 70

DrawText 70

GetSeriesValue 55

HidePaneLines 65

InstallBreakEvenStop 76

InstallProfitTarget 76

InstallReverseBreakEvenStop 76

InstallStopLoss 76

InstallTimeBasedExit 76

InstallTrailingStop 76

LastLongPositionActive 79

LastPosition 79

LastShortPositionActive 79

PeakBar 70

PlotSeries 67

PlotSymbol 68

PlotSyntheticSymbol 68

PositionActive 79

PositionCount 79

PositionEntryBar 79

PositionEntryPrice 79

PositionLong 79

SellAtClose 75

SellAtLimit 75

SellAtMarket 75

SellAtStop 75

SetAutoStopMode 76

SetSeriesBarColor 67

SetSeriesValue 55

TroughBar 70

while (looping statement) 33

© 2003-2006 WL Systems, Inc.

143 WealthScript Language Guide, Wealth-Lab Developer 4.0

	Introduction
	WealthScript Language Syntax
	Overview
	Comments
	Statements and Delimiters
	Variables and Data Types
	Overview
	Declaring Variables
	Variable Naming Rules
	Data Types
	Record Types
	Enumerated Types

	Assignment Statements
	Constants
	Operations
	Overview
	Mathematical Operations
	Boolean Operations
	Logical Operations
	Summary
	And Operator
	Or Operator
	Xor Operator
	Not Operator

	String Operations

	Conditional Statements
	Case Statement
	Looping Statements
	Summary
	For Loop
	While Loop
	Repeat Loop
	Breaking Out of a Loop

	Functions and Procedures
	Overview
	Declaring Procedures
	Declaring Functions
	Calling Functions and Procedures
	Passing Parameters
	Scope of Variables
	Exiting a Procedure
	Native and Re-usable Functions

	Error Handling
	Arrays

	Working with Price Series
	Introduction to Price Series
	What is a Price Series?
	Handles to Price Series
	Overview
	Standard Price Series and Their Constants
	Functions that Return a Price Series Handle
	Functions that Accept a Price Series Handle

	Creating Your Own Price Series
	Accessing a Single Value of a Price Series
	Using @ Syntax to Access Values from a Price Series
	Series Math
	Practice
	Answers

	Price Series FAQs

	Painting the Chart
	Overview
	Chart Panes
	Creating New Panes
	Plotting an Indicator in a Pane
	Plotting Multiple Symbols
	Specifying Colors
	Drawing Text in a Pane
	Drawing Objects in a Pane

	Writing Your Trading System Rules
	Overview
	Scripting Trading Rules
	Overview
	The Main Loop
	Triggering a Market Buy Order
	Triggering a Limit or Stop Buy Order
	Checking for Open Positions
	Using Automated Stops
	Selling Short

	Implementing Trading System Rules
	Managing Multiple Positions

	Working with Technical Indicator Functions
	Overview
	Accessing Indicator Values
	Accessing Indicator Price Series Handles

	Accessing Data from Files
	Overview
	Creating and Opening Files
	Reading and Writing
	Closing Files

	Understanding Time Frames
	Overview
	Accessing a Higher Time Frame
	Expanding the Series
	Accessing Higher Time Frame Data by Bar
	Scaling and Trading

	Creating a Custom Indicator
	Overview
	Using the New Indicator Wizard
	Deleting a Custom Indicator
	The Guts of a Custom Indicator
	Other Possibilities and FAQs

	CommissionScripts
	Overview
	CommissionScript Variables
	Creating and Testing CommissionScripts

	PerfScripts
	Overview
	PerfScript Functions
	Creating PerfScripts
	Using PerfScripts

	SimuScripts
	Overview
	SimuScript Function Notes
	How do SimuScripts Work?
	Creating a SimuScript
	Testing a SimuScript
	SimuScript FAQs

	Objects
	Overview
	Object Type Declarations
	Providing Access via Properties
	Creating and Using Instances of a Type
	Putting it all Together
	Inheritance
	Polymorphism
	The TList Object
	Overview
	TList Functions
	Add
	AddData
	AddObject
	Count
	Create
	Data
	Item
	IndexOf
	IndexOfData
	IndexOfObject
	Object

	TList Procedures
	ChangeItem
	Clear
	Delete
	Free
	SortNumeric
	SortString

