Wealth A Lab.o

WealthScript Language Guide
Wealth-Lab Developer 4.0

© 2003-2006 WL Systems, Inc.

Wealth-Lab Developer 4.0 WealthScript Language Guide

by WL Systems, Inc.

Revised: Monday, December 11, 2006

Wealth-Lab Developer 4.0 WealthScript Language Guide

© 2003-2006 WL Systems, Inc.

No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the
publisher.

Third party trademarks and service marks are the property of their respective owners.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use or misuse of information contained in this
document or from the use or misuse of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Printed: Monday, December 11, 2006

Special thanks to:

Wealth-Lab's great on-line community whose comments have
helped make this manual more useful for veteran and new users
alike.

EC Software, whose product HELP & MANUAL printed this
document.

WealthScript Language Guide, Wealth-Lab Developer 4.0

Table of Contents

Part | Introduction 5
Part Il WealthScript Language Syntax 7
O A= YT PRSPPI 7
A o)1 01 1 1 T=T 01 £SO TP TP PPPPPPPPPPR 8
3 Statements and DEIIMITEISeiiiii it e e e e e e ae e e e e e e e aanes 8
4 Variables and Data TYPES ..ottt ettt e e ettt e e e e e e e bbb e e e e e e e e e anbbeaeeaaaeeaaane 9
OVEBIVIBW ..ottt ettt e e e ekt e et e e et e R e e et e e R e e et e e eR e e se e e s et e e e e R e e e e et enn e 9

D= Tod P LT o V2= L= o] -SSRSO 10

Variable Naming RUIESc.oiiiiiiiie et eenre e ennees 10

D= = I =2 PSP 11

LT ot o o 1Y o L= OSSPSR PO PR 12
ENUMETALEU TYPES ..ottt ettt e r et e e e e e e st e e e e nee e e ne e e e e nre e e e enes 13

5 ASSIGNMENT STALEMENTS ..o e e s e e e e e e e s s st e e e e e e s s s snnsrnaneeaeeesannnes 14
O 0] 115 =1 | £SO PP TP OPPPPPPPPPPPN 16
A O 011 =14 o] o =TT PPPPRPRN 18
OVEBIVIBW ...ttt e oottt ettt e oo ookttt et e e 444k k bttt e e e 44 s a bbb et e a2 444 a Rk ke e e e 242 e sk be s et e e e 44 e Rn bbb e e e e e eannbbbeeeaeeeansbbbeeeaeeaannnes 18
MathematiCal OPEIALIONSeiiiiiiiiiiiii ettt e e ettt e e e e s bb et e e e e e abab et e e e e e e s abbeeeeeeeaanbabeeeeaeesnnnnneeas 18

2 Yo o] [T 1o @] o 1T = 14 o] o TS PP UPPPPPT R PPPPO 19

o Yo [o= UM @] oT=T =14 o] o [SO TSP UU PP PR OPPPI 21

SUIMIMIATY ettt e e oo oo e oo e oot oo e e e e et et e aaaaaaaaaeaas 21

F (o O] o 1=T = 1 (o] PP P PP TP RTUPPPPPRT 21

O O] 01T = 1 (o] PP 22

Do 1O o=l = (o] PP P PP PPPPRTRTP 24

INOE OPIBIALON ...ttt 25

S AT o O] o1=] =14 o] o 1= S TR T T OPPPPPPTIOS 25

8 Conditional STAtEMENTSttt e e e e e et e e e e e s e e aanbbeae e e e e e e e aane 26
O CASE SEALEIMENT ...ttt e e e e e e e e e e e st b e et e e e e e e s st b e e et e e e e s e e annbrrneeeeeeeaaanne 30
O o To o1 g Lo IS €= L= 1 T=T 0L PR PRP 32
S TU 1110 1= PP P P PP PP PP PPPPPPPPPPPPPPPPPPOt 32

O OO i 32

VAV 11 (=3 e Yo « OO TT PP TOTUUPP PP UPPP 33

REPEAL LOOP i 34

Breaking OUL O 8 LOOP ...uuueiiiiiiiiiiiiti ettt ettt e e e ettt e e e e e ekt b bt e e e e e e ssbeeeeeeeeeanbbbeeaeeeesnnnnneeas 34

11 FUNCLIONS AN PrOCEAUIES ..cooiiiiiiiieie ettt e e e e e e et be e e e e e e e e snnbaneeas 35
OVEBIVIBW ..ttt ettt oottt oo 4okttt et a4 4ok kbt et e e e 44 aa bbb et e e e 444 a kR ke e e e e e 22 n R be s et e e e o4 e Rs bbb e e e e e e s mbbbeeeaeeeannnbneeeaeeaannnes 35

DECIAITNG PrOCEUUIESttt e ekttt e e e e bbb et e e e e e e bttt e e e e e e e ssbe e e e e e e e e anbbbeeeeaeesnnnnneeas 36

DECIAring FUNCLIONS ..ottt ekttt e e e e sttt e e e e e s ba b et e e e e e s s st be e e e e e e e anbnbneeeeeesnnnnneeas 37

Calling FUNCLIONS @NA PrOCEUUIESuiiiiiiiiiiii ettt e ettt e e e e e et e e e e e e e eabeb e e e e e e e abbbeeeaaeeaannnes 39

PaSSING PAIAQmMELEIS ..ottt e e e ekttt et e e e e s abe e et e e e e e e ba b e et e e e e ek nbbe e e e e e e e anbebeeeeeeeannnneeeas 40

SCOPE OF VAITADIES ...ttt e oo ettt e e e e e e aa e et e e e e e e bbb e e e e e e e abbbeeeeaeeaannnes 42

EXITING 8 PIOCEUUIE ..ottt oottt e e oo bttt e e e e e ekt b et e e e e e e ssbbe e e e e e e e anbabeeeeeeesnnbnneeas 43

Native and Re-USaDIe FUNCLIONSeiiiii e e e e e e e e et e e e e e e ennneeeeas 44

12 ErrOr HANAIING oottt ettt e e e e et e e e e e e e e bbbt e e e e e e e e e snnnbeneeas 44
O L g - £ 45
Part Il Working with Price Series 48
1 INtroduUCtion t0 PriCE SEITES w.coiiiiiiiieiii ettt e et e e e e e e enbeee s 48

© 2003-2006 WL Systems, Inc.

Contents I

2 WHhaAt IS @ PriCE SEITES? wiiiiiiiii ettt ettt ettt e e sttt e e s ettt e e e abae e e s anbbeeeeeneees 48
3 HANAIES 10 PriCE SEITES .ottt ettt et e et e e s et e e e enees 49
OVEBIVIBW ..ttt ettt oottt e oo oottt et e 444k k bttt e e e e 4 s abe b et e a2 44 ok kb e e e e e e 22 s Rbb s e e e e a4 e o Rb bbb e e e e e easmbbbeeeeeseanbsbneeeaeeaannnes 49
Standard Price Series and Their CONSTANTSoiiiiiiiiiiiii et e e e e e e seebe e e e e e e eannnes 50
Functions that Return a Price Series HaNAIeeiiiiiiiiiii e 51
Functions that Accept @ Price Series Handleooi oot 52

4 Creating YOUT OWN PriCE SEIES ...ooiiiiiiiiiiiiiiiie ettt ettt e ettt e e e e nnb e eeaaaeeas 54
5 Accessing a Single Value of @ PriCe SEriesccccoiiiiiiiiiiiieiice e 55
6 Using @ Syntax to Access Values from a PriCe SEri€sccccccvevviieee e 57
T SEIIES MALN .o e nas 58
L - T (oL OO PP UU PP PPPTTPPPPI 58
ANSWETS e 59

8 Price SEeriesS FAQS .o 61
Part IV Painting the Chart 64
L OVEIVIEW oiiieiiiiiitiit ettt ettt ettt e ekttt oo ekttt e e e bttt e e e bbbt e e aanb b e e e s st b e e e e anbae e e e nbre e e e nnrres 64
2 CRAIT PAN@S ittt e e e e e e e e e e b bt e et e e e e e e nbbaaeeaaaeeaaaane 65
3 Creating NEW PanE@S ...ttt e e e e e e bbb e e e e e e e e e annbbaeeeeaaeeaananes 65
4 Plotting an INdicator iN @ PANEcoiiiiiiiiiiiiiiec et e e e e e e et e e e e e e s e eeeeeeeas 67
5 Plotting MUltiple SYMDBOIS ..uuuiiiiiiie e e s e e e 68
B SPECITYING COLOTS .ottt e e e e ettt e e e e e e e bbb e e e e e e e e e sanbbeneeaaaeaaannnes 69
7 Drawing TeXt iN @ PANE ..ottt ettt e e e e s et e e e e e e e e s e asnbbaaeeaaaeesaanes 70
8 Drawing ODbjJECES IN @ PANEuuuiiiiiei it s e e e e s e s e e e e e e s s e snnreaeeeaeeeeennnes 70
Part V Writing Your Trading System Rules 72
L OVEBIVIBW ittt ettt ettt ettt e e e o4 oo bttt e et e e e e e e aaa b be e e e e e e e e e e b bbbe e e e e e e e e e nbbbbeeeaaeeeeannnbnneeas 72
2 Scripting Trading RUIES ... e e s s e st e e e e e s s e snnr e e eaeeesannnes 72
OVEBIVIBW ettt ettt ettt h et e et e e a e et e et et e e R e e et e s e st e R e e e s e e e s et e e e e e R e e e e e e s an e e n e e nreeaa 72

R LCR = UL I o o T o OO PP OUPPPRPPPRN 73
Triggering @ Market BUY OFOErouiiiiiiiiiiieie e e sttt e e e e ettt et e e e e stae e e e e e s sstea e e e e e e s ssbaaeeeeesassasaeaeeeesnnnranenaeenas 74
Triggering a Limit O STOP BUY OFUEIuiiiiiiiie ittt ettt et e e e e e e s aaneeeanes 75
Checking fOr OPEN POSITIONSuiiiiiiiiiiii ettt ettt e b e e et e et e s be e e ennnes 75

USING AULOMALEA STOPS ..eeiiiitiieiiiii ettt ettt ettt e ettt e e et e e e e b et e e b et e e as b et e e s b et e et et e e esbe e e e aab e e e nbeeeeantnee s 76

Y=Y 11 o TR 2 o T & SRRSO 77

3 Implementing Trading SYStemM RUIESoooviiiiiiiic e 78
4 Managing MUItiPlEe POSITIONSuuiiiiiieeiiicii e s s e e e e s s r e e e e e s e nneaneeeeeeeas 79
Part VI Working with Technical Indicator Functions 83
O A= YT PRSP 83
2 ACCESSING INAICALOTN VAIUES ...vveiiieie i ittt e e s e e e e e s e st ee e e e e e s e e snnnrnaneeaeeeannnnes 83
3 Accessing Indicator Price Series HandIesuuuiiiiiiiiii e 84
Part VIl Accessing Data from Files 86
O A= YT USRI 86
2 Creating and OPENING FIlES ...uuuiiiiie i e s e e e e e s e e sn e e e e e e e e nnnnes 86
3 ReAAING AN WIITING eeeiiiiiiiiiiiee ettt ettt e e e e e et be e e e e e e e e e aanbbeaeeaaeeeaaannes 87
O Lo 1= 1 o T 1 =SSR 88

© 2003-2006 WL Systems, Inc.

Il WealthScript Language Guide, Wealth-Lab Developer 4.0
Part VIII Understanding Time Frames 89
L OVEBIVIBW ittt ettt e oottt et e e oo oot bttt et e e e e e e aRa b be e e e e e e e e e e b b bbe e e e e e e e e e nnbbbeeeaaeeeeannnbnneeas 89
2 Accessing a Higher Time Frame ...ttt 89
3 EXPANAiNG the SEIIES .ooiiiiiiiiieiiie e e e e e e e e e e s e e ar e e e e e e aanne 91
4 Accessing Higher Time Frame Data DY Barccccvveiiiiie i snen e 93
SRS Tor-1 [o Yo Jr=Ta o B I = To [T o o T PP TR PPPPRPRN 94
Part IX Creating a Custom Indicator 95
L OVEIVIEW oiieiiiiiiitiit ettt ettt e ettt e e ekt e e e a bttt e e ea ettt e e aanb bt e e e st b e e e e anbae e e e anbbeeeeenrrs 95
2 Using the New INdicator WIZardcccuuiiiieeeiiiiiiee e e e e s s see e e e e e s s e snnraan e e e e e e e nnnes 96
3 Deleting @ CuSTOM INAICALOTeeiiiii et e e s e e e e e e e anes 99
4 The Guts Of @ CUSTOM INAICALOT ..ueiiiiiiiiiie it e e s ee e e 99
5 Other Possibilities and FAQS ..o 101
Part X CommissionScripts 103
L OVEBIVIBW oiiiiiieitte ettt ettt oottt et e e o4 oo e a ettt bt e e e e e e e e aaa bbb e e e e e e e e e e aanbbseeeeaeeesaannbbeaeaaaeeeaaanne 103
2 CommiSSIONSCrIPt VAriableS ...oevieeiiiiiiiieei e e e e e e e e e e e nnnes 103
3 Creating and Testing COMMISSIONSCIIPLS .ooiiviiiiiiiiii e e e e e eaees 104
Part XI PerfScripts 106
O A= YT PP 106
2 PerfSCript FUNCLIONS .ooiiii ittt e e e s e s e e e e e e s s e e e e e e e s snsaneeeeeeeeannnnes 106
R O =T LA o =Y S Tod T o) SRS 107
U] oo T T g o F1] £ P EPPT O PTTPPPRR 108
Part XII SimuScripts 110
O A= YT PSPPSR 110
2 SIMUSCHIPL FUNCHION NOTES ..eeiiiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e aanes 110
3 HOW dO SIMUSCIIPLS WOTK? .ottt e e e e e e e e e e eanes 112
4 Creating @ SIMUSCIIPT «..veiiiiiiiii ettt e s st e e s st e e e s snbteeessnneeee s 112
B TeSHING @ SIMUSCIIPE c.eviiieiiiiie ettt e sttt e e s bt e e s bt e e e s sbbeeeesnrbeeeeaae 114
B SIMUSCIIPE FAQS ittt ettt e e e e e e s e bttt e e e e e e s bbbbeeeaaaeeeanbbeaeeaaaeeaaanne 115
Part XIll Objects 117
L OVEIVIEW oetiiiiiiitiie ettt ettt ettt e e ettt e e ettt e e e ettt e e e aabbe e e e anbbe e e e anbbe e e e anbbeeeeanbbeeesnnnees 117
2 ODbjeCt TYPE DECIArAtiONSuvviiiiieeiiiiiiiiiee e s s ert e s s s e e e e e e s s e e e e s e e snrrraeeeeeeeannnnes 118
3 Providing ACCESS Via PrOPEItIeS ..oooiiiiiiiiiie ettt e e e e 119
4 Creating and Using INStanCes Of @ TYPE .uvuirvieiiiiiiiiiiiec e e e 121
5 Putting it @ll TOGEINET oo e e e e e e e e e nanes 122
O [0T T=T 01 = 1 of = PSP PPPPPROPRPR 123
T POIYMOIPRISIT ettt e e e e e bbb e e e e e e e e snbbeaeeeaaeeaaanes 125
ST I = I I 13 @] o = o3 USRS 126
OVEBIVIBW ..ttt ettt h et et e et e R e et e e bt e R e e bt e et e e st e en s e st e s st e e e e e n e e n e e 126
TLISE FUNCHIONS ..ottt b et s e e e s e e et e e s e e ene s e n e e s ee e e neesne e e neesaneene 127

© 2003-2006 WL Systems, Inc.

Contents v

IndexOfObject...........
(0] 0] =T o OO PSP PT PP OTPPTRPPPPOt
TLIST PIOCEAUTIES ...itiii ittt ettt h e e e a et e e bt e e a et e e ea bt eeab et e e e nbe e e e nab et e sbneeeannnees
Changeltem..

SortNumeric
10415 1110 o TR PP PP PP OTPPTRPPPPOt

Index

© 2003-2006 WL Systems, Inc.

WealthScript Language Guide, Wealth-Lab Developer 4.0

Introduction

Welcome to the WealthScript Language Guide

The main purpose of the WealthScript Guide is to provide you with the basic (and
some not-so-basic) concepts to express your trading strategies in WealthScript, which
is the scripting language that you'll use within Wealth-Lab Developer 4.0.
WealthScript is a complete programming language based on the standard computing
language Pascal. You'll be amazed with what you can accomplish by coding trading
systems with WealthScript!

Though many of the most essential WealthScript functions are used in this guide to
demonstrate programming and trading system development concepts, it is not within
the scope of the WealthScript Guide to highlight every single WealthScript function.
All functions with syntax, descriptions, and examples, may be found in the
WealthScript Function Reference/s.

For COM Support in WealthScript, please refer to the Wealth-Lab Developer 4.0 User's
Guide.

Following Along with the Examples

As you come across examples in the Reference we suggest actually typing the code or
at least copying and pasting the examples to get a feel for how to create scripts. To
do this, perform the following steps:

1. Click the New button h or select the "File/New ChartScript" menu item. This
action will create a new ChartScript Window, and position you within the
ChartScript Editor.

2. The Editor will contain some boilerplate code common to most new scripts.
Delete this code.

Type in the code from the example, or copy and paste it into the Editor.

To execute the script, change to the Chart view in the ChartScript Window.
Then, click any of the stock symbols in the DataSource Tree.

So that you can see dynamic data or data stored in variables, many examples output
their results to the Debug Messages window. To see this window you can do one of
the following actions:

e Strike the F11 key, or,

e Select View/Debug Window, or,
e Click the Debug Messages button ﬁ in the toolbar.

Syntax Notes

Some topics include code syntax. When an optional statement is encountered, it
shall be enclosed in brackets. For example, in the following code fragment the
'begin' and 'end;' statements are optional.

if booleanexpression then
[begin]

statement;
[end;]

© 2003-2006 WL Systems, Inc.

Introduction 6

WealthScript Function Reference

For a complete list of functions available in Wealth-Lab Developer 4.0, please refer to
the WealthScript Function Referencels.

© 2003-2006 WL Systems, Inc.

WealthScript Language Guide, Wealth-Lab Developer 4.0

2.1

WealthScript Language Syntax

Overview

The following sections describe the basic syntax you must use when writing scripts in
Wealth-Lab Developer 4.0. When you become comfortable using the basic syntax,
more advanced programming techniques are available under the Objectsu? topic and
also the Wealth-Lab Developer 4.0 Add-On API on the Wealth-Lab web site.

Comments/ &)
Use comments to annotate your code.

Statements and Delimiters| &
A WealthScript program is composed of a series of statements that are delimited
by semicolons.

Variables and Data Types| ¢}
Variables are place holders in computer memory that store values that will likely
vary (hence "variables") during the execution of your code.

Assignment Statements/:4)
Use assignment statements to place values into your variables.

Constants/6)
Declare constants for values in your scripts that will never change. WealthScript
pre-defined constants[16] give you quick access to named price series and help
make your code more readable.

Operations| 18}
Use operators to manipulate numeric and string expressions within your
WealthScript code.

Conditional Statements|25)
Use conditional statements to compare and test expressions with the purpose of
controlling the flow (order) of execution in your WealthScript code.

Case Statement/sd)
Group a set of cases into blocks of code to improve your script's organization and
readability.

Looping Statements/s?)
Use looping statements to repeat the execution of one or more statements
numerous times

Functions and Procedures/s)
Write your own functions and procedures when you use the same block of code
over and over in different parts of a script. Go one extra step by saving them to
the "Studies" folder and you'll be able to use them over and over

Error Handling /4
Write robust scripts by expecting and handling errors that occur in your code.

Arraysﬁﬁ
Use arrays to index and then iterate through a list of elements of the same data
type.

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=24

WealthScript Language Syntax 8

2.2 Comments

You can use comments to annotate your code. Comments don't affect the execution
of the WealthScript, and can be a useful documentation tool. There are several forms
of comments available.

Comment Blocks

Use the curly braces to create a comment block.

Example

{ This is a conmment bl ock
this text will not be executed
by the script }

Single Line Comments

Use the "//" characters to create single line comments.

Example

/1 This is truly the Holy Grail of Trading Systens!
{ Code Onmitted }

2.3 Statements and Delimiters

A WealthScript program is composed of a series of statements. WealthScript
executes the statements in order, from top to bottom. You can use
Conditional Statements/26] and Looping Statements|s3] to control this flow of
execution.

Semicolons

Each WealthScript statement must end with the semicolon character (;). The
semicolon lets WealthScript know that one statement is completed and another one is
beginning. The following example indicates that carriage return/line feeds and other
formatting characters are essentially ignored by the compiler.

© 2003-2006 WL Systems, Inc.

9 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

This is one statenent;
This is another statenent;

This is

one statenent;
This is

anot her

st at enent

lI'hi S is yet another;

This is one statenent; This is anot her;

Note: An exception exists to using line feeds - a string typelif] cannot extend across
more than one line.

Be sure to read the WealthScript Style Guide article on the Wealth-Lab.com site for
guidance on formatting your code. A consistent block-formatting style will help
reduce programming errors and make your code easier to read and maintain.

2.4 Variables and Data Types

2.4.1 Overview

Variables

A variable is a placeholder in computer memory that can store a particular value.
Each variable has its own unique name, much like a PO Box in a Post Office. You can
use the variable name to recall or modify the value contained in the variable.

Declaring Variables/15)
You cannot refer to a variable in your code without declaring it first.

Variable Naming Rules|15)
Name a variable anything you like, but follow the rules!

Data Types/if
Declare your variables based on the type of data they will hold.

Record Types|12)
Record Types are useful structures for grouping varied, yet related data into a

single variable type. They can be used, for example, to pass data between
procedures in order to make long parameter lists saner.

Enumerated Types|13]
Enumerated Types are special data types that you define. When defining an
Enumerated Type you specify a list of possible values, each with its own unique
label. Variables declared for the type can only assume one of these values.

See Also: Scope of Variables/4) in the chapter Functions and Procedures|ss)

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=44

WealthScript Language Syntax 10

2.4.2 Declaring Variables

Use the var statement to declare a variable in your WealthScript code.

Syntax
var variablelist : variabletype;
Item Description
variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules/101,
variabletype One of the valid data type names/111.
Remarks

e You can declare multiple variables of the same data type with a single var
statement by separating each new variable name with a comma as shown below.

e The variable declaration must occur before you use the variable in your code.

e Variable names are not case sensitive. Therefore, you may refer to a variable
declared as MyVariable equally as MYVARIABLE, myVariable, MyVaRIAble, etc.

Example
var MyVari abl e: integer;
var Varl, Var2: integer;
var Varl: integer; var Var2: float;
var Nane, Rank, Serial Nunber: string;
var |slLong: bool ean;
Tip: If you forget to declare a variable in your code, the compiler with give you an

"Unknown name" error when you try to run your script. You can quickly fix

this error by pressing F4 or by selecting "Chart/Fix ChartScript" from the main
menu.

2.4.3 Variable Naming Rules

You can name your variables anything you like, provided that you follow these rules:

Rule 1: Variable names must begin with an alphabetic character.

Rule 2: Variable names can contain alphabetic, numeric, or underscore characters

only.

Rule 3: You cannot create variables that have the same name as WealthScript

Tip:

reserved words or built-in function names.

When using many variables, sometimes it can be difficult to remember their
data type without referring to their declaration. You can help yourself by using
the same prefix for all variables of the same type. For example you could use

"f" as a prefix for variables of type float (e.g. fSimpleMovingAvg, fStdDeviation,
etc.).

These are suggested prefixes using a 1-letter or 3-letter "Hungarian-style" notation.
Use them only if they seem helpful to you.

© 2003-2006 WL Systems, Inc.

11 WealthScript Language Guide, Wealth-Lab Developer 4.0
flt, f float (examples: fClose, fltClose)
int, i integer
bln, b boolean
str, s string
vnt, v variant
rcd, r record type
I st, | TList object
pne, p pane reference (integer)
hdl, h Price Series handle (integer)

2.4.4 DataTypes

A variable must be declared as one of the following data types. For typical syntax,
see the Assignment Statements|14) topic.

integer
Stores whole number values. Values can range from -2,147,483,648 to
2,147,483,647. You can perform mathematical Ogerations@ﬁ on integer variables.

float
Stores floating point values. The WealthScript engine treats declared floats (and
arrays of type float) with double-precision, which have 14 to 15 digits of
significance. Approximate valid ranges are as follows:

Negative values: -1.7 x 10°°® to -4.9 x 1073*
Positive values: 4.9 x 10°* to 1.7 x 103

You can perform mathematical OQerationsHﬁ on float variables.

Note: Price Series values are stored as single-precision floating point values, which
maintain 7 to 8 significant digits and can range from 1.5 x 10™* to 3.4 x
10%. For more information, see Data Precision Considerations in the User
Guide.

string
Can store textual data of any length. You can perform string Operations/# on
string variables.

boolean
Can contain one of two logical values: true or false. You can perform logical
Operations/8 on boolean variables.

variant
A special type of variable that can be assigned to any basic data type. A variant can
be useful if you need to use the same variable for multiple types at run time.

datetime (not supported)
In WealthScript code, dates are accessed as integer values, allowing date
comparison using standard arithmetic operators. For more information, see GetDate
and all the Date/Time functions in the WealthScript Function Reference.

See Also: Record Typesli?] Object Type Declarations/i8 TList Object/i28)

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 12

2.4.5 Record Types

A useful structure for organizing a related set of data is a user-defined Record Type.
Record Types are multi-dimensional variables that can be used in passing data
between procedures, for example, to make long parameter lists saner.

Although they are not necessary for programming in WealthScript, it's nice to know
these types of structures are available if you need them.

Note: Records cannot be added to a TList objecth2s. Instead, you can add an
object using the AddObject method. Obijectsii? can contain different data
elements just like a record type.

Syntax
type

rtypename = record
vlistnamel : datatype;
vlistname?2 : datatype;

vlistnameN : datatype;

end;

Item Description

rtypename A valid[16) variable name.

vlistnameN A single variable name, or a comma-separated list of variables
that follow the variable-naming rules/16].

datatype A data typeli1] expression (e.g., integer)
or an array declaration (e.g., array[0 .. 0] of float)

Example

{ define a record type naned PriceData having
1 datetinme, 4 floats, 1 integer, and 1 boolean }

type
Pri ceDat a record
dT: integer;
O H L, C float;
V: integer;
| sl ndex: bool ean;
end;

{ function to convert a boolean to a string }
function Bl nToStr(bln: boolean): string;

begi n

if bln then

Resul t
el se
Resul t
end;

"True'

' Fal se';

{ declare variables as the record type PriceDat a}
var pdl, pd2: PriceData;

const fntPd

"#.00';

© 2003-2006 WL Systems, Inc.

13 WealthScript Language Guide, Wealth-Lab Developer 4.0
pdl. dT := 20030520;
pdl. O := 12.10;
pdl.H := 14. 31;
pdl.L := 11.92;
pdl. C : = 14. 24;
pdl.V := 1023500;
pdl. I sl ndex := Fal se;
{ copy the data to another PriceData type }
pd2 := pdi;
Print(IntToStr(pd2.dT) + '
+ Format Fl oat (fntPd, pd2.0 + '
+ Format Fl oat (fntPd, pd2.H + '
+ Format Fl oat (fntPd, pd2.L) + '
+ Format Fl oat (fntPd, pd2.C) + '
+ IntToStr(pd2.V) + ', '
+ Bl nToStr (pd2.1slndex));
{ just for practice, let's do the sane with an array of a Record Type }
var pda: array[O0..1] of PriceData,;
pda[0] := pd2;
pda[1] := pda[0];
Print('Second array contents:');
Print(IntToStr(pda[l].dT) + ',
+ Format Fl oat (fntPd, pda[1l].0O + '
+ Format Fl oat (fntPd, pda[l].H + '
+ Format Fl oat (fntPd, pda[1].L) + '
+ Format Fl oat (fntPd, pda[1].C + '
+ IntToStr(pda[l].V) + ', '
+ Bl nToStr(pda[1].1sl ndex));
2.4.6 Enumerated Types

The Enumerated Type is a special data type that contains a list of distinct values.
You create a distinct label for each possible value of an Enumerated Type.
Enumerated Types can be used to make your code more self-descriptive. For
example, your trading system might look for a complex sequence of events before
triggering a signal. Rather than using an integer variable to store the system's state,
you could use an Enumerated Type. The script is then easier to understand because
the labels of the Enumerated Type values are descriptive.

Syntax
type TMyType = (valOne [, valTwo] ...[, valLast]);

Item Description
TMyType A valid[16) variable type name.
valOne - vallLast Each possible value of the Enumerated Type must be provided a

unique valid/16) label. By convention, each label begins with
the same brief prefix. You must provide at least one label.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax

Enumerated Type Values

14

A variable that is an Enumerated Type can only contain a value that was defined in
the Enumerated Type's list. Internally, the values are stored as integers. You can
convert an Enumerated Type variable to an integer by casting it as an integer value.

Example

type TEnum = (enun¥ero, enumOne, enuniwo);
var n: integer;

var et: TEnum

et := enunine,

n :=integer(et);

ShowMessage(IntToStr(n));

See Also: Creating Synchronized Arrays/4s)

State Machines

The example below is a simple trading system "state machine". The system can be in
one of three different states. The state is controlled by an Enumerated Type variable.

Example

type
TSystentState = (ssSetup, ssTactical, ssPinpoint);

var Bar: integer;
var State: TSystenttate;

Instal | StopLoss(5);
Install ProfitTarget(10);

for Bar := 20 to BarCount - 1 do
begin

Appl yAut oSt ops(Bar);

if not LastPositionActive then

begin
case State of
ssSet up:
i f CunDown(Bar, #Close, 4) >= 9 then
State := ssTactical;
ssTacti cal :
if RSI(Bar, #CO ose, 14) < 40 then
State := ssPinpoint;
ssPi npoint:
i f CunDown(Bar, #Close, 2) >= 3 then
begin
BuyAt Market (Bar + 1, '');
State := ssSetup;
end;
end;
end;
end;

2.5 Assignment Statements

Use assignment statements to place values into your variables. Assignment

statements use the assignment operator, which is typed as a colon immediately

© 2003-2006 WL Systems, Inc.

15

WealthScript Language Guide, Wealth-Lab Developer 4.0

followed by an equal sign.

Example
var n: integer;
n := 100;

var s: string;
{ Note that a string cannot extend across nultiple lines in the Editor

wn -

;= "My nanme is Snmith';

var f: float;
f := 3.1415;

var b: bool ean;
b := true;

It's illegal to assign the wrong data type into a variable. The following examples will
generate an error.

Example
var n: integer;
n := 1.234;

var s: string;
s 1= 200;

var f: float;
f :="1llegal"';

You can also assign the value from one variable into another.

Example

var varl, var2: integer;
varl := 2001;
var2 := varl,

Initializing Variables

Generally, you should initialize variables, i.e., assign known values to variables, before
using them for the first time in a calculation. Note that the previous examples use
separate statements for declarations and assignments to initialize a variable.

Another spacing-saving technique involves declaringl) and initializing a variable in a
single var statement. In some cases, such as within procedures or functions for
example, this type of combined declaration/initialization may make your code more
clear or readable. The expression on the right side of the assignment can also be a
function|ss1,

Example

var Yr, MDay: integer;
var |Ing: string;

Yr := 2001;
MyDay : = 16;
Inmg := 'RedDi anond';

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 16

Can be coded equivalently as follows. Note that an equals sign is used, not the
assignment operator.

var Yr: integer = 2001,
var MyDay: integer = 16;
var Inmg: string = 'RedD anond';

2.6 Constants

A constant is a numeric or string value in a script that will never change. Using
constants can save you from having to repeat the same values multiple times in a
script with the added advantage of making your code more concise and readable.
Since constants are not variable they are never used on the left side of the
assignment operator@ﬁ.

For example, you might use a format string to format a value for debug printing.
Rather than specifying the format argument each time you use a Pri nt statement,
you could define it as a constant and then use the constant as the format argument in
each statement.

Declaring a Constant

To declare a constant, use the keyword const followed by the equal sign and then the

value of the constant. In the example below, the constant FMT is set to a string, and
therefore may be used in any function requiring a parameter of type string. You can,
however, declare a constant with a numeric value (integer or float) as well.

Example

const FMI = ' $#, ##0. 00" ;
var Bar: integer;

Bar := BarCount - 1;

DrawLabel (' OQpen = ' + FormatFloat(FMI, PriceCpen(Bar)), 0);
DrawLabel ("High ="' + FormatFloat(FMI, PriceH gh(Bar)), 0);
DrawLabel ("Low ="' + FormatFloat(FMI, PriceLow Bar)), 0);
DrawLabel ("Close ="' + FormatFloat(FMI, PriceCl ose(Bar)), 0);

Pre-defined Constants

WealthScript has several constants available for you to use that will improve your
code's readability. For more information, click the links.

Price Series constants/s0]
#QOpen, #Hi gh, #Low, #C ose, #Volunme, #Openlnterest, #Aver age, #Aver ageC

#Equi ty (PerfScripts o8 only)

© 2003-2006 WL Systems, Inc.

17

WealthScript Language Guide, Wealth-Lab Developer 4.0

Color value constants/es)
#Bl ack, #Maroon, #G een, #Oive, #Navy, #Purple, #Teal, #G ay, #Silver,
#Red, #Linme, #Yellow, #Blue, #Fuchsia, #Aqua, #Wite, and finally
#W nLoss, which is used primarily for PerfScripts|osl.

Light colors, normally used for shading the chart background:
#RedBkg, #Bl ueBkg, #G eenBkg

Plot formatting constants/e7:
#Thi n, #Dot t ed, #Thi ck, #Hi st ogr an, #Thi ckHi st , #Dot s

Style parameter constants (see PlotSymbol):
#OHLC, #Candl e, #Li ne

PerfScript Style parameter constants|ios)
#Bol d, #ltalic

Time Frame constants (see ChangeScale):
#Dai | y, #Weekl y, #Mont hl y

Day of the Week constants (use with DayOfWeek function):
#Monday, #Tuesday, #Wednesday, #Thur sday, #Fri day

Current SimuScript Position 119 ;
#Cur r ent

Shortcut to Closing All Positions|71: (use with SellAt and CoverAt functions)
#Al |

ChartScript Optimization Variables

#OptVars are values that will be replaced with a range of different values during the
optimization process. You can use up to 10 #OptVars, #OptVarl through
#OptVario.

#Opt Var 1, #Opt Var 2, ..., #0Opt Var 10

Set Mode constants
The Set Aut oSt opMbde WealthScript function allows you to control how the
parameter of AutoStops are interpreted.
#AsPer cent (default), #AsPoi nt, #AsDol | ar

The first two constants are also used in the Set Peak Tr oughMbde WealthScript
function to control how the Reversal parameter of Peak and Trough functions are
interpreted.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 18

2.7 Operations

2.7.1 Overview

There are four different types of operations you can perform in WealthScript;
mathematical, boolean, logical, and string.

Mathematical Operations/i5]
Use the standard mathematical operators to manipulate numeric expressions.

Boolean Operations/19)
Test relationships between expressions using boolean operators.

Logical Operations/21]
Make logical comparisons between two numeric expressions with this subset of
boolean operators.

String Operations|25)
Concatenate and compare string variables and expressions.

2.7.2 Mathematical Operations

Standard Operators

You can use the standard mathematical operators summarized in the table below in
your WealthScript code.

Syntax
Result := Operandl Operator Operand2;

Operator Description

+ Addition
- Subtraction

Multiplication
/ Division

Multiplication and division operations are evaluated first, otherwise expressions are
evaluated from left to right. You can use parenthesis to modify the standard order of
evaluation, where the innermost expression is evaluated first.

Example

var Xx: integer;

x =11/ 2

X 1=x* 5+ 1

X :=(x-5)/1 (x*2);
X:=x- (27 (3*x));

More advanced mathematical operations can be completed using the built-in Math
Functions.

© 2003-2006 WL Systems, Inc.

19 WealthScript Language Guide, Wealth-Lab Developer 4.0

Modulo Operator
The Mod operator is used to divide two floating-point numbers, which are first rounded
to integers, and returns only the remainder as type float. Although the divisor may
be a negative number, the result will always maintain the sign of the dividend.
Syntax

Result := dividend Mod divisor;
Example

{ ywll equal -5 and z equals 0 }

var y, z: float;

y := -21 Mod 7.8;

z .= 21 Md 7. 3;

ShowMessage(FloatToStr(y) + #9 + FloatToStr(z));

See Also:

ModX function and IGArithmO01 functions in the Wealth-Lab Code Library on the
Wealth-Lab site.

Div Operator
There are times when you may want to be sure that the result of an integer division
returns an integer. Whereas Mod returns a remainder, division with the Di v operator
returns an integer quotient (without a remainder).
Syntax

Result := dividend Div divisor;
Remarks

dividend and divisor must be integer expressions.
Example

{ i will be assigned the value -3 }

var i, j: integer;

j 1= -6

i :=21Div -j;

ShowMessage(IntToStr(i));

2.7.3 Boolean Operations

Nearly all programs require you to test [boolean] relationships between numeric
variable and perhaps even string variables. For these tests you'll use the standard set
of Pascal boolean operators found in the table below:

Syntax
Result := Operandl Operator Operand2;

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

WealthScript Language Syntax 20

Operator Description
= Equal to
<> Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

The result of comparing two expressions with the operators above is a boolean (True
or False). Consequently, you'll often assign the result of relational operations to a
boolean variable as in the example below:

Example

var b: bool ean;
var x1, x2: float;

x1 := 10;

X2 1= 20;

b := true; {true}
b := fal se; {fal se}
b := x1 = x2; {fal se}
b :=x1 <> x2; {true}
b := x2 > x1; {true}

You can also use boolean expressions whenever a boolean is required without
assigning the result to a boolean variable, as in the i f/t hen statement below.

Example

var b: bool ean;
var x1, x2: float;
x1 := 10;
X2 = 20;
if x2 < x1 then
x1l := x1 * x2;
b:=(x1>x2) O (x1>1); {true}

Note that when using a logical operator you must group the individual expressions in
parenthesis, as in the final assignment using O in the example above.

See Also: Logical Operations/at]

© 2003-2006 WL Systems, Inc.

21 WealthScript Language Guide, Wealth-Lab Developer 4.0

2.7.4 Logical Operations
2741 Summary

The following operators allow you to perform logical comparisons between two
numeric expressions. With these operators, you have the additional capability to
perform bitwise comparisons of two identically positioned bits in two numeric
expressions.

And Operator/21]
Perform logical conjunctions of expressions with the And operator.

Or Operator/2?)
Perform logical disjunctions of expressions with the Or operator.

Xor Operator|24)
Perform logical exclusions of expressions with the Xor operator.

Not Operator/23)
Perform logical negations of expressions with the Not operator.

Note: When using a logical operator to obtain the result of two boolean expressions,
you must group the individual boolean expressions in parenthesis.

Example

var TestlsTrue: bool ean;
TestlsTrue := (2 >1) And (2 + 2 =5);
| f TestlsTrue then

ShowMessage(' The expression is True!')
el se

ShowMessage(' The expression is False!');

2.7.4.2 And Operator

You may perform logical conjunctions of expressions with the And operator.

Syntax
Result := Expressionl And Expression2;

Item Description
Result A boolean variable.
Expressionl Any boolean expression. Expressions including operators should

be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax

Result Summary:

22

Expressionl Expression2 Result
False False False
False True False
True False False
True True True
Example

var bl, b2, bR bool ean;

bl := True; b2 := False;

bR := bl And b2; { bR is assigned Fal se }

bl := 20 < 23; b2 := 30 > 29;

bR := bl And b2; { bR is assigned True }

Integer Bitwise Comparison

Likewise, you may also use the And operator to compare two identically positioned
bits in two numeric expressions.

And Bitwise Comparison Result Summary:

bit in Expressionl

bit in Expression2 Result

0 0 0
1 0 0
0 1 0
1 1 1
Example
var X, Yy, z:. integer;
X =9, y: =1
zZ .= x And vy; { z equals 1; 1001 And 0001 = 0001 }
X =7, y =12
zZ .= x And vy; { z equals 4; 0111 And 1100 = 0100 }

2.7.4.3 Or Operator

You may perform logical disjunctions of expressions with the Or operator.

Syntax

Result := Expressionl Or Expression2;

© 2003-2006 WL Systems, Inc.

23

WealthScript Language Guide, Wealth-Lab Developer 4.0

Item Description
Result A boolean variable
Expressionl Any boolean expression. Expressions including operators should

be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Result Summary:

Expressionl Expression2 Result
False False False
False True True
True False True
True True True
Example

var bl, b2, bR bool ean;

bl := True; b2 := False;

bR := bl O b2; { bR is assigned True }
bl := 20 < 23; b2 := 30 > 29;

bR := bl O b2; { bR is assigned True }

Integer Bitwise Comparison

Likewise, you may also use the Or operator to compare two identically positioned bits

in two numeric expressions.

Or Bitwise Comparison Result Summary:

bit in Expressionl bitin Expression2 Result
0 0 0
0 1 1
1 0 1
1 1 1
Example
var x, y, z: integer;
X =9 y =3
zZ :=x O vy; { z equals 11; 1001 And 0011 = 1011 }
X =7, y =8
Z :=x O vy; { z equals 15; 0111 And 1000 = 1111 }

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 24

2.7.4.4 Xor Operator

You may perform logical exclusions of expressions with the Xor operator.

Syntax
Result := Expressionl Xor Expression2;

Item Description
Result A boolean variable
Expression1 Any boolean expression. Expressions including operators should

be enclosed in parentheses.

Expression2 Any boolean expression. Expressions including operators should
be enclosed in parentheses.

Result Summary:

Expressionl Expression2 Result
False False False
False True True
True False True
True True False
Example

var bl, b2, bR bool ean;

bl := True; b2 := Fal se;

bR := bl Xor b2; { bR is assigned True }

bl := 20 < 23; b2 := 30 > 29;

bR := bl Xor b2; { bR is assigned Fal se }

Integer Bitwise Comparison

Likewise, you may also use the Xor operator to compare two identically positioned bits
in two numeric expressions.

Xor Bitwise Comparison Result Summary:

bit in Expressionl bit in Expression2 Result

= = O O

0
1
0
1

o = = O

© 2003-2006 WL Systems, Inc.

25 WealthScript Language Guide, Wealth-Lab Developer 4.0
Example
var X, Yy, z:. integer;
X =9, y =35
Z .= X Xor vy; { z equals 10; 1001 And 0011 = 1010 }
X =7, y:=28
z .= X Xor vy; { z equals 15; 0111 And 1000 = 1111 }
2.7.45 Not Operator
You may perform logical negations of expressions with the Not operator.
Syntax
Result := Not Expression;
Item Description
Result A boolean variable
Expression Any boolean expression. Expressions including operators should
be enclosed in parentheses.
Result Summary:
Expression Result
False True
True False
Example
var b, bR bool ean;
b := True;
bR := Not b; { bR is assigned Fal se }
b := 20 > 23;
bR := Not b; { bR is assigned True }
2.7.5 String Operations

The only valid string operation that changes the value of a string variable is
concatenation (+), which appends multiple strings into a single string.

Example

var sl1, s2, getty: string;

sl := 'Four score and';

s2 := 'seven years ago';

getty :=s1 + ' ' + s2;

ShowMessage(getty);

{ getty now holds the string ' Four score and seven years ago' }

For non-printable characters, use the Chr (asciicode) function instead of a literal

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 26

string, where asciicode is the decimal ASCII code of a printable or non-printable
character. Alternatively, you may use the shorthand "#asciicode" notation. Below is a

partial list of handy non-printable characters.

Decimal Code Description
9 TAB, tab character
10 LF, line feed
13 CR, carriage return
Tip:

If you want to break a string into multiple lines, add carriage return and line break
character codes to the location of the line break. In the example above, replace the
string-assignment statement as follows:

getty := sl + Chr(13) + Chr(10) + s2;

{ O, using the shorthand notation: }
getty := sl + #13#10 + s2;

String Comparison

You may also make comparisons between string variables using the
boolean operators/1]. A boolean operation on alphanumeric strings results in a binary
(case-sensitive) comparison of the string expressions.

When comparing strings, characters are tested from left to right until an inequality is
found. The value of a string character used for comparison is its associated ASCII
code. Therefore, an alphanumeric character such as '3' having an ASCII code of 53,
will evaluate as being less than any letter, which have ASCII codes starting at 65.

Example

var sl1, s2: string;

var b: bool ean;

sl :="'0U812";

s2 :="'Ch, ne?";

b =sl <s2; { bis True}
s2 1= 'Qu812';

b =sl =s2; { bis False }

2.8 Conditional Statements

Conditional statements allow you to control the flow of execution in your
WealthScript programs. You'll use the i f, t hen and el se statements for this

purpose.

If/Then Statements

Use the i f/ t hen statement to perform logical tests. The program can branch to one

set of statements if the test is true, and another if the result is false. You can use any
of the logical operations in the i f/ t hen statement.

© 2003-2006 WL Systems, Inc.

27

WealthScript Language Guide, Wealth-Lab Developer 4.0

Syntax

if booleanexpression then
[begin]

statement;
[end;]

Note that the i f/t hen and the statements contained within it are considered as a
single WealthScript statement, so you place a semicolon after the final statement
executed, as shown below.

Example
var X:. integer;
x = 10;
if x > 10 then
X =X + 1 {wi Il not execute}
if x <= 10 then
X =X * 2 {wi Il execute}
if (x=20) or (x =10) then
X :=x1 3 {will execute}

You can also test a boolean variable directly. This can make your code more readable
if you creatively name your variables.

Example

var f1, f2: float;

var | sTrue: bool ean;

fl1 := 30.5;

f2 := 29.0;

IsTrue := f2 < f1;

if IsTrue then
Print('Sell Now ');

Executing Multiple Statements After an If/Then

Often you'll want to execute more than one statement after ani f/t hen. In this case
you must use a begi n/ end statement pair to create a "code block" that encloses the
statements. The begi n/ end code block concept is used in other areas of
WealthScript, whenever a group of statements need to be treated as a single
statement.

Syntax

if booleanexpression then
begin
statementl1,
statement2;

statementX;
end;

The begi n/ end code block is considered a single statement, so the semicolon goes
after the end portion of the pair. However, you can place as many other statements

as you like within the begin/end code block. These individual statements within the
begi n/ end should end with semicolons.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 28

Example

var X:. integer;

x = 10;

{ This code block contains no statenents }
if x <20 then

begin

end;

{ This if/then will execute 3 statenents }
if x * 2 =20 then

begin
X =X * 2
X =X - 1;
X :=x [10;
end;

Note that each of the 3 statements within the begi n/ end clock ends with a
semicolon.

The Else Statement

You can use the else statement to execute statements if the i f/t hen test resolves to
false. In this form, the i f/then/ el se is considered a single statement, so the
semicolon goes at the very end of the statement only.

Syntax

if booleanexpression then
statement

else
statement;

Example

var Xx: integer;

X = 10;

if x 5 then
X = Xx * 20

el se
X

x | 20;

Complex If/Then/Else with Begin/End

You can, of course, use begin/end code blocks in either or both portions of the
i f/then/el se statement.

Example

{ if/then/else with begin/end bl ocks, no code in the blocks }
var Xx: integer;

x = 10;

if x < 10 then

begi n

end

el se

begi n

end;

© 2003-2006 WL Systems, Inc.

29

WealthScript Language Guide, Wealth-Lab Developer 4.0

{ if/then/else with begin/end bl ocks, with code in the bl ocks }
var Xx: integer;

X = 10;
if x < 10 then
begi n
X =X * 2+ 1;
X :=x [5
end
el se
begi n
X = X * X
X :=x/ 2
end;

Note that there is no semicolon after the first begi n/ end pair in the i f/t hen/ el se
with code blocks. The semicolon appears after the last end only.

Nested If/Then If/Then/Else

You can "nest" one or more if/then/else statements within another.

Example

var X:. integer;
x = 10;

{ These are two nested if/then statenents }
if x = 10 then
if x * 2 <20 then
begin
X
X
end;

x [3
X + 2

{ This is a nested if/then/else block. }
if x <2 then

begin
X .= x * 10;
X .= X - 5
end
el se
if x >5 then
begin
X .= x * 100;
X = X * X;
end
el se
begin
X :=(x+1) [x
X =X * 2
end;

Note that the first if/then block in the example above is equivalent to the following
if/then block that uses the And logical operator.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 30

Example

var X:. integer;

x = 10;

{ Rem nder: bool ean expressions nust be grouped in parentheses
when combi ned by a | ogical operator }

if (x=10) And (x * 2 < 20) then

3,
2.

= x
=X + 2

2.9 Case Statement

A case statement examines a variable and lets you execute a different statement or
group of statements depending on its value. Each "case" can include a single value, a
list of values separated by commas, or define a range between two values (included in
the range) using a double-dot notation (..) between the values. Place a colon after
the end of the value lists. After each case is defined, you can place a single statement
to be executed, or a group of statements surrounded by a begi n/ end block.

Use the el se statement to execute statements when a value doesn't fall within any of
your pre-defined cases. The begi n/ end statements are optional after el se in a
case statement, even if you have multiple statements in the el se block.

Note: You can use all comparative data types in the case instruction, i.e., including
strings, floats, and even booleans; although use of floats and booleans in
case statements are uncommon.

Single Value Case Statements
Syntax

case testexpression of
casevaluel:
[begin]
statements;
[end;]
casevalue2, casevalue3, ..., casevalueX:
statement;
casevalueY:
statement;
else
[begin]
statements;
[end;]
end;

The example below shows a case statement that operates on single values only.

© 2003-2006 WL Systems, Inc.

31

WealthScript Language Guide, Wealth-Lab Developer 4.0

Example
var n: integer;

n := Round(Random* 5) + 1;

case n of
1
ShowMessage(
2:
ShowMessage(
3.
ShowMessage(
4.
ShowMessage(
el se
ShowMessage(
end;

One');
Two');
Three');

Four');

None of the Above');

Case Statements Using a List of Values

The example below uses a list of values for the cases. It also shows how to use
begi n/ end blocks to execute multiple statements for a case.

Example
var n: integer;

n := Round(Random * 10) + 1;

case n of
1, 2:
begin

ShowMessage(' One, Two');

ShowMessage(' Buckl e nmy Shoe

end;
3, 4.
begin

ShowMessage(' Three, Four');
ShowMessage(' Trade Sone More

end;

5..8:
ShowMessage(

el se

end;

'Between 5 and 8,

)

)

i ncl usi ve:

ShowMessage(' Col l ect your Profits now');

+ IntToStr(n));

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 32

2.10 Looping Statements
2.10.1 Summary

Use looping statements to repeat the execution of one or more statements numerous
times. There are several types of looping techniques possible:

For Loop|s2)
The f or loop uses an index variable to repeat a statement or block of statements.

While Loogg?ﬁ
This type of loop continues to execute while a test condition evaluates True.

Repeat Loop/a4!
Similar to a the While loop, a Repeat loop makes sure that the statements within

the loop are executed at least once.

Breaking Out of a Loop 34
It's not always necessary to run a loop to its completion. When the code inside a
loop has served its purpose, use the br eak statement to terminate a loop to save

processing time.

2.10.2 For Loop

The f or loop uses an index variable to repeat a statement or block of statements.
Within the repeated statement block you can access the value of the variable used to
control the loop.

Syntax

for numericvariable := start to end do
[begin]

statements;
[end;]

If you want the f or loop to repeat more than a single statement you must enclose the
statements in a begi n/ end block.

Example

var n: integer;
var x: float;
X = 2;

{ Repeat a single statenent 10 tines }
for n :=1to 10 do

X =X * 2;
{ Repeat a group of statenents 10 tines }
for n:= 1 to 10 do
begi n
X =X * 2;
X = X + 5
end;

© 2003-2006 WL Systems, Inc.

33 WealthScript Language Guide, Wealth-Lab Developer 4.0

{ Use the index variable in the |oop }

for n :=1to 10 do

begi n
X
X

end;

X +n* 2;
x /| n;

Counting Backward

You can count backwards instead of forward in your f or loop by using downt o instead
of t 0 in the loop.

Example
var n: integer;
for n := 10 downto 1 do
begin
end;

2.10.3 While Loop

Use the whi | e loop to execute statements as long as a certain boolean condition is
true. The condition should be enclosed in parenthesis, and can be any value Boolean
Operation.

Syntax

while booleanexpression do
[begin]

statements;
[end;]

Example

var nl, n2: integer;

nl := 10;

n2 := 50;

while (nl < n2) do

begi n
print(IntToStr(nl));
nl :=nl + 3;

end;

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 34

2.10.4 Repeat Loop

The r epeat loop will execute statements until the specified condition is true. This is
similar to the whi | ess] loop, but the r epeat loop checks the condition after the first

pass of the loop. This guarantees that the statements within the loop will execute at
least once.

Note that this loop does not require begi n and end for multiple statements since the
block of loop code is fully contained within the repeat . . until keywords.

Syntax

repeat
statements;
until booleanexpression ;

Example

var nl, n2: integer;

nl := 10;

n2 := 50;

repeat

print(IntToStr(nl));
nl :=nl + 3;

until (nl1 > n2);

2.10.5 Breaking Out of a Loop

Sometimes it's necessary to break out of a loop before it completes. There are two
ways you can do this.

The br eak statement takes you completely out of the loop, and resumes execution at
the statement immediately after the loop.

Syntax
break;

Example

var i: integer;
for i :=1 to 10 do
begin

if Random > 0.5 then

br eak;

end;
/ / Execution resunes here
Print(IntToStr(i)) ;

The cont i nue statement takes you back to the beginning of the loop and continues
with the next iteration, skipping any statements after the cont i nue.

Syntax

continue;

© 2003-2006 WL Systems, Inc.

35 WealthScript Language Guide, Wealth-Lab Developer 4.0
Example
var i, n: integer;
n:=0;
for i :=1 to 10 do
begin
i f Random > 0.5 then
conti nue;
n:=n+i;
end;
2.11 Functions and Procedures
2.11.1 Overview

Functions and procedures are blocks of code that you can execute whenever needed
from any point within your script. You give these code blocks their own "name", and
can then execute the code by calling it by name.

A rule of thumb is that when you find yourself writing the same block of code more
than once in your scripts, there's a good chance that you should convert that block of
code into a function (if you need a value returned) or a procedure (to do some other
repetitive operation, like drawing trendlines on a chart).

Declaring Procedures/s8
Procedures must be declared above the calling routine using the syntax found in
this topic.

Declaring Functions/sh
The main distinction between a function and a procedure is that a function
returns a value to the caller, while a procedure does not. Like procedures,
functions must also be declared above the calling routine.

Calling Functions and Procedures|ss
Similar to double-clicking on a Windows shortcut to run a program, you call
functions and procedures using the name in their declarations. When the name is
encountered in code, the "small program" found within the function/procedure
block is run. When the function/procedure completes its routine, program
execution begins at the next statement following the call.

Passing Parameters|4
More often than not, you'll want to pass values (or objects) to functions and
procedures for further manipulation. Using the parameter list, you have the
choice of passing arguments by value or by reference.

Scope of Variables/42)
It's possible for variables to be accessed in more than one routine. If you're not
careful with the placement of your
variable declarations you could unknowingly be modifying the value of a variable
used in multiple routines.

Exiting a Procedure/4)
Use the Exi t statement to terminate a function or procedure without executing

any remaining statements.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 36

Native and Re-usable Functions/+4
One characteristic of functions and procedures is that they are re-usable. You can
build your own library of functions and procedures and include them in different
ChartScripts. WealthScript itself is made up of hundreds of other "native"
functions and procedures. You'll call native functions just like a function you have
written yourself, but since they are part of the WealthScript language, you don't
have to declare them!

2.11.2 Declaring Procedures

Like functions, procedures must be declared before they can be referenced in your
script. This means that they must appear towards the beginning of your script, above
the main routine of your ChartScript code.

Use the pr ocedur e statement followed by a unique name to declare a procedure, as
shown below. Procedures follow the same naming rules|16] as normal variables.

Syntax

procedure procedurenamel[([var] variablelistl: typel; [var] variablelist2: typeZ2;
... [var] variablelistX: typeX) 1;
begin

[procedure-scope variable declarations]

[statements]

end;

Item Description

procedurename A valid name that follows variable naming rules/1d).

variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules/i5. When multiple types
exist in the parameter list, they are separated by semicolons.

type One of the valid data type names/11.

statements WealthScript function/procedure code

Remarks:

e Use procedures when you do not need to return a value to the caller.

e After the procedur e statement is a begi n/ end block that contains the code
that will execute when you call the procedure.

e By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an
argument by reference. For more information, see Passing Parameters/4d] in this
chapter.

e Declarations of the variables in the parameter list are sufficient for their use
throughout the procedure. In the procedure-scope declarations, declare only
additional variables you need for use within the procedure; for interim
calculations, for example.

e Excluding object and record types, procedure-scope variables can be declared in
the procedure declaration, i.e., immediately after the pr ocedur e statement and

before the first begi n. For this method, use one var statement followed by

© 2003-2006 WL Systems, Inc.

37 WealthScript Language Guide, Wealth-Lab Developer 4.0

variablename: type; as shown below.

Example

{ This is a procedure and therefore has no return val ue }
procedur e DoSonet hi ng;

var
i, j: integer;
f: float;
str: string;
begin
/1 Your "do something" procedure code would go here
end;

2.11.3 Declaring Functions

Like procedures, functions must be declared before they can be referenced in your
script. This means that they must appear towards the beginning of your script, above
the main body of your ChartScript code.

Use the f unct i on statement followed by a unique name to declare a function, as
shown below. Functions follow the same naming rules/191 as normal variables.

Syntax

function functionname[([var] variablelistl: typel; [var] variablelist2: type2; ...
[var] variablelistX: typeX) 1: returntype;
begin

[function-scope variable declarations]

[statements]

[Result := expression ;]

end;

Item Description

functionname A valid name that follows variable naming rules/:1.

procedurename A valid name that follows variable naming rules/1d).

returntype One of the valid data type names/111.

variablelist A single variable name, or a comma-separated list of variables
that follow the variable-naming rules/16. When multiple types
exists in the parameter list, they are separated by semicolons.

type One of the valid data type names/1.

statements WealthScript function/procedure code

expression An expression of type returntype

Remarks:

e Use functions when you need to return a value to the caller. Specify the data
type (returntype) of the return value (Result) at the end of the f uncti on

statement, preceded by a colon.

o After the functi on statement is a begi n/ end block that contains the code
that will execute when you call the function.

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 38

e By default, variables are passed by value to procedures and functions. Use the
optional statement var within the argument list when you want to pass an

argument by reference. For more information, see Passing Parameters/4d] in this
chapter.

e Declarations of the variables in the parameter list are sufficient for their use
throughout the function. In the function-scope declarations, declare only
additional variables you need for use within the procedure; for interim
calculations, for example.

e Excluding object and record types, function-scope variables can be declared in
the procedure declaration, i.e., immediately after the f unct i on statement and

before the first begi n. For this method, use one var statement followed by
variablename: type; as shown below.

Example

{ This sinple function returns the integer 1 }
function MyFunction: integer;
var
i: integer;
f: float;
begin
P

.bZ
= Round(i * f);

{ And this one returns the string '<WD>!" }
function Func2: string;
begin
Result := 'Wealth-Lab Devel oper 4.0!";
end;

/1 Call the functions and show the result
ShowMessage(Func2 + ' is Nunmber ' + IntToStr(MyFunction) + '!');

Function Return Values

Although it is optional, it makes little sense to declare a function that does not return
a value. Notice in the above function examples that an expression of type returntype
is assigned to a variable named Result. The Result variable is a special variable that

is available only in functions. Always assign the return value of your functions to the
Result variable. The assignment may be found at any point within the function block,
although as it is a "result", this statement is often the last one.

Recursion

Recursion refers to the ability of a function to call itself. Using recursive techniques,
you can write very compact and efficient code that performs tasks that might be
otherwise unmanageable. Recursive, or "reentrant", functions may be programmed in
WealthScript. A classic example of a recursive function is one that calculates the
factorial of a number, x!.

Example

function Xfactorial (x: integer): float;
begin

© 2003-2006 WL Systems, Inc.

39 WealthScript Language Guide, Wealth-Lab Developer 4.0

var i: integer;

var f: float;

i = x - 1;

if i <2 then // No nore calls!
Result := x

el se
Result := x * Xfactorial (i);

end;

{ test the function }
var y: float;

var j: integer;
for j :=0 to 10 do
begi n

y := Xfactorial (|);
Print(IntToStr(j) + #9 + FloatToStr(y));
end;

2.11.4 Calling Functions and Procedures

Since procedures do not return values as do functions, some differences exist in the
manner in which they can be called. In both cases, remember that the function or
procedure must be declared before you can access it by name. Also, it's perfectly
valid to call functions from within functions, procedures from functions, etc.

Procedure Calls

There's only one way to call a procedure - by using its name in your script code as a
single statement. If the procedure has an argument list, you must supply properly-
typed expressions for each argument in the procedure declaration.

Example

{ This procedure colors the volune histogramof all up bars green and
all down or flat bars red. It is included with your installation of
Weal t h-Lab Devel oper 4.0 in the "Studies" ChartScript folder }
procedure Vol uneCol or;
var Bar: integer;
begin
for Bar := 1 to BarCount - 1 do
if PriceClose(Bar) > PriceC ose(Bar - 1) then
Set Seri esBar Col or (Bar, #Volune, #G een)
el se
Set Seri esBar Col or (Bar, #Vol une, #Red);
end;

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 40

{ Execute the procedure by calling it }
Vol unmeCol or;

Function Calls

Because functions return a result, more possibilities exist. As with procedures, use
the function's name and provide properly-typed expressions for each argument in
the function declaration.

e Most commonly, you will use a function like an expression. If the function returns
a boolean, for example, you can assign the function to a boolean variable. The
function call appears on the right side of the assignment.

e Likewise, you may use the same boolean function in any expression that requires
a boolean expression - as the conditional test expression in an If/Then statement
for instance.

e If you do not care about the function's result, you may call the function in the
same manner as a procedure - as a stand-alone statement. The function's
processing will be the same whether or not you choose to use its result in an
expression or store it in a variable.

Example
function MyFunc: integer;
begin
Result := 100;
end;

var IntVar: integer;
Print(MyFunc + MyFunc); /I/Prints 200 to the debug wi ndow
I ntVar := MyFunc; [/l ntVar now contains 100

2.11.5 Passing Parameters

You pass parameters to a function or procedure by defining a parameter list in the
function or procedure declaration. The parameter list occurs after the function or
procedure name, and contains a list of parameters enclosed in parenthesis. Each
parameter is declared by name and data type separated by a colon. Parameter
declarations with different data types should be separated by semicolons. You can
declare multiple parameters of the same data type by separating them by commas.

The parameter list that appears in the function/procedure declaration is in itself a
formal declaration of the variables that will be used in the function/procedure. Of
course, if you need other variables for interim calculation within the routine, they
must be declared using the conventional notation/91.

Note: You may see some examples of function or procedure calls in which two
empty parentheses are used for following the name, as in Bar Count (),
which is the WealthScript function to return the total number of bars in the
chart. These are simply calls to functions/procedures with blank parameter
lists. In Wealth-Lab Developer 4.0 you can be sure that calling such routines
with or without the empty parentheses will yield the same result. However,
calls to COM methods containing blank parameter lists may require the
empty parentheses to be included.

© 2003-2006 WL Systems, Inc.

41

WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

{ Declare Functions and Procedures }
function Cube(Paranil: float): float;
begin

Result := Paraml * Paraml * Parant;
end;

procedure Witelt(Bar, Value: integer);
begin

Print(IntToStr(Bar) + ': ' + IntToStr(Value));
end;

function MySMA(Bar, Series, Period: integer): float;

begin
var i: integer;
var total: float;
total := 0O;
for i := Bar downto Bar - Period + 1 do
total :=total + GetSeriesValue(i, Series);
Result := total / Period;
end;

{ Now call them}

var n, X: integer;

n := BarCount - 1,

X := Round(Cube(MySMA(n, #C ose, 20)));
Witelt(n, x);

By Reference or By Value

When the var statement is not used in a variable declaration within the argument list
of a procedure or function declaration, variable parameters are passed by value. This
means that a copy of the variable's value is created and "passed" to the
function/procedure for use. Changes made within the function/procedure to a variable
passed by value will not affect the original value of the variable in the caller, or calling
procedure.

The opposite is true when the var statement js used. In a function's or a procedure's
parameter list, the var statement marks the variable(s) to be passed by reference.

When passed by reference, changes to the variable within the function/procedure will
affect the value of the variable in the calling procedure as demonstrated below. (In
reality, the routine operates on the same variable and what is passed is actually a
pointer to that variable in computer memory.)

Example

procedure PassParans(var ChangeMe: integer; WontChange: integer);
begin

ChangeMe := 100;

wont Change : = 100;
end;

var Onel nteger, Twolnteger: integer;

Onel nteger : = 1;

Twol nt eger : = 2;

PassPar ans(Onel nt eger, Twol nteger);

ShowMessage(' Onel nteger is now ' + IntToStr(Onelnteger));
ShowMessage(' Twol nteger is (still) ' + IntToStr(Twolnteger));

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 42

Note that although a procedure does not provide a return result, it's perfectly legal to
use by-reference parameters in a procedure to alter variables in the calling routine.
The downside is that this advanced coding technique can lead to equally complex
problems that are difficult to trace since the same variables can be altered in more
than one procedure.

2.11.6 Scope of Variables

Variable scope is the extent to which your code has access to declared variables.
Depending on the location of a variable declaration, it may be accessible only by a
function, a procedure, the main ChartScript routine, or all of the above! Variables
declared for objects using the Type statement18 have their own special scope as
described in the Obijectsi? chapter.

Generally speaking, three levels of scope exist in your ChartScripts:

e Script-wide scope: Variables declared at the top of a ChartScript can be
referenced by any routine below the declaration.

e Procedure or function scope: Variables declared within a function or procedure
can be accessed only by the function or procedure in which they are declared.

e Main routine scope: Like script-wide scope, variables are available to routines
below the declaration, but because of its placement, these variables cannot be
accessed by code above the declaration.

These concepts are illustrated in the following example. Note that if you try to use the
MainRoutineScope variable within the Scoping procedure, an error would result.

Example

{ A variable declared here can be accessed by any
procedure or routine bel ow }
var Scri pt Scope: integer;

procedure Scopi ng();

{ Variables declared within a function or procedure can be
accessed only by the function or procedure }

begin

var ProcedureScope: integer;

Scri pt Scope : = 100;
Pr ocedur eScope : = 2;
end;

{ Variables declared bel ow are not accessible by any routine above }
var Mai nRouti neScope: i nteger;

Mai nRout i neScope: = 1;

Scopi ng;

ShowMessage(' Scri pt Scope set by Scoping procedure = ' +
IntToStr(ScriptScope));

Scri pt Scope : = 200;

© 2003-2006 WL Systems, Inc.

43 WealthScript Language Guide, Wealth-Lab Developer 4.0

2.11.7 Exiting a Procedure

Functions and procedures exit automatically upon processing the last statement
contained therein. To terminate a function or procedure prematurely so that Wealth-
Lab does not execute any of the statements that follow, use the exit statement.
When you call exi t, program control is passed away from the current procedure
immediately, and program control resumes with the next statement following the
procedure call. If exit is found in the main body of the ChartScript (i.e., not within a
function or procedure), it terminates script processing altogether.

Syntax

exit;

Example 1

{ Don'"t run the script on the synbol 'T" }
var Bar: integer;
if GetSymbol ='T then

exit;

for Bar := 20 to BarCount - 1 do
begi n

{ Trading system here }

end;

The next example demonstrates the optimization technique used for custom indicators
in accessing their data. If the function has been called previously from elsewhere in
the script, the former result is found and returned to the caller. In this case, EXi t

terminates the method immediately so as not to waste time recalculating all the
indicators values.

Example 2

{ Typical indicator usage }
function I nverseFi sherSeries(Series: integer): integer;
begi n

var Bar: integer;

var sName: string;

var Val ue, e2y, y: float;

sName : = 'lInverseFisher(' + GetDescription(Series) + ')';
Result := Fi ndNanedSeri es(sName);
if Result >= 0 then
Exit;
Result := CreateNanedSeries(sName);
for Bar := 0 to BarCount - 1 do
begi n

e2y (= exp(2 * GetSeriesValue(Bar, Series));
Value := (1 e2y - 1) / (e2y + 1);
Set Seri esVal ue(Bar, Result, Value);
end;
end;

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 44

2.11.8 Native and Re-usable Functions

2.12

Native Functions and Procedures

WealthScript contains hundreds of built-in functions and procedures that you'll use
extensively in your scripts to control trading rules, plot indicators, and annotate the
chart. You call these functions and procedures just as you'd call one that you'd
created yourself. The WealthScript Function Referencels1 and the Function QuickRef
contain a full list of the native functions and procedures available in WealthScript.

Including Functions and Procedures

You can build your own library of re-useable functions and procedures and include
them in different ChartScripts. This is a powerful capability that can save you hours of
copy and pasting effort, and makes it much easier to maintain your code. See the
Include Manager topic for more information.

Error Handling

When a ChartScript encounters a compilation or run-time error, processing stops and
an error message appears below the ChartScript Editor. You can click on the error
message to pinpoint the line of code that generated the error.

Other run-time and logic errors occurring in a function or procedure can be more
difficult to isolate and solve. This is because the error in the ChartScript Editor will
point to the statement calling the function or procedure. See the ChartScript
Integrated Debugger topic in the Wealth-Lab Developer 4.0 Users Guide for
information in troubleshooting these and other types of coding bugs.

Handling Errors

There might be cases where you expect that an error might occur, but you want to
continue processing in the script regardless. WealthScript uses the concept of
structured exception handling to let you handle errors.

Use the t ry/ except/ end statement block to enclose sections of code that might
contain errors. If an error occurs anywhere within the try and except statements,
program flow is transferred immediately into the first statement after the except. If
you want to handle errors silently just don't write any statements between the except
and the end.

In this example we try and store a value in a custom Price Series without having
created the Price Series using CreateSeries. We trap and report the error and continue
with execution of the script.

© 2003-2006 WL Systems, Inc.

45 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

var MySeries: integer;
try
Set Seri esVal ue(100, MySeries, 1.234);
except
ShowMessage('CreateSeries wasn''t called!');
end;
ShowMessage('but Script Continues to Execute');

2.13 Arrays

An array is a collection of values of the same data type that you can access by index
number. For example, you can create an array that can hold 100 integer values, or
25 string values. You access the elements of an array by their index numbers. See
the COM Support Chapter in the Wealth-Lab User Guide for a description and
examples on COM Variant Arrays.

Declaring Arrays

Arrays are declared with a special form of the var statement. You provide the name

of the array and the upper and lower bounds, which must be a literal integer or a
declared constant that appears before the array declaration.

Example

{ Declare an array that can hold 100 integers }
var MyArray: array[l..100] of integer;

{ Declare an array that can hold 25 strings }
var BunchOf Strings: array[l..25] of string;

{ Use a constant to specify the upper bound }
const UB = 10;
var Root BeerFl oats: array[0..UB] of float;

To declare a multi-dimensional array, simply append of arr ay statements as shown
in the following example.

Example

{ Each elerment of this nulti-dinmensional array are assigned a val ue
equal to the product of its indices }

var i, j: integer;

var arMulti: array[1l..10] of array[l..20] of float;

{ Fill the array }
for i :=1to 10 do
for j :=1to 20 do
begin
arvulti[i, j] :=1 *7j;
Print('[' + IntToStr(i
+ ', " +IntToStr(j
+ FloatToStr(arMuilt

)
)+] =
i 1))

end;

© 2003-2006 WL Systems, Inc.

WealthScript Language Syntax 46

Accessing Array Elements

Use the index number to access individual elements of the array. You can read the
values from an array, and set values to an array.

Example
var MyArray: array[1l..100] of integer;
var nunber: integer;

number := MyArray[1l] + MyArray[2];
MArray[3] := nunber;

Looping through Array Elements

The various Looping Statements in WealthScript provide a powerful way to work with
array elements.

Example
var MyArray: array[l..100] of integer;
var i, nunber, TheSum i nteger;
TheSum : = 0;
for i :=1 to 100 do

TheSum : = TheSum + MyArray[i];

Creating Synchronized Arrays

The number of elements of an array must be specified in the var statement that

declares an array, and it must be a constant value. However, you can create a special
type of array that automatically contains the same number of elements as bars in your
chart. Just specify zero as both the upper and lower bounds of the array.

Example

{ Create an array synchroni zed to the nunber of bars in the chart }
var Snoot hedAverage: array[0..0] of float;

var i: integer;
Srmoot hedAverage[0] := (PriceH gh(0) + PriceLow(0)) / 2;
for i := 1 to BarCount - 1 do
Snoot hedAverage[i] := (((PriceH gh(i) + PriceLowi)) / 2) +
Snmoot hedAverage[i - 1]) [/ 2;

It can be useful to declare a synchronized array of an enumerated typel:3l to hold
state data for a particular bar in the chart.

Example

var Bar, AvgH : integer;
type H Cond = (H Rise,H Flat,H Fall);
var Hi Mt Cond: array[O0..0] of Hi Cond;

AvgH = SMASeries(#Hi gh, 20);
for Bar := 20 to BarCount - 1 do
If @AvgHi[bar] > @\wgHi [bar-1] then
Hi Mkt Cond[bar]:= H Ri se
else if @\wgHi[bar] = @\WwgHi [bar-1] then
Hi Mkt Cond[bar]:= Hi Fl at
el se

© 2003-2006 WL Systems, Inc.

WealthScript Language Guide, Wealth-Lab Developer 4.0

Hi Mkt Cond[bar]:= Hi Fall;

Passing Arrays as Parameters to Functions and Procedures

You can pass an array as a parameter to a Function or Procedure. To do this you must
use the t ype statement (normally used when creating new Obijectu1? types) that
describes the type and bounds of the array. You then declare the array using this
type. You use the same type within the function or procedure parameter list.

Note: Types must be defined outside of a type declaration. In other words, you
cannot define a type within another type.
Ref: http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/topic?id=4691
Example

type TWArray = array[0..0] of float;

{ Note AnArray is passed by reference }
procedure ZeroArray(var AnArray: TMyArray);

begin
var i: integer;
for i :=0 to BarCount - 1 do

AnArray[i] := O;
end;

var MyArray: TMArray;
var Bar: integer;

{ Put values in the last 10 elenents of MyArray }

for Bar := BarCount - 10 to BarCount - 1 do
begin
MyArray[Bar] := Bar;
Print('ZeroArray[' + IntToStr(Bar) + '] =" +

Format Float('#.0', MyArray[Bar]));
end;
ZeroArray(MyArray);
{ MyArray, which has the sanme nunber of elenments as the chart,
now has all of those elenents initialized to zero. }

Print("');
for Bar := BarCount - 10 to BarCount - 1 do
Print('ZeroArray[' + IntToStr(Bar) + '] ="' +

Format Float('#.0', MyArray[Bar]));

Note: If the var statement were not included in the argument list of the procedure,
the array would be passed by value. In other words, a copy of the array is
made available to the procedure to which it is passed. Therefore, changes
made to the copy of the array (AnArray) will not affect the original array
(MyArray) in the calling procedure.

© 2003-2006 WL Systems, Inc.

Working with Price Series 48

3 Working with Price Series
3.1 Introduction to Price Series

In every ChartScript you will in some way change, manipulate, test, etc. a Price
Series. We recommend that you take some time to fully understand the concepts
explained in this chapter.

What is a Price Series?|4)
This special internal data structure, which always has the same number of

elements as bars in the chart, provides quick access to your data and an easy way
to refer to it.

Handles to Price Series/49)

To use a Price Series you just need to get a handle on it. See how in the topics in
this chapter.

Creating Your Own Price Series|s4]
Sometimes you'll want to generate a brand new series one element at a time.

Accessing a Single Value of a Price Series/ss!
These functions return individual values of standard price series.

Using @ Syntax to Access Values from a Price Series/sH
Are you tired of typing the Set/GetSeriesValue function syntax? Use the @-
symbol shorthand notation instead.

Price Series Frequently-Asked Questions/stl
. in case you still have some.

3.2 What is a Price Series?

A Price Series is a special type of internal data structure in WealthScript. Simply
put, a Price Series is a sequence of values, one value for each bar in the chart.
Consequently, you can think of a Price Series as a 1-dimensional array of values in
which the index of the array are the bar numbers of the chart.

In ChartScripts, you will refer to Price Series using handles. A handle is an integer
value used to reference a Price Series in memory. You don't have to worry about the
values of handles (Wealth-Lab takes care of these details for you), rather, using
WealthScript functions you will obtain and assign handles to your own well-named
integer variables to remind you of the contents of series to which the handle refers,
like "My15PeriodAvgSeries."

To learn more about handles, read the topics in the next section, Handles to Price
Series.

© 2003-2006 WL Systems, Inc.

49 WealthScript Language Guide, Wealth-Lab Developer 4.0

Characteristics of all Price Series:

e A Price Series is a series of data values of type f | oat . Each value is single
precision, which has 7 to 8 significant digits.

e A Price Series always contains the same number of values as bars in your chart.

e A Price Series has a constant value, called a handle (of type i nt eger) which you
use to make reference to the complete series of values.

See Also:

Standard Price Series and Their Constants/sd]
Functions that Return a Price Series Handle/st)

3.3 Handles to Price Series

3.3.1 Overview

In Wealth-Lab Developer 4.0, the proper use of Price Series and their handles is
essential to obtaining accurate back-testing results. Once you have mastered these
concepts, you will be well on your way to understanding how to create trading
systems as simple or complex as you like.

Standard Price Series and Their Constants/s6]
Several pre-defined named constants provide access to Price Series that you will
continually use in your ChartScripts. Find out which ones they are.

Functions that Return a Price Series Handle/st)
WealthScript contains a great number of functions that return handles of new
Price Series. With these functions, you can create indicators to your specification
or even perform operations across complete Price Series with just one statement!
However, to use a new Price Series, you'll have to designate your own handles.

Functions that Accept a Price Series Handlels?]
When a WealthScript function calls for a Series as an integer argument, you must
insert a valid Price Series handle. By doing this, you're making reference to the
Price Series on which the function will operate.

Checklist for Creating Price Series Handles

Still have doubts? Follow this handy checklist for using Price Series handles in
ChartScripts. Note that the following is not necessary if you're going to use a
Standard Price Series constant, such as #Cl ose or #Vol une.

Step 1. Declare an integer variable that you will use as the handle for your new
Price Series.

Step 2. Assign a function that returns a Price Series handle, an integer, to your
variable. If this function is not CreateSeries, you're finished!

Step 3. If you used Cr eat eSeri es in step 2, then you should use the
SetSeriesValue function to assign values to your new series. If you don't
do this, the series will hold the value zero (0.0) for every element.

© 2003-2006 WL Systems, Inc.

Working with Price Series 50

3.3.2 Standard Price Series and Their Constants

Some Price Series are ubiquitous, such as the series of OHLC values. These are
referred to as the Standard Price Series. For these series, and for a few others
described below, Wealth-Lab has established "constant handles" that you can use to
rapidly access those series. Four of these pre-defined handles are #Open, #High,
#Low, and #Close.

The handle #0pen always refers to the series of all the opening prices of a chart's
primary data source. Likewise, #High refers to the series of all the high prices of a
chart's data source, and so on.

Remember, these handles make reference to the entire series and not just one
particular value in the series. To find out how to obtain a single value from a Price
Series, see the topic, Accessing a Single Value of a Price Series/s).

Let's visualize what we have described by considering the following illustration.

MSFT Daily

as of 12/04/02 a0
1 2002 Wealth-Lab, Inc, ;

1]

| |
r.80
; 7.75)
.70
I%':I Bar Index
| 7ED

Mumber ;
T.50
Bar Mum. u] 1 2 3 4 =3] 7 g 9 10 11 Price Series
Frice A0pen TH1 | 758 |7E4 | FGBG | 775|781 809|811 | 606 | 786 | 763 | T.00 (#0pen;]
Series #High TES | TE9 | 772|777 | 788 |806 814 | 516 | 813 | 794 | 785 | 769
Handles #L oy FAY | TEB | TE9 [FE3 | FU3|TEE (805 | 803 | VO3 |VEE | 756 | TVS Price Series
#Close Y453 | TE3 | TET | FGEE | 784 | 502 803 | 843|784 | 770 | 785 | 775 «4— (#Close)

Assuming that this chart's data source has no other values to the left or right (early or
later in time, respectively), we can observe four of the Standard Price Series, each
having 12 bars, which are numbered 0 to 11. Later, we'll show you how to

access a single value of a Price Series|ss).

Completing the list of Standard Price Series we have #Volume, #Openlnterest,
#Average and #AverageC. The last two, which are handles to the average of other
Standard Price Series, merit a definition:

#Average
Returns the complete Average Price Series (all bars) as defined by the equation:
(High + Low)/ 2

#AverageC
Returns the complete Average Price Series weighted by closing prices as defined
by the equation:
(High + Low + Close) / 3

© 2003-2006 WL Systems, Inc.

51

WealthScript Language Guide, Wealth-Lab Developer 4.0

3.3.3

Functions that Return a Price Series Handle

It's impossible to show examples using Price Series without describing WealthScript
functions that accept, and most often, return handles to Price Series. WealthScript
has many such functions, which generally fall into two groups - Indicator Series
Functions and Price Series Operator Functions.

Price Series Indicator Functions

By using WealthScript Indicator Series Functions, you will discover how easy it is to
create a new Price Series of averages, oscillators, statistical measurements, etc. Let's
demonstrate this by means of an example in which we create a new Price Series of the
5-period Weighted Moving Average of closing prices.

Example
{ Create a 5-period Wighted Myving Average Series
fromthe series of closing prices }

var ser WWA5: i nteger;
ser W5 : = WVASeri es(#Cl ose, 5);

/1 Plot the new series
Pl ot Seri es(ser WRA5, 0, #Blue, #Thick);

What's going on here? After declaring one integer variable, serWMAS5, to hold the
handle of the new Price Series (the WMA series), we've created the new series using
just one statement. The WMASer i es statement returns the handle of the complete
WMA series, which is assigned to serWMA5. Notice that one of the WWASer i es
arguments was the pre-defined handle of the Standard Price Series of closing values,
#Close. Take a closer look at the example with typical values:

Bar Murmber] 1 Z 3 4 = =] 7 =] a 0 ...
#Close 22,58 22,55 19.79| 20,22 18.50 18.06 18.60 17.04| 1740 16.41 16.26 ...
serwMAS| 0,00 0,00 0,00 0,00 2003 1914 158,73 18.07 17.71|/17.20 16,79 ...

You'll notice that the first four values of the new series are zeroes. This is because the
5-period WMA series cannot be calculated until the fifth sample of data (Bar Number
4), therefore the initial samples are filled with zeroes. This is typical with indicators
that require seed data, such as with any moving average function.

See Also:

The Technical Indicator Functions category of the WealthScript Function
Referencel s contains detailed information and examples of all the intrinsic indicator
functions in Wealth-Lab Developer 4.0.

Price Series Operator Functions

Using Price Series Operator Functions you can perform operations on an existing Price
Series and store the result in another. For example, you may want to rescale an
entire series to normalize all of its values. The example below shows how you can
create a new Price Series by dividing each value in the #Close series by a single
value.

© 2003-2006 WL Systems, Inc.

Working with Price Series 52

Example

{ Divide every bar's closing value by the value in the variable dvsr }
var dvsr, serDivCd ose: integer;

dvsr := 2;
serDivC ose := DivideSeriesVal ue(#C ose, dvsr);
Pl ot Series(serDivd ose, 0, #Red, #Thin);

Finally, here's an example of what NOT to do:

Example

{ Don't use handles in ordinary math operations! }
var dvsr, serDivCd ose: integer;

dvsr = 2;
serDivCl ose := #Cl ose / dvsr; // THHS IS A LOG C ERROR!
Pl ot Series(serDivd ose, 0, #Red, #Thin);

You might think this would accomplish the same thing as in the preceding example.
Instead, the error "Not a valid Price Series" occurs when you try to refer to the new
Price Series in the Pl ot Seri es statement. This is because ordinary division does not

create a new Price Series. You must use a WealthScript function that returns a Price
Series integer handle as in the previous example with Di vi deSeri esVal ue.
See Also:

The WealthScript Function Referencels! has detailed documentation for all Price
Series functions.

3.3.4 Functions that Accept a Price Series Handle

WealthScript contains numerous built-in functions that provide access to common
technical-analysis indicators. All of these functions, which may be applied to any
Price Series, are well documented in the WealthScript Function Reference@, but let's
pick a familiar one to get a flavor for their use.

For example, you may like to obtain the simple moving average of a Price Series at a
specific bar. Simple enough (no pun intended), you would choose the SMA function
to return a Simple Moving Average. Here's the syntax for the SMA function that
returns a single float value:

© 2003-2006 WL Systems, Inc.

53

WealthScript Language Guide, Wealth-Lab Developer 4.0

SMA(Bar, Series, Period);

Item Description

Bar Integer. Numeric expression representing the Bar Number of
the chart for which you want to obtain the moving average
value.

Series Integer. The handle of a Price Series on which to base the

moving average. You may use any of the following:

e a Standard Price Series handle such as #Qpen, #Cl ose,
#Vol une, etc

e an integer variable to which a handle was previously
assigned; from a WealthScript function for example

e the complete syntax of any WealthScript function that
returns a Price Series [integer handle]

Period Integer. Numeric expression that is the Period of the moving
average.

Recalling that functions return values, the following example shows how to get the 10-
period SMA at the 51st bar and assign it to a variable of type float named mySma:

Example
var nmySma: float;
mySma = SMA(50, #C ose, 10);
ShowMessage('nySma = ' + Format Fl oat (' #0. 00", mySma));

You may be asking, "Why is the argument 50 and not 51?" In programming, arrays
are typically, but not always, 0-based. Wealth-Lab internally uses 0-based arrays for
Price Series, consequently the first bar number of a chart is actually 0, the second bar
number is 1, and so on. This is an important tedious detail, but, in general you don't
have to be conscious of it.

In the previous example and in those of the topic

Functions that Return a Price Series Handle[st1, only the series of price closes, #Close,
has been used. Note however, that any valid Price Series handle may be used for the
Series argument in a WealthScript function. In the example below, we use the
SMASer i es function to return the handle of the complete 15-period SMA Price Series.

Example

{ Divide every bar's closing value by the value in the variable fd
then take its 15-period Sinple Mving Average }

var fd : float;

var serDi vC ose, ser SMA: integer;

fd:= 2.0;

serDivC ose := DivideSeriesVal ue(#C ose, fd);
ser SMA : = SMASeries(serbDivd ose, 15);

/'l Plot the new series

Pl ot Series(serSMA, 0, #Red, #Thin);

In a subtle way, another important aspect of WealthScript functions has just been
introduced in the above examples. Nearly all indicators functions have two associated
forms: one that returns the value of the indicator on a specific bar, like the SVA
function, and, another that returns the complete Price Series of the indicator, as in the
SMASer i es function. This is explained in greater detail in the topic,

Working with Technical Indicator Functions|ss1.

© 2003-2006 WL Systems, Inc.

Working with Price Series 54

3.4 Creating Your Own Price Series

You can create a new, blank Price Series and plug whatever values you need into it.
You may be wondering why you would bother storing calculated values into a Price
Series. Generally speaking, if you cannot find a WealthScript function or combination
of functions that generates the series or indicator you're looking for, you'll have to
resort to creating the series yourself.

If this sounds difficult, it's not. Simply use the Cr eat eSeri es function to prepare a
new Price Series and then the Set Ser i esVal ue to place values into it. Later, use
the Get Ser i esVal ue function to access the values within your newly created Price
Series. The latter of these functions is covered in its own topic,

Accessing a Single Value of a Price Series/ssl. For more information, refer to the
Checklist for Creating Price Series Handles|4.

Here's the syntax of the Set Seri esVal ue procedure:

Syntax

SetSeriesValue(Bar, Series, Value) ;

Item Description
Bar Integer. Numeric expression representing the Bar Number of
the chart for which Value is to be associated.
Series Integer. The handle of a Price Series.
Value Zloat. Numeric expression of the data to be assigned to Bar in
eries.

In the example below the functions Pri ceHi gh and Pri ceLow are used to retrieve
values from the specified bar of the #High and #Low Standard Price Series. Using
these values we can create a new Price Series that is equal to the current bar's
midpoint between high and low. (You may recall this as being the #Average Standard
Price Series, but we'll create our own new series for the sake of example.) As we loop
through each of the chart's bars, a new value is calculated and inserted into the new
series using the Set Seri esVal ue function.

Example
var M DPO NT, BAR integer;
var fValue: float;

{ The CreateSeries function creates and assigns the handle of a
new Price Series that is initially filled with zeroes }

M dPoi nt := CreateSeri es;
for Bar := 0 to BarCount - 1 do
begin

fvalue := PriceLow(Bar) + (PriceH gh(Bar) - PriceLow(Bar)) /

2
Set Seri esVal ue(Bar, M dPoint, fValue);

end;

/1 Plot the new series

Pl ot Series(MdPoint, 0, #Blue, #Thin);

© 2003-2006 WL Systems, Inc.

55 WealthScript Language Guide, Wealth-Lab Developer 4.0

BarCount
In order to work with Price Series properly, you first need to know how many bars of
data you have available in the chart. Use the Bar Count function to return this
information.
Example

var BarsAvail able: Integer;

Bar sAvai | abl e : = Bar Count;
The next example cycles through the chart data and accumulates the closing prices for
"up" bars in one variable, and the closing prices for "down" bars in another variable,
and then divides the result.
Example

var SUMJP, SUVDOWN, SUMUPDOWN: fl oat;

var BAR i nteger;

Sumlp : = 0;

SumDown : = O;

for Bar := 1 to BarCount - 1 do

begin

if (PriceClose(Bar) >= PriceClose(Bar - 1)) then
Sunmp := SumJp + PriceC ose(Bar)
el se
SunDown : = SunDown + PriceC ose(Bar);

end;

SunlpDown : = Sunlp / SunDown;
Note that in the example, the loop ends at Bar Count - 1. This is because the first
bar of a chart has an index number of 0, the second bar has index number 1, and so
on. Consequently, you must terminate your loops at BarCount - 1, the last bar, or
earlier.
You may also have noticed that the loop started at 1 instead of 0. This was necessary
due to the argument of the second Pri ceC ose statement: (Bar - 1). If Bar were
allowed to be zero, the argument would have evaluated to -1, which does not refer to
any bar of the chart, therefore a run-time error would have resulted.

See Also:

Using "@" Syntax to Access Values from a Price Series/sh

3.5 Accessing a Single Value of a Price Series

Single Values of Standard Price Series

WealthScript has easy-to-remember functions that return the core price and volume
values from your ChartScript data source. These functions are Pri ceOpen,

Pri ceHi gh, PriceLow, Pri ceC ose, Vol une, Openl nterest, PriceAverage,
and Pri ceAver ageC. They return a single value at a specific bar from the
Standard Price Series/sé] that they describe, consequently, it is not necessary to
specify the Price Series as a function argument.

The general syntax for this group of Data Access functions, all of which return a
number of type float, is shown below.

© 2003-2006 WL Systems, Inc.

Working with Price Series 56

Syntax (general)

functionname(Bar) ;

Item Description

functionname Any one of the data access function names: PriceOpen,
PriceHigh, PriceLow, PriceClose, Volume, Openlnterest,
PriceAverage, or PriceAverageC.

Bar Integer. Numeric expression representing the bar of the chart
from which data is to be retrieved.

GetSeriesValue Function

To obtain a single price value from any series, use can use the Get Seri esVal ue
function. Generally speaking, however, you will this function to obtain values from
Price Series created using the Cr eat eSer i es function. As we have just seen,
shorthand methods exist to retrieve single values from Standard Price Series/s51.
Later, you'll discover that Technical Indicators Functions also have a more-
intuitive method s3] to obtain their value at a specific bar.

Get Ser i esVal ue returns a float value of the series at the Bar number.

Syntax
GetSeriesValue(Bar, Series) ;

Item Description

Bar Integer. Numeric expression representing the bar of the chart
from which data is to be retrieved.

Series Integer. The handle of a Price Series.

Note: It's perfectly legal to use Get Seri esVal ue to retrieve, for example, the
closing price of Bar by passing #Cl ose as the Price Series handle. However,
Pri ceC ose is a shorthand statement that a/lways refers to the #Cl ose

Price Series and therefore gives your code better readability.

In the illustrations below, Get Seri esVal ue is used to obtain the values from the

Price Series MidPoint. MidPoint is the handle to a Price Series we created in the
example for Creating Your Own Price Series|s4].

© 2003-2006 WL Systems, Inc.

57 WealthScript Language Guide, Wealth-Lab Developer 4.0

3.6

@ 2003 Wealth-Lsb, Inc. S 1750
17.40
/v, |

17.20

\/ Price Series
MidPaoint 1700
Price Series 1680

#Close

16.60

BarMum | 180 | 181

185 | 186 | 187 | 188 | 189 | 190 [19
HLA6[17.7217.54 (17 66 |17.94 (1745|1724

BarMum| 180 | 181
#HCloze |17 42(17 .

185 | 186 | 187 | 183 | 189 | 190 [19
1OAE(17.7217.54 (17 66 |17.54 (17 .45 |17 .24

PriceCloze | BarNum):

The arrow diagram indicates that if the integer expression BarNum evaluates to 182,
the GetSeriesValue function will return the value of 17.31 when MidPoint is specified.
Likewise, the Pri ceCl ose statement evaluates to 17.19, which is the closing price at
bar number 182.

Using @ Syntax to Access Values from a Price Series

A simpler method is available to access values in a Price Series. If you precede the
Price Series handle variable with a "@", you can access the values in the Price Series
as if it were an array. You can read and write values to a Price Series using this
syntax. This eliminates (*see Note) the need to code GetSeriesValue and
SetSeriesValue, and can substantially reduce the verbiage in a script's code.

Example

var Series: integer;
var x: float;
Series := CreateSeries;

Set Seri esVal ue(0, Series, 123.45);
{ becones }
@series[0] := 123.45;

X := GetSeriesValue(0, Series)
{ becones }
X 1= @eries[0];

Note: The @ syntax is not compatible with Price Series whose handles are stored in a
declared array as the following example demonstrates. In this case, you must

© 2003-2006 WL Systems, Inc.

Working with Price Series 58

use the GetSeriesValue or SetSeriesValue WealthScript functions, as
required.

Example

var Bar, i: integer;
var h: array[O0..1] of integer;

{ Create 2 price series and store their handles in the array }

h[0] := WVASeries(#Cl ose, 5);

h[1] := WWASeries(#C ose, 20);

{ Retrieve the value of each series on the |last bar }
Bar := BarCount - 1,

for i :=0to 1 do

Print(FloatToStr(GetSeriesValue(Bar, h[i])));

{ This is not valid!l }
for i :=0to 1 do
Print(FloatToStr(@[i][Bar]));

3.7 Series Math
3.7.1 Practice

Let's take some time to drive home some points that some users seem to have trouble
grasping (especially those coming from other technical analysis platforms). Please
take the time to do these simple exercises and check your answers in the next topic.

Exercise 1

Imagine that you want to create a Price Series that holds the change in closing price
relative to the first bar of the chart. To do this, you need to obtain the value of the
first bar of the chart and subtract it from the closing prices from all of the remaining
bars. How? Try to plot the new resultant series in a new pane.

Exercise 2

Similar to Exercise 1, create a Price Series that holds the percentage change in
closing price relative to the first bar of the chart. Plot the resultant series. Use the
following formula:

Pct Change = 100 * (CurrentPrice / ValueOnFirstBar - 1)

Exercise 3

In both of the preceding examples, we performed math operations on Price Series by
subtracting, multiplying, and dividing by a single constant value. Now let's use two
different Price Series as the operands by finding the average closing price between the
#High and #Low series. Use the following formula and plot the resultant series:

Avgd osingPrice = (High + Low + Close)/ 3

Exercise 4

Create and plot the difference of the current closing price minus the closing price from
2 bars ago.

© 2003-2006 WL Systems, Inc.

59

WealthScript Language Guide, Wealth-Lab Developer 4.0

3.7.2

Exercise 5

After reviewing the answers to the above exercises, explain the main difference in the
techniques used between the "Answer A's" and the "Answer B's".

Answers

Please try performing the exercises on your own first before peeking at the
answers.
It's better to make the mistakes now!

Exercise 1

{ Answer A}
var DiffSerl: integer;
DiffSerl := SubtractSeriesVal ue(#Cl ose, PriceCose(0));

{ Answer B}
var Bar, DiffSer2: integer;
DiffSer2 := CreateSeries;
for Bar := 0 to BarCount - 1 do
@iffSer2[Bar] := PriceCose(Bar) - PriceC ose(0);

{ Create a pane to plot the new series }

var Di ffPane: integer = CreatePane(100, true, true);
Pl ot Seri esLabel (DiffSerl, D ffPane, #Blue, #Thick, 'Difference from
Bar 0');

Pl ot Seri esLabel (DiffSer2, D ffPane, #Red, #H stogram 'Difference fron
Bar 0');

As you can see there are at least 2 correct answers. Notice though, that Answer A
utilizes a special WealthScript function, SubtractSeriesValue, to subtract a single value
from each element in the Price Series identified in its first parameter. This results in
fewer statements and code that executes faster.

Exercise 2

{ Answer A}
var PctSerl, DivSer, D ffSer: integer;
Di vSer := DivideSeriesValue(#C ose, PriceCose(0));

DiffSer := SubtractSeriesValue(DivSer, 1);
PctSerl := MultiplySeriesValue(D ffSer, 100); }
{ Answer

B
var Bar, PctSer?2: integer;

PctSer2 : = CreateSeries;
for Bar := 0 to BarCount - 1 do
@-ctSer2[Bar] := 100 * (PriceCose(Bar) / PriceCose(0) - 1);

{ Create a pane to plot the new series }

var PctPane: integer = CreatePane(100, true, true);

Pl ot Seri esLabel (PctSer1, PctPane, #Blue, #Thick, 'Pct Change from Bar
Ol .

Pl ot Seri esLabel (PctSer2, PctPane, #Red, #Hi stogramn, 'Pct Change from
Bar 0');

© 2003-2006 WL Systems, Inc.

Working with Price Series 60

Again, we can perform the same calculation in at least two different ways - the choice
is yours! Use whichever makes the most sense to you. Note that the solution in
Answer A can be also written without the use of the interim variables. Below we use a
block-formatting technique to help show the relationship of the parameters to their
functions.

{ Answer A2 }
var Pct Ser1: integer;
PctSer1l := MultiplySeriesVal ue(
Subt ract Seri esVal ue(
Di vi deSeri esVal ue(#Cl ose, PriceCose(0)),
1),
100);

Exercise 3

{ Answer Al }
Pl ot Seri es(#AverageC, 0, #Gay, #Thick);

{ Answer A2 }

var AvgCSerl: integer;

AvgCSer 1 : = DivideSeriesVal ue(
AddSeri es(AddSeries(#Hi gh, #Low), #C ose),
3);

{ Answer B}
var Bar, AvgCSer2: integer;
AvgCSer2 : = CreateSeries;

for Bar := 0 to BarCount - 1 do
@\wgCSer2[Bar] := (PriceHigh(Bar) + PriceLow(Bar) + Priced ose(
Bar)) / 3;

{ Plot the new series in the Price Pane, 0 }

Pl ot Seri esLabel (AvgCSer1, 0, #Fuchsia, #Dotted, 'Avg Closing Price Al
)

Pl ot Seri esLabel (AvgCSer2, 0, #Blue, #Thin, 'Avg Closing Price B);

Did you recognize this as the formula for the #AverageC Standard Price Series|so1?

Exercise 4

{ Answer Al }
var DiffSerl: integer;
DiffSerl := MonentuntSeries(#C ose, 2);

{ Answer A2 }
var DiffSer2: integer;
DiffSer2 := Subtract Series(#C ose, OfsetSeries(#C ose, -2));

{ Answer B}
var Bar, DiffSer3: integer;
DiffSer3 := CreateSeries;
for Bar := 2 to BarCount - 1 do
@iffSer3[Bar] := PriceClose(Bar) - PriceC ose(Bar - 2);

{ Plot the new series in a new Pane }

var Di ffPane: integer = CreatePane(100, true, true);

Pl ot Seri esLabel (DiffSerl, D ffPane, #Gay, #ThickHi st, 'Difference Al
)

Pl ot Seri esLabel (DiffSer2, D ffPane, #Fuchsia, #H stogram 'Difference

© 2003-2006 WL Systems, Inc.

61 WealthScript Language Guide, Wealth-Lab Developer 4.0

A2),
Pl ot Seri esLabel (DiffSer3, DiffPane, #Blue, #Thick, 'Difference B);

Al: The WealthScript function MomentumSeries provides the easiest solution. Many
of the WealthScript Indicator functions provide ready-made solutions for the
most common operations, and only through experience can you get familiar with
them.

A2: Here we delay the #Close series by 2 bars using OffsetSeries. After that, we
simply perform a series difference operation on the original #Close series and its
offset.

B: You can always fall back to doing the calculations one bar at a time and filling
the Price Series created by you. Note that the loop must start at Bar #2 here.
Why? Try putting 0 or 1 for the starting the loop index and execute the script
again (F5). What happens?

Exercise 5
Answer A's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.
2. Use the result of a WealthScript *Series function to assign a series to the
variable.

Answer B's technique:

1. Declare an integer variable to hold a Price Series handle, a reference.

2. Use CreateSeries to assign a new blank price series (filled with zeroes) to the
variable.

3. Loop over bars in the chart to fill the new series with values.

3.8 Price Series FAQs

How do I get the data from the Open, High, Low, Close, or Volume of a bar?

The preferred method is to use the WealthScript functions specifically designed for
this purpose: Pri ceQpen(Bar), PriceH gh(Bar), PriceLow Bar),

Pri ced ose(Bar), Vol unme(Bar) , Openl nt er est (Bar) , Aver age(Bar) ,

Aver ageC(Bar) , where Bar is the Bar Number of the bar for which you want the
data.

Example

{ Get the opening price of the last bar in the chart }
var fQOpen: float;

var Bar: integer;

Bar := BarCount - 1;

fOpen := PriceQpen(Bar);

Equally effective, you may use the general syntax for getting data from any Price
Series, GetSeriesValue or its shorthand @ syntax/sh.

© 2003-2006 WL Systems, Inc.

Working with Price Series 62

Example

{ Get the opening price of the last bar in the chart }
var fOpen: float;

var Bar: integer;

Bar := BarCount - 1,

f Open : = Cet SeriesVal ue(Bar, #Open);

{ or use the shorthand @syntax }
fOpen : = @Open[Bar];

How do I get an indicator's value at a specific bar?

Each indicator has a syntax form that is specifically designed for this purpose. If
you know in advance which indicator you will be using, like SMA, RSI, St ochK, etc.
you can use its syntax. For more information see Accessing Indicator Values/ssl in
the chapter Working with Technical Indicator Functions|ss).

Example
{ Find the 10-period Sinple Myving Avg at Bar Nunber 50 }
var nySma: float;
nmySma : = SMA(50, #C ose, 10);
Showivessage('nmySnma at Bar Number 50 = ' + FornmatFl oat (' #0. 00",
nySma));

Sometimes you will not know in advance which Price Series you will be using. This
may sound strange, but it's the basis of the manner in which re-useable functions
and procedures work. In this case, use the general syntax for getting data from any
Price Series, GetSeriesValue or its shorthand @ syntax/s71.

Example

{ Returns the nunmber of bars ending with EndBar since
Series2 crossed over Seriesl. }
function BarsSi nceCrossOver (EndBar, Seriesl, Series2: integer):

i nteger;
begi n
var i, CntBar: integer;
CntBar := O;
for i:= EndBar downto O do
if GetSeriesValue(i, Series2) < GetSeriesValue(i, Seriesl) then
br eak
el se

CntBar := CntBar + 1;

Result := CntBar;
end;

{ test the function by passing the handles fromtwo different Price
Series }
var b, MySMAHandl e, Bar: integer;

MySMAHandl e : = SMASeri es(#Cl ose, 20);
Pl ot Seri es(MySMAHandl e, 0, #blue, #thin);
Bar := BarCount - 1,

{ Pass MySMAHandl e as Seriesl and #H gh as Series2 to the function }
b := BarsSi nceCrossOver(Bar, MySMAHandl e, #Hi gh);
Print(' The nunber of bars since cross over is: ' + IntToStr(b));

© 2003-2006 WL Systems, Inc.

63 WealthScript Language Guide, Wealth-Lab Developer 4.0

{ Draw a circle on the bar just prior to crossover }
DrawCircle(8, 0, Bar - b, PriceH gh(Bar - b), #red, #thick);

How can I access a Price Series from a symbol other than the one in my
ChartScript?

You can obtain information from Price Series that are not part of the primary
ChartScript Standard Price Series by using the Get Ext er nal Seri es function. See

its entry in the WealthScript Function Reference! s for more information.

See Also: Plotting Indicators Based on Other Symbols/ef]

© 2003-2006 WL Systems, Inc.

Painting the Chart 64

4 Painting the Chart

4.1 Overview

WealthScript provides a set of functions to control how your chart information is
displayed. You can plot indicators, create new chart panes, add text, annotations, and
drawing objects, or even draw bitmap images. Whenever you need to
programmatically perform display tasks in the Chart window, open the Cosmetic Chart
category to find the function that serves your purpose.

To view a chart, open a ChartScript by selecting File/New ChartScript. In the
ChartScript window, the "Chart" tab is selected (by default) to view the chart of the
item selected in the DataSource Tree.

Chart Panes|es!
It is not essential that your code displays additional information on the chart. A
trading system will function the same if you choose not to draw lines, add
annotations, or plot indicators on the chart. However doing so can help you
troubleshoot your scripts, give you visual affirmation that your system is
functioning as designed, or even provide insight for improving methods.

Creating New Panes|e5)
The default panes for price and volume is just one possibility. See how to make
new panes to plot additional indicators.

Plotting an Indicator in a Panelsh
Tell Wealth-Lab where and how you want to plot your Price Series by specifying
the pane's index and drawing style. Also plot indicators based on symbols other
than your primary symbol.

Plotting Multiple Symbols/es
Instead of drawing just a single #Close Price Series of another symbol, display all
of the available information in full OHLC bar or candlestick representations.

Specifying Colors/e3)
Give life to your charts by adding color to bars, text, indicators, backgrounds, and
more!

Drawing Text in a Pane[7
Did you forget what that blue line on the chart represents? Leave no doubt by
adding colorful text legends and other useful annotations.

Drawing Objects in a Pane[
Make your charts come to life by programmatically drawing objects such as lines,
rectangles, and ellipses. You'll be amazed with the way some users are able to
visually express even esoteric concepts in Wealth-Lab Developer 4.0 - like
probability distributions and frequency spectrums!

© 2003-2006 WL Systems, Inc.

65

WealthScript Language Guide, Wealth-Lab Developer 4.0

4.2

4.3

Chart Panes

Panes refer to the subdivided areas of a chart in which price, volume, and other data
is presented. A basic chart contains two panes - one that displays price information
and another that displays volume. Because it contains less information, the volume
Pane is typically smaller than the price Pane.

Useful Chart Panes facts:

1. When it does not make sense to plot an indicator's Price Series in the price or
volume panes, you can create new panesl|es! to display the additional information.

2. Conversely, if the volume pane is not important to you, use the H deVol une
function to make more room for other panes.

3. You can manually resize chart panes by dragging the line that divides two
adjacent panes.

4. Override an auto-scaling of a pane using the Set PaneM nMax WealthScript
function.

Pane Indices

Each chart pane has an associated integer index that is used whenever a WealthScript
function requires a Pane argument. Use this index to specify the pane that will
receive the action of a drawing or plotting function. The two most common panes, the
price and volume panes, always have indices of 0 and 1, respectively.

In previous chapters, we've already seen the Pl ot Seri es statement used, so let's
look at its syntax:

PlotSeries(Series, Pane, Color, Style);

With emphasis on the Pane argument, if we want to plot a series in the price pane we
would pass the value 0 (or a numeric expression that evaluates to 0) as Pane.

Example

{ Connect the high values in the price pane by a thick blue line
and envel ope the volunme histogramw th a thick green line }

var PricePane: integer;

Pri cePane := 0;

{ The Pane argunent can be a nunmber or a nuneric expression }

Pl ot Seri es(#Hi gh, PricePane, #Blue, #Thick);

Pl ot Series(#Volunme, 1, #G een, #Thick);

Creating New Panes

You can create new chart panes to draw other indicators and Price Series using the

Cr eat ePane function. This WealthScript function returns the integer value of the
new pane's index. Therefore you should assign Cr eat ePane to an integer variable in
order to prepare a new pane that you'll use later in a plotting or drawing function.
Although the Price and Volume panes have indices of 0 and 1, respectively, you should
never assume that newly-created panes will have indices of 2, 3, 4, etc. The
function's syntax is:

CreatePane(Height, AbovePrices, ShowGrid): integer;

© 2003-2006 WL Systems, Inc.

Painting the Chart 66

Specify the Height as an integer in pixels of the new pane in the first parameter. A
height of 100 is a good general-purpose value. Pass a boolean value as AbovePrices
to indicate whether this pane will appear above (true) or below (false) the price pane.
ShowGrid is another boolean used to control whether or not grid lines are drawn for
the new pane. If you do not enable the standard grid lines you can call

Dr awHor zLi ne to manually draw your own lines at specific values on the pane.

Your new pane will automatically scale to the various Price Series that you plot within
it. You can use the Set PaneM nMax function to override these calculated values.

In the following example a new Pane is created to draw RSI (Relative Strength Index).
Since RSI can fluctuate between 0 and 100, the Pane is set to min/max at these
values. The default grid is disabled, and we draw our own horizontal lines at the 70
and 30 levels.

Example
var MyRSI, PaneRSl: integer;
M/RSI := RSl Series(#C ose, 14);
PaneRSI := CreatePane(100, true, false);

Set PaneM nhvax(PaneRSI, 0, 100);

Pl ot Series(MyRSI, PaneRSI, #Navy, #Thick);

Dr awHor zLi ne(30, PaneRSI, #Silver, #Dotted);

Dr awHor zLi ne(70, PaneRSl, #Silver, #Dotted);

Dr awHor zLi ne(50, PaneRSI, #Gay, #Dotted);
DrawText ('RSI 14 day', PaneRSl, 4, 4, #Navy, 8);

RSI 14 day
y0.a0

30,00

Pane created
with CreatePane

GM Dail
as of 12;‘25?'02 J.* 40,00
L.

2002 Wealth-Lab, Inc, |:|J_|ji|;|

22.00

bt !
Bt W04, o BT

[F. ﬂ]i¢nl++i+ﬁ.*+$ 24.00

Price Pane

(index 0) 3200

Walume
B.O0 [

“olurme Pane
findex 1)

Notice that each time a new pane is added, it is automatically separated from the
others by a thin horizontal line. For aesthetic reasons you may wish to remove these
lines. To do so, simply add the H dePanelLi nes function to your ChartScript code.

© 2003-2006 WL Systems, Inc.

67

WealthScript Language Guide, Wealth-Lab Developer 4.0

4.4

Plotting an Indicator in a Pane

As we've seen, the Pl ot Seri es function plots the specified Price Series in the
desired Pane. Since PlotSeries can accept any Price Series, you now see the value of
being able to obtain the handle to an indicator, and to creating your own custom Price
Series. For reference, the syntax is as follows:

PlotSeries(Series, Pane, Color, Style);
After specifying the Price Series and the Pane, you then pass the desired Color (using

the color formulated as described in the topic Specifying Colors/esl) and a drawing
style. The drawing style can be one of the following constants:

#Thi n Normal Solid Line
#Dot t ed Dotted Line
#Thi ck Thick Solid Line
#Hi st ogr an Histogram Format
#Thi ckHi st Thick Histogram
#Dot s Dots

Example

{ Plot a 30 day SMA in green and a 200 day SMA in red }
Pl ot Seri es(SMASeries(#Cl ose, 30), 0, #Geen, #Thin);
Pl ot Seri es(SMASeries(#C ose, 200), 0, #Red, #Thin);

Tip: Pass -1 to the function SetSeriesBarColor to prevent drawing of an indicator
for the specified bar(s). This may be useful during periods when an
indicator's value is invalid or in transition.

Plotting Indicators Based on Other Symbols

After working with WealthScript a short time, you'll see that plotting a symbol's Price
Series and indicators based on those Price Series is simply a matter of accessing their
data, and more precisely, obtaining a handle to their data. Once you have a reference
to the data series, you can use it for plotting, and more importantly for calculations
that lead to trading decisions.

Either of the WealthScript functions, GetExternalSeries or SetPrimarySeries, can be
used to access data for a symbol other than the one selected in a ChartScript's
DataSource tree. Generally speaking, SetPrimarySeries is used when you want to be
able to access all the Standard Price Series/s6] of another symbol, or perhaps to
generate a trading signal on the selected symbol while looping through a WatchList.
GetExternalSeries returns a handle to only a single named Series for another symbol,
and is sufficient for most operations requiring the use of external data.

The following two examples, which highlight the use of these functions, produce
identical results.

© 2003-2006 WL Systems, Inc.

Painting the Chart 68

Example

{ Plot HPQ and its 50-day SMA along with nmy chart using
Get Ext ernal Series }

var HPQC ose, HPQ@O, HPQPane: integer;

HPQCl ose := CGetExternal Series('HPQ, #C ose);

HPQB0 : = SMASeri es(HPQC ose, 50);

HPQPane : = CreatePane(150, true, true);

Pl ot Seri es(HPQC ose, HPQPane, #Bl ue, #Thick);

Pl ot Seri es(HPQ@O0, HPQPane, #Bl ack, #Dotted);

Example

{ Plot HPQ and its 50-day SMA along with my chart using
Set Pri marySeries }

var HPQC ose, HPQBO, HPQPane: integer;

SetPrimarySeries('HPQ);

HPQCl ose : = #Cl ose;

HPQB0 : = SMASeries(HPQC ose, 50);

Rest orePri marySeri es;

HPQPane : = CreatePane(150, true, true);

Pl ot Seri es(HPQO ose, HPQPane, #Bl ue, #Thick);

Pl ot Seri es(HPQ®O, HPQPane, #Bl ack, #Dotted);

4.5 Plotting Multiple Symbols

It's easy to plot a full OHLC representation of a symbol other than the one selected in
a ChartScript's DataSource tree. Using PlotSymbol allows you to create a reference
plot of another symbol, however it does not provide access to its data. To access Price
Series data of an external symbol, see the topic

Plotting Indicators Based on Other Symbolslef1.

Syntax
PlotSymbol(Symbol, Pane, Color, Style);

Example

var P: integer;

Pl ot Synbol (' MSFT', 0, #Silver, #Candle);
P := CreatePane(100, true, true);

Pl ot Symbol ("I BM, P, #Blue, #OHLC);

Conversely, you may have data for four Price Series that are not associated with a
symbol. These could be data that you have created based on calculations from an
indicator, for example. To combine these Price Series into a single OHLC
representation, use the PlotSyntheticSymbol function.

Syntax

PlotSyntheticSymbol(Symbol, OpenSeries, HighSeries, LowSeries, CloseSeries,
Pane, Color, Style)

© 2003-2006 WL Systems, Inc.

69

WealthScript Language Guide, Wealth-Lab Developer 4.0

4.6

Example
var RSIO RSIH, RSIL, RSIC, RSIPANE: integer;

RSI O : = RSI Series(#Open, 14);
RSIH : = RSl Series(#Hi gh, 14);
RSIL := RSI Series(#Low, 14);

RSIC := RSl Series(#C ose, 14);

RSI Pane : = CreatePane(100, true, true);

Pl ot Synt heti cSynbol (' RSICandle', RSIO RSIH RSIL, RSIC, RSIPane,
#Red, #Candle);

DrawLabel (' RSI Candl es', RSl Pane);

If you run the example above, notice that the candles will often times appear
incorrect. This is because the RSI of low prices is not always less than the RSI to
open, high and close, so the candle values do not always form into traditionally
correct candles.

Specifying Colors

Many of the WealthScript Chart functions require parameter types that describe a
Color value. WealthScript uses a simple mechanism to pass color information. Colors
are broken down into different intensities for red, green and blue (RGB). Each
intensity level can have a value between 0 (no intensity) to 9 (full intensity). A single
3 digit number expresses a complete color value.

900 = Bright Red 090 = Bright Green 009 = Bright Blue
550 = Olive 050 = Dark Green 444 = Dark Gray

You can also use the following special constants to specify color values:
#Bl ack, #Maroon, #Geen, #0Oive, #Navy, #Purple, #Teal, #Gay, #Silver,
#Red, #Lime, #Yellow, #Blue, #Fuchsia, #Aqua, #Wite, and finally #W nLoss
(used primarily for PerfScripts/i06))

Finally, the three constants that follow refer to lightly-shaded colors often used with
Set Backgr oundCol or to fill the chart's background or Set PaneBackgr oundCol or

to color a pane's background. Nevertheless, these too can be passed as a value to
any WealthScript function argument requiring Color.

#RedBkg, #Bl ueBkg, #G eenBkg

Coloring Bars

You can color individual bars using the Set Bar Col or function. Or, specify the colors
used for up versus down bars with the Set Bar Col or s function.

Example

{ Color all bars that reach a 20-day high green }
var Bar: integer;
for Bar := 20 to BarCount - 1 do
if PriceH gh(Bar) = Highest(Bar, #Hi gh, 20) then
Set Bar Col or (Bar, #Green);

© 2003-2006 WL Systems, Inc.

Painting the Chart 70

See Also:

SetColorScheme and SetSeriesBarColor in the WealthScript Function Reference.

4.7 Drawing Text in a Pane

Use the Dr awText function to annotate a Chart Pane with text.

DrawText(Value, Pane, X, Y, Color, Size);

The first parameter is a string expression that contains the text to be drawn. The
second parameter is the pane's index. The next two parameters specify the x, y
position of the text, in pixels. A position of 0, 0 represents the top left of the Pane.
The next parameter specifies the color to use. The last parameter indicates the font
size. A value of 8 is standard size for drawing text.

Since you specify an absolute position within the pane, this function is most useful to
create a legend for indicators and other Price Series.

Example

Pl ot Seri es(#H gh, 0, #Blue, #Thick);
Pl ot Seri es(#Low, 0, #Red, #Thick);

{ Make a legend for the plotted series }
DrawText (' #Hi gh Series', 0, 100, 4, #Blue, 8);
Dr awText (' #Low Series', 0, 100, 16, #Red, 8);

WealthScript contains additional functions with which to annotate your charts with
text using varying degrees of control. For more information, see their descriptions in
the WealthScript Function Reference:

AnnotateBar, AnnotateChart, DrawlLabel

4.8 Drawing Objects in a Pane

Wealth-Lab Developer 4.0 provides two toolbars, Drawing and Drawing2, which are
filled with drawing objects to employ in manually annotate charts. The Drawing2
toolbar contains the Trendline Tool, whose values at any bar can be found by your
WealthScript code even when drawn manually! For more information, see
TrendLineValue in the Function Reference or visit the Chart Drawing Tools discussion
in the User Guide.

If drawing chart objects manually doesn't appeal to you, then of course Wealth-Lab
Developer 4.0 has a programmatic solution with WealthScript. Using functions from
the Cosmetic Chart category, you have the ability to draw circles, diamonds, ellipses,
lines, rectangles, and polygons (diamonds and triangles).

The example below provides a sampling of a few of the drawing objects available to
you in ChartScripts. Run the example on a Daily DataSource by clicking on several
different symbols in the ChartScript window.

Example
var BAR, Barl1, Bar2, Radius: integer;

© 2003-2006 WL Systems, Inc.

71

WealthScript Language Guide, Wealth-Lab Developer 4.0

var x1, x2, yl1, y2, 11, 12, Pricel, Price2: float;

{ Crcle any 100

day Low }

for Bar := 100 to BarCount - 1 do

begi n

if PriceLow(Bar) = Lowest(Bar, #Low, 100) then

end;

DrawCircle(8, 0, Bar, PriceLow(Bar), #Red, #Thick);

{ Draw a circle around an arbitrary point }

Bar1 : = Bar Count
Bar 2 : = Bar Count

- 40;
- 20;

Set Bar Col or (Barl1, #Blue);
Set Bar Col or (Bar?2, #Blue);

yl :
y2 .

PriceC ose(Barl);
PriceC ose(Bar2);

DraWCi rcle2(Barl, yl1, Bar2, y2, 0, #Blue, #Thin);

{ Find the last 13%reversal peak and trough }
Barl := TroughBar(BarCount - 1, #lLow, 13);
Pricel := PriceLow(Barl);

Bar2 : = PeakBar (
Price2 := PriceH

{ Draw a di agonal
trough }

Bar Count - 1, #High, 13);
gh(Bar2);

line and a rectangl e between the previous peak and

DrawLi ne(Barl, Pricel, Bar2, Price2, 0, #Red, #Thick);
Dr awRect angl e(Barl, Pricel, Bar2, Price2, 0, #G een, #Thin, #G eenBkg,

True);

{ Draw ellipses to highlight peaks and troughs }

Drawkl lipse(Barl - 4, Pricel * 1.02, Barl + 4, Pricel * 0.98, 0,
#RedBkg, #Thin, #RedBkg, true);

Drawkl | ipse(Bar2 - 4, Price2 * 1.02, Bar2 + 4, Price2 * 0.98, 0,

#Bl ueBkg, #Thin,

#Bl ueBkg, true);

© 2003-2006 WL Systems, Inc.

Writing Your Trading System Rules 72

5 Writing Your Trading System Rules
5.1 Overview

A Trading System has steadfast rules that are carried out independently of what you
think may be the outcome of the trade. Consequently, Trading System rules are the
conditions under which you decide to enter and exit a trade.

Invariably, when deciding to program a new Trading System, you'll start by either
verbalizing rules, drawing pictures, or writing pseudo code to collect your thoughts.
(For this purpose, and also for documenting your scripts, you can make use of the
ChartScript Description view.) Once you become proficient with WealthScript, you
may find that it's just as easy to put down your thoughts in code directly into the
ChartScript code editor!

Scripting Trading Rules|72)
If you can imagine it, almost certainly you can test it in Wealth-Lab Developer 4.0.
First, you'll have to translate your ideas into code. This chapter introduces the
most important functions necessary to simulate real-life trading orders.

Implementing Trading System Rules/ 78
You can use whatever logic based on price, technical indicators, date information,
or whatever else you can think of in your entry and exit rules. However, if you
discover a trading system that achieves unimaginable returns, it's quite likely your
code includes a postdictive error.

Managing Multiple Positions/7
Wealth-Lab Developer 4.0 assigns a humber to each new Position entered. You
can access this information with the functions presented in this topic, and in doing
so, you'll be able to write trading systems that add Positions by averaging up or
down. As always, it's you're choice!

5.2 Scripting Trading Rules

5.2.1 Overview

The most powerful feature of WealthScript is the ability to embed Trading System
rules in your ChartScripts. Whenever your ChartScript executes, Wealth-Lab
Developer 4.0 displays all of the trades that your System generated in clear buy and
sell arrows on the chart, provided that they are enabled. The ChartScript Performance
Results view also lists the overall System performance, and the Trades view contains a
detailed listing of all trades that were generated.

If you're just becoming familiar with WealthScript, the following topics provide an
introduction to programming Trading Systems in a cumulative fashion.

The Main Loop/73
Each time a script is executed, generally it should start from the first bar at which
all your indicators are valid and continue to the final bar in the chart.

Triggering a Market Buy Order/74)
Learn how to simulate entering long positions with Market orders.

© 2003-2006 WL Systems, Inc.

73

WealthScript Language Guide, Wealth-Lab Developer 4.0

5.2.2

Triggering a Limit or Stop Buy Order/#
Limit orders offer more control over the entry price of a trade. In addition, stop
orders permit you to enter a trade with confirmation that the market for the
security is moving in favor of the trade's intended direction.

Checking for Open Positions|75
Your trading strategy will change once you have entered a position. In single-
Position-only trading systems, you'll be looking for the exits if you're already
holding a position.

Using Automated Stops/
Let Wealth-Lab Developer 4.0 worry about getting you out of a trade. It's a
simple as adding 2 statements.

Selling Short[7
Theoretically, it's true that selling short carries unlimited risk. However, just as

you may test long strategies in Wealth-Lab Developer 4.0 without risking real
cash, you may do the same with short or mixed strategies.

The Main Loop

Every Trading System must have a main loop that cycles through the data in your
chart. This is accomplished with a typical "f or loop", as shown below. Although the
first bar number of a ChartScript's DataSource is 0, your for loop should start from at
least 1 to ensure that Market orders can be placed. In order to place a Market order
the system needs a "basis price," which is the closing price of the previous bar.

Example

var BAR integer;

{ ChartScript Main Loop }

for Bar := 30 to BarCount - 1 do

begin

{ Trading rules go here, and are executed once for every bar in the
chart }

end;

Here, the f or loop starts at the 30th bar of data. You should set your main loop's
starting point based on the technical indicators that you're using. For example, if you
use a 30 bar SMA and a 14 bar RSI in your rules, choose the longer of the two
indicators and set your starting f or loop value to 30. The main loop typically ends at

Bar Count - 1, which the number of the last bar in all Price Series. For more
discussion, see the article on Stability of Indicators in the Wealth-Lab.com
Knowledge Base.

Finally, notice that no reference to time exists in controlling the loop, only consecutive
bar numbers. Unless you use WealthScript Time Frame functions to specifically
manipulate a DataSource's native time frame, you the same ChartScript will work
equally well with Daily bars as for Intraday bars, for example.

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=118
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Writing Your Trading System Rules 74

5.2.3

Triggering a Market Buy Order

Use the BuyAt Mar ket function to trigger a market buy order.
BuyAtMarket(Bar, SignalName);

The first parameter contains the Bar number to execute the trade. WealthScript
Trading System signals are usually triggered using the bar's closing value,
consequently the order should be placed on the bar following the one that generated
the signal (Bar + 1). When trading on a daily basis, this is analogous to receiving a

signal based on the closing price of one day and buying at the open of the next day.

The second function parameter is a SignalName that you choose to identify the trading
signal that triggered the trade. This data is later found in the Trades view and is
useful in your system analysis if you have a system that uses more than one type of
entry. If you don't need a signal name, just pass a blank string as shown in the
Example.

Example

var BAR i nteger;
{ This sinple ChartScript buys when prices cross above a 14 day SMA }
for Bar := 15 to BarCount - 1 do
begin
if PriceClose(Bar) > SMA(Bar, #Close, 14) then
if PriceClose(Bar - 1) <= SMA(Bar - 1, #C ose, 14) then
BuyAt Market (Bar + 1, '');
end;

Notice above that the main loop begins at 15, even though we're using a 14 day SMA.
This is because we're also looking 1 bar back in the chart (Bar - 1) so we bumped

up our starting index to compensate for this.

Tip! Instead of testing the crossover condition manually as in the script above, use
the WealthScript CrossOver function to determine if one series crosses over
another on a specific bar. The script then becomes:

var BAR i nteger;

for Bar := 15 to BarCount - 1 do
begin
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 14)) then
BuyAt Market (Bar + 1, '');
end;

Simulating Market-On-Close
The WealthScript function BuyAt Cl ose allows you to simulate a Buy Market-On-Close
order.

BuyAtClose(Bar, SignalName);

In this case, the trade will enter long at the closing value of Bar. In actual trading, a
broker cannot guarantee that a Market-On-Close order will execute at exactly the
closing price. Consequently, you may wish to make use the Slippage feature found
under Tools|Options (F12)|Trading Costs/Control.

© 2003-2006 WL Systems, Inc.

75 WealthScript Language Guide, Wealth-Lab Developer 4.0
5.2.4 Triggering a Limit or Stop Buy Order

You can also use the BuyAt St op and BuyAt Li mit to simulate stop and limit buy
orders. A price must be specified with these order types, therefore an additional
argument exists for that purpose.

BuyAtStop(Bar, StopPrice, SignalName);
StopPrice is the price at which a simulated market order is placed. A position is
established at the StopPrice if the opening price of Bar is less than or equal to
StopPrice and the bar's high value is greater than or equal to StopPrice. However, if
the opening price of Bar gaps above StopPrice, a position is established at the
opening price of Bar. If neither of these conditions are true, then no position is
established.

BuyAtLimit(Bar, LimitPrice, SignalName);
For BuyAt Li m t a position is established at LimitPrice, if the open of Bar is greater
than LimitPrice and the low of Bar is less than LimitPrice. If the opening price of Bar
is less than or equal to LimitPrice, a long position is established at the opening price
of Bar. Finally, if the prices fail to fall low enough to the limit objective, no position is
established.
There is a chance that these orders might not be fulfilled, so these functions return
boolean values indicating whether or not the trades were placed.
Example

var BAR i nteger;

{ Issue a Limt Oder to buy at current bar's close or |lower only }

for Bar := 15 to BarCount - 1 do

begi n

if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 14)) then
BuyAtLimt(Bar + 1, PriceC ose(Bar), '');
end;
5.2.5 Checking for Open Positions

It's fine that we can now use our Trading Systems to open long Positions, but how do
we close the Positions? WealthScript offers the capability to construct single-Position-
only trading systems, or systems that can manage multiple Positions. We'll go over
single-Position-only systems for now since it's a simpler concept.

In a single-Position trading system, we need to see if our last Position is active. Use
the Last Posi ti onActi ve function to get this information. If our last Position is

active, we can branch to our sell rules, otherwise we can see if our buy rules present
the opportunity to initiate a new Position.

Example

var BAR i nteger;
{ A sinmple, single-position Trading System}

for Bar := 15 to BarCount - 1 do
begin
if LastPositionActive then
begin

© 2003-2006 WL Systems, Inc.

Writing Your Trading System Rules 76

if PriceCose(Bar) <= SMA(Bar, #Cl ose, 14) then
Sel | At Market (Bar + 1, LastPosition, '');

end
el se
begi n
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 14)) then
BuyAtLimt(Bar + 1, PriceC ose(Bar), '');
end;
end;

Closing Out a Position

You can see from the example above that the Sel | At Mar ket function is one way to
close out an open long Position. The function takes three parameters.

SellAtMarket(Bar, Position, SignalName);

The first parameter is the Bar in which to close out the Position. The second
parameter is the Position Number that we want to sell. Since WealthScript can
support trading systems that manage multiple positions we need a way to tell the exit
rule which position we want to sell. For systems that manage a single Position at a
time we can use the Last Posi ti on function to return the Position number of the

open Position.

Just as Buy At Mar ket has the counterparts BuyAt Cl ose, BuyAt St op and
BuyAt Li m t, so does Sel | At Mar ket have Sel | At Cl ose, Sel | At St op and
Sel | At Li mt. Notice the four arguments in the syntax of the latter functions:

SellAtStop(Bar, StopPrice, Position, SignalName);
SellAtLimit(Bar, LimitPrice, Position, SignalName);
The StopPrice and LimitPrice arguments retain the same significance as in their "Buy"

counterparts. Be aware that if you use the stop or limit sell functions, prices may not
reach your stop or limit price, so the trade may not execute.

5.2.6 Using Automated Stops

WealthScript provides six functions that let you apply automated exits to your trading
systems. You can call one or more of these functions at the start of your script to
install these "automated stops", or simply AutoStops. At the start of your main
trading loop, call the ApplyAutoStops function to execute the stops. WealthScript
will cycle through your open Positions and apply the stops for you automatically. For
more information, see the article Using Automated Exits on the Wealth-Lab.com site.

The function SetAutoStopMode allows you to control how the parameters of
AutoStops are interpreted: as percentage (default), point, or dollar values. This is
specified using one of the following three constants in the function's argument:
#AsPer cent , #AsPoi nt , or #AsDol | ar. See its entry in the Function Reference for
more information.

The syntax of the applicable AutoStop functions and their abridged descriptions are
found below. Note that [percentage] is the default interpretation if the
SetAutoStopMode is not employed in the ChartScript.

© 2003-2006 WL Systems, Inc.

77

WealthScript Language Guide, Wealth-Lab Developer 4.0

5.2.7

InstallStopLoss(Stoplevel);

StopLevel expresses the maximum [percentage] of loss for an open Position. A gap
in prices may result in a loss greater than percentage of StopLevel.

InstallTrailingStop(Trigger, StopLevel);

Trigger is the Position's profit [percentage] that must be reached on a closing basis
to activate the stop, and, StopLevel is the percentage of the total profit that must be
lost (pull back) to trigger the stop. StopLevel is always expressed as a percentage
and is not affected by SetAutoStopMode.

InstallBreakEvenStop(Trigger);

Trigger is the Position profit [percentage] that must be reached to activate the
breakeven stop.

InstallReverseBreakEvenStop(LossLevel);

LossLevel is the [percentage] loss that must be reached to activate a breakeven
stop limit.

InstallProfitTarget(TargetLevel);

TargetLevel, the profit target level, expresses the [percentage] profit desired to
trigger an automatic exit of an open Position.

InstallTimeBasedExit(Bars);

Bars represents the number of bars after which a position is automatically closed.

Example

var BAR i nteger;
{ Use automated Stops to close out the position }
I nstal | StopLoss(20);
Install ProfitTarget(40);
Install TrailingStop(20, 50);
I nstal | BreakEvenSt op(10);
I nstal | Rever seBreakEvenSt op(20);
Pl ot St ops;
for Bar := 15 to BarCount - 1 do
begin
i f LastPositionActive then
Appl yAut oSt ops(Bar)
el se
begin
if CrossOver(Bar, #C ose, SMASeries(#Cl ose, 14)) then
BuyAtLimt(Bar + 1, PriceC ose(Bar), '');
end;
end;

Selling Short

Each buy and sell function has a corresponding function for going short and covering a
short Position. Replace the "Buy" with "Short" in the function name to initiate a short
Position. Replace "Sell" with "Cover" to close a short Position. The Automated Stops
can be used for short Positions as well as long.

For more information on these functions, see their entries in the Trading System

© 2003-2006 WL Systems, Inc.

Writing Your Trading System Rules 78

5.3

Control chapter in the WealthScript Function Reference.

Entering Long Entering Short
BuyAtClose ShortAtClose

BuyAtLimit ShortAtLimit
BuyAtMarket ShortAtMarket
BuyAtStop ShortAtStop

Exiting Long Positions Exiting Short Positions
SellAtClose CoverAtClose

SellAtLimit CoverAtLimit
SellAtMarket CoverAtMarket
SellAtStop CoverAtStop

Implementing Trading System Rules

You can use whatever logic based on price, technical indicators, date information, or
whatever else you can think of in your entry and exit rules. Get as complicated and
creative as you like, but be careful; often times the simpler the trading system, the
more robust it will be. Consult the WealthScript Function Reference! s for a complete
list of functions that you can use in your system rules, or with the main icon toolbar
visible, View|Icon Bar, type Ctrl+K to open the QuickRef.

Example
var BAR i nteger;

{ Buy if Price is higher than the Price of 3 days ago, and 100 day EMA
is noving up. Sell if Price is |lower than the price of 3 days ago, or
100 day EMA is noving down. }
for Bar := 101 to BarCount - 1 do
begin
i f LastPositionActive then
begin
if (PriceClose(Bar) < PriceClose(Bar - 3))
or (EMA(Bar, #Close, 100) < EMA(Bar - 1, #Close, 100)) then
Sel | At Mar ket (Bar + 1, LastPosition, '');
end
el se
begin
if (PriceClose(Bar) > PriceClose(Bar - 3))
and (EMA(Bar, #C ose, 100) > EMA(Bar - 1, #C ose, 100)) then
BuyAt Market (Bar + 1, '');
end;
end;

Never Look Ahead!

Be sure that your trading system doesn't take advantage of information that it would
have no way of accessing in the real world! For example, don't look ahead at Price
Series or indicator values. Also, be sure to execute your entry and exit orders at the
following bar (typically Bar + 1) to avoid using information from the current bar that
you'd have no way of knowing at market open. In system testing these types of
errors are termed peeking or postdictive errors.

© 2003-2006 WL Systems, Inc.

79 WealthScript Language Guide, Wealth-Lab Developer 4.0

Example

{ This Systemtakes advantage of future information! It buys and sells
at the market open on the same bar that it exam nes closing price! }
var BAR integer;

for Bar := 1 to BarCount - 1 do
begin
if LastPositionActive then
begin

if PriceClose(Bar) < PriceC ose(Bar - 1) then
Sel | At Mar ket (Bar, LastPosition, '');

end
el se
begin
if PriceClose(Bar) > PriceC ose(Bar - 1) then
BuyAt Mar ket (Bar, '');
end;
end;

The Trading System above would give you an idea of how well you could do in the
market if you had access to supernatural abilities. Although the violation is subtle,
you'd be surprised at how much it can impact the bottom line of trading system
evaluation!

5.4 Managing Multiple Positions

WealthScript provides the capability to create trading systems that can manage
multiple open Positions. You can use this feature to write systems that average down,
for example.

Several functions, which found in the Position Management chapter of the
WealthScript Function Reference!s1, are available to help you work with information
about System Positions. Some of the most important functions are described here.

PositionCount;
returns the total number of Positions that have been created.

LastPosition;
returns the Position number of the last-entered Position. Position numbers range
from 0 to Posi ti onCount - 1. Note that Last Positi on = PositionCount -

1.

LastLongPositionActive;
returns the Position number of the last long Position.

LastShortPositionActive;
returns the Position number of the last short Position.

Other WealthScript Position functions return information about a specific Position. You
pass a Position number to these functions:

PositionActive(Position);
returns True if the Position is currently open.

PositionEntryPrice(Position);
returns the entry price of the Position. See also PositionExitPrice.

PositionEntryBar(Position);
returns the integer Bar number on which the Position was established. See also

© 2003-2006 WL Systems, Inc.

Writing Your Trading System Rules 80

PositionExitBar.

PositionLong(Position);
returns True if the Position is long and False if it is short. See also
PositionShort.

When working with multiple Positions, you typically have a secondary loop within your
main loop that goes through each Position and determines whether it should be closed
out.

Place your Position closing loop above any system entry trading rules. This will
prevent the sell logic from being applied to Positions that are opened on the very
same bar.

Example

{ This Tradi ng System buys whenever RSI crosses above 30, and cl oses
all open positions when it crosses below 70. }
var BAR, P: integer;
for Bar := 15 to BarCount - 1 do
begin
if RSI(Bar, #Close, 14) < 70 then
if RSI(Bar - 1, #Close, 14) >= 70 then
begin
for p :=0 to PositionCount - 1 do
if PositionActive(p) then
Sel | At Market(Bar + 1, p, '');
end;
if RSI(Bar, #C ose, 14) > 30 then
if RSI(Bar - 1, #Close, 14) <= 30 then
BuyAt Market (Bar + 1, '');
end;

Splitting Positions

If your strategy includes the purchase (or short sale) of a single position and then
closing off parts of it in multiple separate trades, you can split the original position
using the SplitPosition function. See the SplitPosition tutorial in the Wealth-

Lab Knowledge Base.

Note: Currently, separate positions cannot be merged or combined.

Shortcut to Closing all Open Positions

Instead of looping through the individual Positions in a multiple-Position strategy, you
can use the special #Al | constant in place of a parameter that requires a Position
number to close all open long or short Positions at once.

Example

var BAR i nteger;
for Bar := 20 to BarCount - 1 do
begin
i f CrossOverVal ue(Bar, CMOSeries(#Cl ose, 20), -40) then
BuyAt Market (Bar + 1, 'CMO)
el se if CrossUnderVal ue(Bar, CMOSeries(#C ose, 20), 40) then
Sel | At Market(Bar + 1, #All, 'CMO);
end;

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=48
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

81

WealthScript Language Guide, Wealth-Lab Developer 4.0

Optimizing Processing of Active Positions

For sure, the #All shortcut is quick to deal with one or more Positions that will be
exited at the same time. Some trading systems, however, have different stops, profit
targets, or other exit logic for each individual Position. In these cases, it is necessary
to process each active Position, one at a time, to execute the intended logic. To find
the active positions, however, it is not necessary to loop over al/l the Positions as
shown in the RSI trading system above. Doing so can significantly slow down
ChartScripts that create many Positions.

Two design patterns are frequently used that optimize processing speed in these
cases.

Design Pattern 1

Here, interim variables are declared to hold the ActivePositionCount and the number
of active Positions that have been processed. Since Positions that are opened earlier
are usually closed out first, the PositionCount loop counts backwards, starting with
the most-recent Position. As each active Position is found, the Processed variable is
incremented and compared to APCount, and, when equal the loop is terminated
since all known active Positions have been processed.

var p, APCount, Processed: integer;

Processed : = 0;
APCount := ActivePositionCount;
for p := PositionCount - 1 downto O do
begin
if PositionActive(p) then
begin

{ do sonething with the active position p here }

Inc(Processed);
if Processed = APCount then
br eak;
end;
end;

For an example of pattern 1 in action, see
Interacting Dynamically with Portfolio Level Equity at the Wealth-Lab.com

Knowledge Base.

Design Pattern 2

In this ingenious pattern, the variable p is initialized to the number of the most-
recent active Position + 1. The repeat/until(sé nested loop then finds the very next
active position by decrementing p by one. The process is repeated by the outer loop
only for the number of active positions.

var a, p: integer; // (in variable declarations)

p := LastActivePosition + 1; {* In a SinmuScript replace with p :=
Posi ti onCount; *}
for a := 1 to ActivePositionCount do
begi n
r epeat
Dec(p);

until PositionActive(p);

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=6
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=KnowledgeBase.htm

Writing Your Trading System Rules

{ do something with the active position p here }

end;

82

© 2003-2006 WL Systems, Inc.

83

WealthScript Language Guide, Wealth-Lab Developer 4.0

6.1

6.2

Working with Technical Indicator Functions

Overview

WealthScript provides native functions for dozens of technical indicators. Each of these
technical indicator functions has two different syntax forms. The first form returns the
value of an indicator at a specific bar in the chart. The second form returns the Price
Series handle of the indicator, which you can then pass to functions such as

Pl ot Seri es or AddSeri es.

Accessing Indicator Values|s3
You could use the Get Seri esVal ue function to access values of a technical
indicator series, but there's a much more intuitive way using the first form of
indicator syntax.

Accessing Indicator Price Series Handles|sé
As outlined in the chapter Working with Price Series|41, handles are used to refer
to a complete Price Series. The value that the second form of indicator syntax
returns is, in fact, a handle.

For further reference:

The Technical Indicator Functions section of the WealthScript Function Reference! s
contains a complete listing of the technical indicator functions available. Also, the
Wealth-Lab Developer 4.0 Function QuickRef contains a complete example of each
native indicator in use.

Accessing Indicator Values

Use the first form of the indicator function to return the indicator's value at a specific
bar in the chart. This form of syntax is commonly an abbreviation, or possibly an
acronym, which describes the indicator.

Syntax (Indicator first form, general syntax):

indicatorabbr(Bar[, Series[, ParameterList 1]);
Although Bar is always required when using the first form, the brackets [] indicate
optional arguments that depend on the parameters particular to the indicator. For a
typical example, let's turn our attention to the Simple Moving Average value function.

Its syntax abbreviation (indicatorabbr) is SMA and the function takes 3 parameters:

SMA(Bar, Series, Period);

Bar The Bar number at which we're interested in obtaining the
Simple Moving Average.

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

Period The Period of the moving average.

The example below prints the Simple Moving Average value for each bar to the Debug

© 2003-2006 WL Systems, Inc.

Working with Technical Indicator Functions 84

Window. If you run this script and examine the output in the Debug Window you'll
notice that the first 29 lines are zero. This is because we're requesting the value of
the 30 day moving average, so the first indicator value isn't available until the 30th
bar.

Example

var Bar: integer;
var SMA Val ue: float;
for Bar := 0 to BarCount - 1 do
begin
SMA Val ue := SMA(Bar, #C ose, 30);
Print(FloatToStr(SMA Value));
end;

Indicator Calculation

The first time you call one of the native technical indicator functions or a properly-
formed custom indicator, Wealth-Lab calculates the indicator across the complete
Price Series. Subsequent calls to the indicator function return pre-calculated values.
Because of this, you can be sure that repeated calls to access indicator values will be
as quick as possible and that unnecessary recalculation is not performed.

6.3 Accessing Indicator Price Series Handles

The second form of the indicator function returns the handle to the complete indicator
Price Series (see the Working with Price Series|4) topic). These functions are always
named the same as their first-form counterparts, but with the word "Series"
appended. So, for example, the Simple Moving Average function is named

SMASer i es. Since these functions return the handle that refers to the complete Price
Series, they do not include the Bar parameter.

Syntax (Indicator second form, general):
indicatorabbrSeries([Series[, ParameterList]]);
Now, we complete our explanation with the syntax of the most well-known indicator.

SMASeries(Series, Period);

Series The handle of the Price Series (or WealthScript function that
returns a Price Series handle) of which we want to obtain the
moving average.

Period The Period of the moving average.

You can pass an indicator Price Series handle to any WealthScript function that is
looking for a Price Series parameter. For example, Pl ot Seri es. The example below

obtains the handle to the Simple Moving Average and plots it on the chart.

Example

var nHandl e: integer;
nHandl e : = SMASeri es(#C ose, 30);

© 2003-2006 WL Systems, Inc.

85

WealthScript Language Guide, Wealth-Lab Developer 4.0

Pl ot Seri es(nHandl e,

0, #Red, #Thick);

© 2003-2006 WL Systems, Inc.

Accessing Data from Files 86

7 Accessing Data from Files

7.1 Overview

You can access data from external text files from within your WealthScript code by
using the File Access Functions. The File Access Functions provide a way to create,
read from, and write to external files.

Creating and Opening Files|[s8
Just as Price Series use handles to refer to the data entire series, you'll need a file
handle to point to a file on your computer. The two functions that create and
open files return an value that you assign to an integer variable, which is then
used as the file handle.

Reading and Writing[sh
Once you have a file handle saved in an integer variable, you use it as a reference
to read and write from the file.

Closing Files|s#!
Wealth-Lab automatically closes files that you open from within a script, but you

may do it yourself if you like. Read this topic to discover some subtleties in file-
access operations during WatchList Scans and $imulations.

7.2 Creating and Opening Files

Each of the functions described below return an integer "File Handle" that is used in
subsequent File Access function calls.

Syntax:
FileCreate(FileName);

FileOpen(FileName);

FileName is a string expression that describes the full path of the file to be created
and/or opened. If FileName does not include a path, then the file will be
created/opened from the Wealth-Lab Developer 4.0's main directory. If a directory
path is specified, it must exist otherwise an error will result.

Use the Fi | eCr eat e function to create and open a new, empty file. If FileName

already exists, it will be deleted and a new file created in its place. See important
aspects of Fi | eCr eat e when used in WatchList Scans or $imulations under the topic

Closing Files|ss1.

The Fi | eOpen function is used to open an existing file. Nevertheless, if FileName
does not exist, Fi | eQpen will create it.

Example

var NewFile, O dFile: integer;
NewFile := FileCreate('c:\windows\temp\wl tenp.txt');
AQdFile := FileQpen('c:\windows\win.ini');

© 2003-2006 WL Systems, Inc.

87

WealthScript Language Guide, Wealth-Lab Developer 4.0

7.3

To create a file that includes the symbol name in use by the ChartScript, you can use
the Get Synbol function as shown in the next example.

Example

var NewFil e: integer;
NewFile := FileCreate('c:\wi ndows\tenmp\' + GetSynmbol + '.txt');

Reading and Writing

Use the Fi | eRead function to read a line from a file, and the Fi | eW i t e function to
write a line to a file.

Syntax:
FileWrite(File, Line);

FileRead(File);

File is the File Handle that was returned from either Fi | eCr eat e or Fi | eQpen. Line
is a string expression of the data to be "written" or output to File.

Fil eWit e always appends the data string specified in the Line parameter to the end
of the file. Additionally, the write operation automatically appends carriage return and
line feed characters, Chr(13) + Chr(10), to Line.

Each time Fi | eRead is encountered in your script, it reads the next line from File and
returns the data as a string. Consequently, you normally find a Fi | eRead statement
within a loop that continues until the end of file is encountered.

Read and write file operations maintain separate file pointers, so you can even read
from a file created with Fi | eOpen and write to the same File Handle without

disrupting the read.

Use the Fi | eECF (end of file) function to determine if there are any more lines of data

to be read from a file. The function returns a boolean True if the file pointer has
encountered the end of file.

Syntax:
FileEOF(File);

Example

{ Create a copy of the Wn.ini file in the Tenp directory }
var NewFile, A dFile: integer;
var s: string;
NewFile := FileCreate('c:\wi ndows\tenp\w tenp.txt');
AdFile := FileQpen('c:\windows\win.ini');
while not FileEOF(AOdFile) do
begi n
s := FileRead(OdFile);
Filewite(NewFile, s);
end;

© 2003-2006 WL Systems, Inc.

Accessing Data from Files 88

7.4 Closing Files

Files are automatically closed after the script completes processing. During WatchList
Scans or $imulations, files are automatically closed after the complete Scan or
$imulation. Consequently, when opening a file using Fi | eCr eat e, each individual
ChartScript run during a Scan or $imulation can append lines of data to a single
output file without deleting the file that was created at the beginning of the Scan or
$imulation.

You have the option, nevertheless, to close the file explicitly via the Fi | e ose
function.

Syntax:
FileClose(File);

File is the integer File Handle that was returned from either Fi | eCr eat e or
Fi | eOpen.

Since files are closed automatically after the script completes, this function has limited
use. During Scans or $imulations if you truly want Fi | eCr eat e to delete the

previously created file of the same name, include the Fi | e ose function in the
script.

© 2003-2006 WL Systems, Inc.

89

WealthScript Language Guide, Wealth-Lab Developer 4.0

8.1

8.2

Understanding Time Frames

Overview

WealthScript provides a set of special functions for accessing data from higher time
frames. You can easily create weekly or monthly data from a daily chart. Likewise,
you can access daily data from an intraday chart. You can also access higher-time-
frame intraday data from an intraday chart, provided that the higher-time-frame data
can be created from the lower level bars. For example, a chart of 10-minute bars can
be created using 1 or 5-minute bars, but not with 4-minute bars.

It may not be immediately obvious why you would want to use higher-time-frame
data when data of greater granularity (lower time frame) is available. Imagine
though, that you'd like your trade setup to be based on a strong underlying trend
turning positive, such as a moving average of weekly bars. When this condition is
true, you might trigger the trade Wealth-Lab Developer 4.0 based on some pre-
determined Daily price movement. In Wealth-Lab Developer 4.0 you can do this task
with the same single set of Daily price bars!

As the following topics are very closely linked, it's best to review them in order.
Accessing a Higher Time Frame/ed)

Depending on the time frame of your underlying data, different functions are
utilized to scale your data in other time frames.

Expanding the Series/ef!
Once you have the Price Series in a higher time frame, it will be necessary to
synchronize it with the original time scale to be useful in ChartScript plotting
functions, for example. After you've done this conversion, you can use the new
series just like any other Price Series in the original time frame.

Accessing Higher Time Frame Data by Bar/e3
You may forego the rather simplistic operation of expanding the entire series and
use another set of functions to find the corresponding bar number of the higher-
time-frame series in the original Price Series.

Scaling and Trading/s#
The technique of compressing data is used to create indicators that you later
project back to the original base time frame in which your trades are executed.
Do not confuse the purposes of WealthScript Time Frame functions with Wealth-
Lab's scaling tools.

See Also: Synchronization Options in the Wealth-Lab Developer 4.0 User Guide.

Accessing a Higher Time Frame

The first step in accessing data from a higher time frame is to use one of the special
"SetScale" functions to change to the desired time scale. WealthScript provides

Set Scal eWeekl y and Set Scal eMbnt hl y that can be called from a daily chart, and
Set Scal eDai | y and Set Scal eConpr essed that can be called from an intraday
chart. You'll receive a compilation error if you try to use one of these functions with
data of an incompatible time frame.

© 2003-2006 WL Systems, Inc.

Understanding Time Frames 90

Summary of Time Frame Compression Options

Base Tinme Frame Conpression Function Resulting Tinme Frane

I nt raday Set Scal eConpr essed I ntraday (higher tinme frane)
I nt raday Set Scal eDai | y Daily

Dai |y Set Scal eWekl y Weekl y

Dai |y Set Scal eMont hl 'y Mont hl y

Example

{ Obtain the weekly closing prices froma daily chart }
var Weekl yC ose: integer;

Set Scal eWeekl y;

Weekl yC ose : = #C ose;

Rest orePri marySeri es;

Note the call to Rest or ePri marySeri es at the end of the script. You should always
call Rest orePri marySeri es after you're finished operating in the higher time
frame.

To get an idea of what's going on behind the scenes, let's inspect the #Close and
WeeklyClose series of a typical, albeit very small, data sample.

Maon Tue i ed Thur Fri Man Tue Thur Fri
Date| 12716 1277 1258 12419 12/20 12723 12724 12426 12727
#Close (Dailv)| 37.32 J6.66 36,37 e l1 3IF¥.06 3683 3681 3711 36.54

WeeklyZlose| 37.06 36.54

The WeeklyClose series contains roughly 1/5 the number of values as the primary
Daily series, and, the data values are taken from the last calendar day of the week -
the weekly close - which in this case is Friday. If you looped through the bars before
the call to RestorePrimarySeries you would find that the bars retain the calendar day
of the first calendar day of the week (Monday). This is really immaterial, and you'll
see why when you Expand the Series/otl to use its data in your ChartScript.

Expanding the Weekly Series

The example above returned the weekly closing Price Series for our daily data. If our
daily chart had 1000 bars, the "WeeklyClose" Price Series would roughly contain only
200 bars (5 trading days per week). If you tried to use this Price Series in a function
such as PlotSeries, you'd receive an error (or no result), because the weekly Price
Series has fewer bars than the daily Price Series. There are two ways to "expand" the
higher-time-frame data and make it available for use from within the lower level
chart: Expanding the [entire] Series/ell and

Accessing Higher Time Frame Data by Bar/e).

© 2003-2006 WL Systems, Inc.

91

WealthScript Language Guide, Wealth-Lab Developer 4.0

8.3

Expanding the Series

The first method of accessing the higher time frame data is arguably simpler.
WealthScript provides special functions to automatically expand the higher-time-frame
data. You can use the Dai | yFr omAéekl y and Dai | yFr omVbnt hl y functions in daily
charts, and the | ntraDayFr onDai | y or | nt radayFr omConpr essed functions in

intraday charts. After calling the appropriate function to expand the higher-time-
frame Price Series, use Get Seri esVal ue to obtain the value of the converted series

at a particular Bar Number.

Summary of Timeframe Expansion Options

Base Tine Frane Expansion Function Use After Conpression Wth
I nt raday I nt radayFr onConpr essed Set Scal eConpr essed

I nt raday I nt radayFronDai l y Set Scal eDai | y

Dai |y Dai | yFr oméekl y Set Scal eWekl y

Dai ly Dai | yFr onVont hl 'y Set Scal eMont hl 'y

These functions return a new Price Series that is synchronized to the lower time frame
data. The expanded Series contains a number of repeated values. For example, a
weekly series converted to a daily series generally will have 5 repeated values in a
row, one for each day of the week.

Note: Upon expansion, alignment of compressed data is greatly affected by the
Compressed Price Series Alignment Option/of}.

The example below shows how to convert the weekly data to a daily series for
plotting. This effectively overlays the weekly close over the daily chart.

Example

var Weekl yC ose, Weekl ySynched: i nteger;

Set Scal eWeekl y;

Weekl yC ose : = #C ose;

Rest orePri marySeri es;

Weekl ySynched : = Dail yFromieekl y(Weekl yd ose);
Pl ot Seri es(Wekl ySynched, 0, #Red, #Dotted);

At this point you can use the WeeklySynched series the same as any other Price
Series in the Daily time frame.

Apply indicators, such as a Weighted Moving Average, to the compressed (higher-
time-frame) Price Series prior to using an expansion function. This may be done
before or after the call to Rest or ePri mar ySeri es. Adding to our previous example,

we demonstrate how to do this.

Example

{ Create a 5-period Wighted Myving Avg of the weekly price series
derived
fromdaily data and then use it in the Daily tinme franme. }
var Weekl yd ose, WeeklySynched, AvgWekly, AvgWeklySynched: integer;
Set Scal eWeekl y;
Weekl yC ose : = #C ose;
AvgWeekly := WMASeri es(Weekl yC ose, 5);
Rest orePri marySeri es;
Weekl ySynched : = Dail yFromieekl y(Weekl yd ose);
AvgWeekl ySynched : = Dail yFromieekl y(AvgWeekly);
Pl ot Seri es(Wekl ySynched, 0, #Red, #Dotted);
Pl ot Seri es(AvgWekl ySynched, 0, #Blue, #Dotted);

© 2003-2006 WL Systems, Inc.

Understanding Time Frames

92

Compressed Price Series Alignment Option

It's important not to "look ahead" while back testing trading systems as this will cause
postdictive errors in your scripting that usually leads to overly-inflated profits. If

you're not careful, this can be easy to do when synchronizing an expanded Price

Series.

You have control of how to align and display data from a compressed Price Series.
This option is provided by selecting Tools | Options (or by striking the F12 function
key) and then the Synchronization tab.

Trading Costs/Canteol

System Sellings | Coloes/Style | PrefensdVaes | Sounds | EMadAlests
Synchionization | Autorsted Execution | Echtor

Secandany Symbol Snchicnization
¥ Enable dutomatic Date/Time Spnchionization of Exemnal Senss

Compressed Price Senes Algnment

Exaenple: Daba for the Weakly Bai will ba Avalable on the LAST Ba of
the SAME Wesk: [noemally Fridag] on the Dady Chart.

" Compressed Bar Avadable on the Fust Bar of Penod
Exaenple: Daba for the weekly Bal vl be Avalable on the FIRST Ba of
thie SAME “Wesk [noernally b onday) on the Dy Chart

" PREVIOUS Compressed Bar Avadable on the First Bar of Pesiod

Esasnple: Data for the \Weakly Bat vall be Avalable on the FIRST Ba of
thee WET "eesh: [ncurnaally I amday] o the Dy Chat

Intraday Bas Compression
I Use the Stest b of the first Blar of the day bo base Comprassion

[Fo] % cwea|

Considering again the previous examples of overlaying compressed Weekly data on
top of its corresponding Daily Price Series, let's inspect the same sample data set to
see how these options affect the outcome. Here, we observe the result of the
repeated data values after the DailyFromWeekly function call based on the selection
indicated. We'll refer to these as Options #1, #2, and #3 from top to bottom.

& Compressed Bar Available on Last Bar of Period

{Option #1) hdan Tue Wied Thur Fri hdon Tue Thur Fri
Date 12ME 1217 1218 1219 12020 12023 12024 12028 12027
#Zloze (Daily) araz 36EE 3637 3611 a7 .06 3683 2681 a7 3654

-
™ ™
WeeklySynched| 3652 3652 0 3652 0 3652 0 37TO0R 0 ATO06 3TO6 3706 3654
' Compressed Bar Available an the First Bar of Period

(Option #2) hdon Tue Wier] Thur Fri han Tue Thur Fri
Date 12M6 1217 1218 1219 12520 12023 12024 12026 12027
#Cloze (Daily) I7.az 3666 3637 3611 a7 .06 3683 3681 a1 3654
o Fa A,
Wieekly Synched 3706 3706 3T .06 3T .06 37T .06 3654 654 3654 3654

© 2003-2006 WL Systems, Inc.

93 WealthScript Language Guide, Wealth-Lab Developer 4.0
& PREVIOUS Compressed Bar Available on First Bar of Period
{Option #3) Wan Tue Wiied Thur Fri hon Tue Thur Fri hion
Date| 1216 1217 12M6 1219 12020 12023 124 2026 12027 120550
#Close (Daily)| 3732 36B6 3637 3641 3IFO06. 3653 3681 31 3654 3699
- I
VWesklySynched| 3652 3652 3652 3652 3652 3TOE 3TO0E 3TO0E V06 3654
When testing a trading system using compressed data in a more granular time frame
(i.e., expanded), it's clear from these illustrations that either Option #1 or #3 must be
selected. The difference in the first (default) and third options is one of a self-
imposed delay. In other words, if you were to run an end-of-day Scan with Option #1
on Friday (after the close), you could generate trading signals for Monday's open
based on the current week's data. In contrast, with Option #3, this data would not be
available until Monday night's Scan. Either method is acceptable and which one you
choose depends on your methodologies.
If Option #2 were selected, you would incorrectly be using data only available at a
later time in actual trading, as you can verify in the illustration above. Nevertheless,
you may wish to see the data using the second convention for charting purposes, or to
create some sort of idealized trading system. For these reasons it is available for your
discretional use.
For a graphical interpretation of this discussion using Daily/Intraday time frames, see
the following Knowledge Base article: http://www.wealth-lab.com/cgi-
bin/WealthLab.DLL/kbase?id=77
8.4 Accessing Higher Time Frame Data by Bar

The second method of accessing the higher-time-frame data is to determine the bar
number in the higher-time-frame Price Series that corresponds to the bar number in
the lower level Price Series. WealthScript provides special functions to do this:

CGet Weekl yBar and Get Mont hl yBar for daily charts and Get Dai | yBar and

Get Conpr essedBar for intraday charts. Once you have determined the
corresponding bar number, you can use Get Seri esVal ue to obtain the value of the
converted series at that bar.

Summary of Get Bar Options

Base Tine Frame "Get Bar" Function Use After Conpression Wth
I nt raday Get Conpr essedBar Set Scal eConpr essed

I nt raday Get Dai | yBar Set Scal eDai | y

Dai |y Get Weekl yBar Set Scal eWekl y

Dai |y Get Mont hl yBar Set Scal eMont hl 'y

The example below first grabs the weekly closing price series. It then goes through
each bar of the daily chart and finds the corresponding weekly closing prices for the
previous 2 weeks. If the previous week's close was higher than the close 2 weeks
ago, the script colors the daily bar green. After running the example, a look at the
Debug Window resulting from the Pri nt statement will provide additional insight.

Example
var Weekl yC ose, Bar, BarWekly: integer;
Set Scal eWekl y;
Weekl yC ose : = #C ose;

Rest orePri marySeri es;

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=77

Understanding Time Frames 94

for Bar := 12 to BarCount - 1 do
begi n
Bar Weekly := GetWeekl yBar(Bar);
Print(IntToStr(BarWekly) + ', ' + IntToStr(Bar));

i f GetSeriesValue(BarWekly - 1, Weklyd ose)
> Get Seri esVal ue(BarWeekly - 2, WeklyCl ose) then
Set Bar Col or (Bar, #Geen);
end;

Let's recap.

The difference between the two methods of accessing higher-time-frame data is
subtle. After Rest or ePri marySeri es, in the "expansion" method, we simply create
another new Price Series that contains repeated values synchronized with the original
Price Series. Expanding the higher-time-frame series in this way is necessary if you
want to plot its values using the Pl ot Seri es function.

In the less-intuitive method above, the higher-time-frame series is never expanded.
Its values are obtained by finding bar numbers that correspond between the two time
frames. Since the repeated values associated with the series-expansion method do
not exist, we have an advantage in memory savings.

8.5 Scaling and Trading

The Time Frame functions discussed in the preceding topics are probably the most
difficult to understand of the WealthScript functions, yet once you have mastered
them, you will see how easy it is to create complex trading systems based on data and
indicators in other time frames.

Two concepts relating to time frames are necessary to understand. The first is that
you can Scale the data in the primary series using the using the Scale toolbar for
ChartScripts (D W M, 5, [F) and the Scale tab controls in the $imulator, Rankings,
and Scans tools. Scaling in this manner re-creates the data into a new base time
frame, which allows you to generate trades in the new scale. Note that the
ChangeScal e function serves this same purpose, but it is useful only in the

ChartScript window.

Unlike the aforementioned scaling features of Wealth-Lab, the Time Frame functions
do not change the base time frame and therefore do not allow you to make trades on
resultant Price Series. This group of functions allow you to create indicators in more
compressed time frames that must be restored or projected back to the original base
time frame.

Scaling and Time Frame Notes:

1. Transforming intraday data to multiples of its underlying interval using the Scale
toolbar is currently available only for ChartScript windows. A similar intraday
scaling feature does not exist for the $imulator, Scans, and Rankings.

2. It is not possible to place trades on a Primary Series that has been time-
compressed from within a script using Set Scal eConpr essed or
Set Scal eDai | y, for example. These WealthScript Time Frame functions allow
you only to generate indicators and other Price Series in a more compressed
time frame that must be referenced back to the base time frame.

© 2003-2006 WL Systems, Inc.

WealthScript Language Guide, Wealth-Lab Developer 4.0

Creating a Custom Indicator

Overview

You can create custom technical indicators in Wealth-Lab Developer 4.0 that are
treated just like native indicators. Custom indicators are scripts composed of two
functions (as are native indicators). One function returns the value of the indicator at
a specific bar. The second function returns a handle to the complete Price Series for
the indicator.

A custom indicator is nothing more than a specially formed ChartScript that is stored
in the "Indicators" folder. Custom indicators appear in the Indicator list within the
main icon tool bar panel, which is docked on the left side of the screen. You can
distinguish custom indicators from native WealthScript indicators because they have a
red cross next to the function symbol.

¥l W ealth-Lab Developer 3.0

File Edit DataSources Chart Tools “iew Comm

R = E= s

Tools

Favarites
QuickRef

|ndicators I,-’.'-,II Data
F] o P | v 5 BF [$100K Pt of
B

f 4 ASEMA 2 [5-] Dow -
fepz il 0 2
¥ BBandlower WAL e s
f BBandUpper I} e e
FpBeaPower - Y H- C
4 Bodyhidpaint - E C

Using the New Indicator Wizard|e
Even for experienced users, the New Indicator Wizard is a great place to start to
generate the boilerplate code for your indicator. After defining a few parameters,
you'll only have to program how the indicator is calculated. It's a snap!

The Guts of a Custom Indicator/es
If you're a code hound, you'll probably be interested in the details of how Wealth-
Lab can calculate so quickly the value of your indicator each time you reference it
in a ChartScript. (The secret is that it calculates the entire indicator series once
only!)

Other Possibilities ol
There's always more than one way to code an idea. Coding an indicator is not an
exception to this rule.

© 2003-2006 WL Systems, Inc.

Creating a Custom Indicator 96

9.2 Using the New Indicator Wizard

You can use the New Indicator Wizard to help produce a new custom indicator. The
Wizard generates the required boilerplate code for the indicator, and stores the
ChartScript in the "Indicators" folder. Start the New Indicator Wizard from the file
menu by selecting File| New Indicator Wizard, or by simply striking Ctrl+1I.

Note: You must know how to work with Price Series/45) before attempting to create
custom indicators.

Step 1. Indicator Name

The first step of the Wizard is to select the new indicator's name. You cannot
select a name of an existing ChartScript or a native WealthScript function.
The Wizard uses the indicator name to create two user-defined functions in
the resulting ChartScript code. The first function adopts the name of the
indicator, and the second function appends the word "Series" to the indicator
name.

Step 2. Indicator Parameters

The next step of the Wizard is to select the parameters that the indicator will
accept. Here you are actually creating the parameter list that appears in the
indicator's function declarations. Select one of the names provided in the
Parameter Name drop down box, or type your own variable name.

Note: Do not use variables named Bar, sName, or Value. The Indicator
Wizard reserves these names for its output.

© 2003-2006 WL Systems, Inc.

97

WealthScript Language Guide, Wealth-Lab Developer 4.0

Step 3.

Before clicking "Add Parameter", select the data type of your variable from
the other drop down box. Continue this process for as many parameters as
are necessary.

If any of the parameters is destined to be a Price Series handle, you should
include the word "Series" in the parameter name and select "integer" as the
data type. Wealth-Lab Developer 4.0 looks for the word "Series", and if
found will provide the list of Price Series constants (#Open, #Hi gh, #Low,

#C ose, #Vol une, #Aver age) whenever the indicator's Properties Dialog is
displayed, after dragging and dropping an indicator on a chart pane for
instance.

When finished adding parameters, select the "OK" button to create the
indicator script.

New Indicator Wizard Output

The New Indicator Wizard uses the information you provided to create a new
ChartScript and places it in the "Indicators" folder. This ChartScript contains
the skeleton code that the custom indicator requires. You have to now fill in
the portion of the code that actually calculates the indicator's value. The
following code snippet is part of the resulting ChartScript:

Result := CreateNanedSeries(sName);
for Bar := Period to BarCount - 1 do
begi n
{ Cal cul ate your indicator value here }
Val ue : = 0;
Set Seri esVal ue(Bar, Result, Value);
end;

Your job is to replace the statement, Value := 0; with code that calculates
the value of the indicator. Depending on the complexity of your indicator,
this may be a few or many statements. Note that this code is already within
a for loop that cycles through each bar of the chart. Your code should
ultimately assign a numeric expression (other than zero) to the variable
Value, the value of your indicator at Bar, which is conclusively stored in the
indicator's series using Set Seri esVal ue. In other words, you're filling the

blank series created by Cr eat eNanedSeri es bar by bar.

Note that the special variable Result is used as the handle to the indicator's
Price Series. It's important that when setting the series value at each bar
that you use the Resul/t handle. When finished, don't forget to save your
work!

Note: Do not create another series using Cr eat eSeri es and then assign
its handle to Result. This will have the effect of assigning an
unnamed series to Result, and therefore subsequent calls to the
indicator series or attempting to obtain a specific value at a single bar
will return zero value.

Custom Indicators Derived from Other Indicators

As we've just seen, the Indicator Wizard provides a code template for creating
indicators that are built bar by bar. However, many custom indicators can be derived
more efficiently by combining existing indicators with series math/s#] using

Price Series operator functions/st! like AddSeries, MultiplySeries, MultiplySeriesValue,

© 2003-2006 WL Systems, Inc.

Creating a Custom Indicator 98

etc. In these cases, since the indicator is not built bar by bar in WealthScript, we
need to make modifications to the wizard code's *Series function. The Indicator

Wizard is still valuable because it generates the proper function declarations and

parameter lists.

As an example, let's recreate the BBandLower indicator in custom indicator form. As
the following image shows, we've invoked the Wizard by striking Ctrl+I (or from the
File menu), named our indicator MyBBandLower, and added the required parameters
and Data Types.

Indicater Parameters rzl
D & Paisfista
Prararmeter M ame: 'ﬁ
Dasta Type: Flest -

+ Add Paamete: ‘,‘l§

Drefired Patarnebe
Mame | Data Type |
Semes Inkeger
X Fenod Irbeger
HNew Indicator | 50 Float
Mewy Indication M ames:

|M_-.-EtH¢r-dL-:rw:4 P Dedete Parameter
D e X e

Creating a WealthScript version of the BBandLower indicator.

Upon clicking OK to the Parameters dialog, MyBBandLower is saved to the Indicators
folder and is immediately registered in the main Indicators toolbar. Since we know
that the lower Bollinger Band is calculated by subtracting the StdDevSeries multiplied
by the specified standard deviations from the simple moving average of the same
Period, we can express it as follows:

functi on MyBBandLower Seri es(Series: Integer; Period: |Integer; SD
Fl oat): integer;
begin

var Diff: integer;

var sName: string;

sNanme : = ' MyBBandLower (' + GetDescription(Series) + ',' + IntToStr(
Period) +'," + FloatToStr(SD) + ')';
Result := Fi ndNanedSeri es(sNane);
if Result >= 0 then
Exit;

Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
Result := SubtractSeries(SMASeries(Series, Period), Dff);
Set Description(Result, sName);

end;

Take note of the major changes to the MyBBandLowerSeries code generated by the
Indicator Wizard:

e CreateNamedSeries is not necessary because our indicator is created as the result
of another indicator function.

e The for/do loop is eliminated. It's not necessary to calculate the indicator's value
on a bar by bar basis.

e SetDescription assigns a string name, sName, to the description of our final
Result series. As explained in a subsequent topicle1, Wealth-Lab uses

© 2003-2006 WL Systems, Inc.

99 WealthScript Language Guide, Wealth-Lab Developer 4.0

descriptions to access indicators whose values have already been calculated.

Wealth-Lab, however, automatically creates unique internal descriptions for native
indicators, and consequently it is actually not required to form the sName description
and assign it to the result using SetDescription. Therefore, we can simplify the
custom indicator code even further as follows:

functi on MyBBandLower Seri es(Series: Integer; Period: |Integer; SD
Fl oat): integer;

begin
var Diff: integer;
Diff := MultiplySeriesValue(StdDevSeries(Series, Period), SD);
Result := SubtractSeries(SMASeries(Series, Period), Dff);
end;
Or simply,

functi on MyBBandLower Series(Series: Integer; Period: |Integer; SD
Fl oat): integer;

begin
Result := Subtract Series(
SMASeries(Series, Period),
Mul tiplySeriesVal ue(StdDevSeries(Series, Period), SD)
)
end;

9.3 Deleting a Custom Indicator

Unless you're clairvoyant, not all the custom indicators that you create will be useful,
and therefore you'll need a means to remove them. Since Custom Indicators (and
Studies) are simply special ChartScripts saved in the "Indicators" folder, to delete a
custom indicator you simply have to remove its ChartScript using normal Explorer
procedures:

1. Open the ChartScript Explorer (Ctrl+0)

2. Navigate to the "Indicators" folder. (To remove a Study, go to the "Studies"
folder.)

3. Locate the Custom Indicator or Study.

4. Click the item to highlight it, and strike the Delete key on the keyboard.

After confirming the deletion, the Custom Indicator will no longer appear in the main
Icon Bar under the "Indicators" section.

9.4 The Guts of a Custom Indicator

The New Indicator Wizard does the work of setting up the custom indicator for you,
but it may be helpful to understand how custom indicators work internally. The
following information is not required to create a custom indicator, so read on only if
you are interested in the details.

Like all native WealthScript indicator functions, a custom indicator is composed of two
functions. The first function returns the value of the indicator at a specific bar. The
second function (with the word "Series" appended to it) returns the handle to the
complete Price Series.

© 2003-2006 WL Systems, Inc.

Creating a Custom Indicator 100

For example, if we created a custom indicator called "Test", we wind up with two
functions, one called Test and another called TestSeries.

function Test(Bar: integer; Series: Integer; Period: Integer): float;
begin

Result := GetSeriesValue(Bar, TestSeries(Series, Period));
end;

The implementation of Test just grabs the value at the desired bar by calling

Cet Seri esVal ue. The second parameter of Get Seri esVal ue is a Price Series
handle. In this case, we pass the second custom indicator function. So, in essence,
the Test function always passes control to the TestSeries function to actually obtain
its value.

This means that all of the work to calculate the indicator values is accomplished in the
TestSeries function. Here, we use some special WealthScript functions to make sure
that we only construct the indicator Price Series once, the first time Test or
TestSeries is referenced, which leads to increased performance of the script.

We'll assume that the Test indicator had 2 integer parameters, Series and Period.
The first thing the TestSeries function does is create a string that uniquely identifies
the requested indicator series.

sName := 'Test(' + GetDescription(Series) + ',' + IntToStr(Period)
)

Now that the function has a unique string that identifies this Price Series, it can see if
the Price Series was previously created.

Result := Fi ndNanedSeries(sName);

if Result >= 0 then
Exit;

The Fi ndNamedSer i es function looks for a Price Series with a certain internal name.
If a Price Series with the specified name was found, the series was already calculated,
so we just assign it to the Result variable and exit the function. If the Price Series
wasn't created, then we need to create it and populate it with indicator values.

Result := CreateNanedSeries(sName);
for Bar := Period to BarCount - 1 do
begi n
{ Cal culate your indicator value here }
Val ue : = 0;
Set Seri esVal ue(Bar, Result, Value);
end;

The Cr eat eNanmedSer i es function is similar to the frequently used Cr eat eSeri es.
It too creates an empty Price Series. The difference is that Cr eat eNanedSeri es
associates an internal name to the Price Series. We can then use Fi ndNanmedSeri es
to retrieve the Price Series by that name.

Related Topic: SetDescription

© 2003-2006 WL Systems, Inc.

101

WealthScript Language Guide, Wealth-Lab Developer 4.0

9.5

Other Possibilities and FAQs

The method that the New Indicator Wizard uses to build a custom indicator is only one
possibility. Another way to proceed would be to calculate and return the indicator
value within the Test function itself. Then, in the TestSeries function, loop through
each bar and call the Test function to assign the value. This method would be more
optimal for ChartScripts that access indicator values sporadically and do not access
the complete Price Series for the indicator.

If desired, submit your correctly-formed custom indicators to the

WealthScript Code Library. This will then be available as a custom indicator on the
web site and in Wealth-Lab Developer 4.0 when users perform a "Download
ChartScripts" action.

I saved a custom indicator to the 'Indicators’ folder but it doesn't appear in
the Indicators icon bar?

A new custom indicator will be added to the icon bar if:

e you used the New Indicator Wizard| e to create the custom indicator, and,
e the indicator was added automatically following a Community Download.

Otherwise, if you added the indicator by saving a ChartScript to the Indicators
folder, the indicator will appear in the icon bar the next time you start Wealth-Lab
Developer 4.0.

How do I use Custom Indicators?

Answer: just like any other native technical indicator!ss.

The main difference is that you must make your script aware of the custom
indicator's code by placing a special "include" comment at the top of your
ChartScript that identifies the name of the custom indicator script. The Include
Manager can help in locating custom indicators and placing these special $Include
comment(s).

For example, assume that you wanted to use the custom indicator VK_WH which
has been saved as VK WH Band in the Indicators folder. A typical process would be
as follows:

1. Open a ChartScript (Ctrl+0) to which you wish to add the indicator or start with
a new one (Ctrl+N).

2. Click the Editor view and strike F6 to launch the Include Manager.

Locate the VK WH Band script, place a check mark next to it and click OK. This
action automatically places the required {$I 'VK WH Band'} comment at the top
of the ChartScript.

4. At this point, unless you're very familiar with the parameter list of this indicator,
you'll need to refer to the indicator's code and Description to use it properly. The
following code show is an example that simply plots the indicator. Note that the
VK_WHSeries function is defined in the 'VK WH Band' indicator script.

Example

{$l ' VK WH Band' }
var VK WHSer: integer;

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=LibrarySubmit.htm
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

Creating a Custom Indicator 102

VK WHSer := VK WHSeries(#C ose, 5, 20);
Pl ot Seri esLabel (VK WHSer, 0, 009, #Thin, 'VK WH(#C ose,5,20)");

Where can I use Custom Indicators?

You can use custom indicators in any ChartScript or IndexScript (Index-Lab).
Custom Indicators are not valid in CommissionScripts, PerfScripts, or SimuScripts.

© 2003-2006 WL Systems, Inc.

103

WealthScript Language Guide, Wealth-Lab Developer 4.0

10

10.1

10.2

CommissionScripts

Overview

You should always include real-world trading costs to add fidelity to your backtesting.
The Options Dialog, Tools|Options (F12), includes a Trading Costs/Control tab that
provides selections for commissions and slippage that you will experience in real-
world trading.

If your broker uses a flat-fee commission for each trade, then you may select the "per
Trade" One Way Commission option, which simply deducts a fixed amount from each
trade in a simulation. Likewise, the "per Share" option reduces a trade's gross profit
or loss by the number of shares multiplied by the value entered. Still, these simple
commission options do not include other small adjustments that your broker can make
on a per trade basis, such as the SEC fee for sale transactions in the U.S., which at
the time of this writing is $0.0468 per $1,000.

Some brokers use graduated commission schedules or base their fees on a percentage
of trade volume. CommissionScripts give you complete control over calculating simple
to the most complex commission schedules used by brokers worldwide.

CommissionScript Variablesho3

Wealth-Lab makes specific trade data available to your script through the use of
special 'CM' variables. You'll need these in order to calculate commissions. You'll
assign the final commission value to the CMResult variable, for example.

Creating and Testing CommissionScripts|iod
CommissionScripts are a special type of ChartScript that contain logic only for
calculating commissions. After completing the code, save the script to the special

& CommissionScripts ChartScript folder. You'll then be able to select it for use as
the CommissionScript in the Options Dialog.

CommissionScript Variables

CommissionScripts work by having access to the following special variables, which
Wealth-Lab loads with values that apply to the trade being processed. Each item's
return type is provided below and is further defined in the WealthScript Function
Referencels1 as well as in the QuickRef:

CMBhar es : integer;
CVPri ce : float;
CMENtry : bool ean;
CvBynbol : string;
CVDat aSource : string;
CMOxr der Type : integer;
CMResul t : float;

Using these special 'CM' variables, you can emulate the your broker's calculation and

assign the result to the CMResult variable. Once complete, save the script to the L3
CommissionScripts ChartScript folder. At this point, the script will be available as a
selection in the CommissionScript dropdown control in the Options Dialog.

When using CommissionScripts, Wealth-Lab executes the selected CommissionScript

© 2003-2006 WL Systems, Inc.

CommissionScripts 104

for each trade processed during a simulation - once for each entry and and once for
each exit signal. The value calculated and assigned to the CMResult variable will
then be used as the trade's commission cost.

Wealth-Lab reduces the account equity by the commission amount on the bar on
which the trade takes place. Net profit reported for each trade in the Trades view
includes all entry and exit (if closed) commissions.

WealthScript Functions Compatible with CommissionScripts

You can declare any of the standard variable data types/itl for use in a
CommissionScript as well as object types. However, not all WealthScript functions are
available for use in CommissionScripts. Generally speaking, in addition to the special
'CM' variables and Get @ obal /Set @ obal system functions, you may use only the
Math and String categories of WealthScript functions in CommissionScripts. Though
most commission calculations are expected to require only the most basic math
functions, it should be clear that some Math functions cannot be utilized, including:

Correl ati on, Li near RegLi ne, Li neExt endX, Li neExt endY, and
Tr endLi neVal ue

Finally, user-defined functions and procedures may be declared at the top of a
CommissionScript, however, {$Includes} cannot be used.

10.3 Creating and Testing CommissionScripts

Creating a CommissionScript

The procedure to make a CommissionScript is quite simple:

Step 1: Open a New ChartScript (Ctrl + N) and select the Editor Tab.

Step 2: The template (or skeleton) code will not be useful, so clear it to create a
fresh workspace.

Step 3: Using the aforementioned 'CM' variables program your broker's logic and
assign the final result to CMResult.

Step 4: Save the script (Ctrl + S) to the L CommissionScripts ChartScript
folder.

The following sample CommissionScript is based on a commission structure with the
following characteristics:

e 1¢ per share up to 500 shares
e ¢ for shares over 500 shares
e $1 minimum

Example
i f CMShares <= 500 then

CMResult := CMShares * 0.01
el se
CMResult := (500 * 0.01) + ((CMshares - 500) * 0.005);

if CMResult

< 1 then
CMResult := 1;

© 2003-2006 WL Systems, Inc.

105

WealthScript Language Guide, Wealth-Lab Developer 4.0

Testing a CommissionScript

Most CommissionScripts will be straightforward in nature and will certainly be
simplistic to all but the most novice programmer. Nevertheless, typos and other
errors can slip into our code so it's necessary to exercise a CommissionScript prior to
committing it to a large $imulation process. The following guidelines may help in
building confidence that your CommissionScript is functioning properly:

1. After saving the script to the & CommissionScripts folder, be sure to select
the CommissionScript for use in the Options Dialog|Trading Costs/Control tab.

2. To more easily isolate trading costs due to commissions, disable Slippage.

3. Begin by executing the CommissionScript by itself in a ChartScript window.
Though you will not be able to determine that your commission algorithm is
functioning correctly, running the script gives you a chance to correct syntax
errors. If you corrected errors, save and close the CommissionScript.

4. Open a ChartScript of your choice that contains trading system rules and execute
it. Determine the gross profit of a trade based on the number of
shares/contracts and entry/exit prices. Subtract the Net Profit provided in the
Trades view from the calculated gross profit. The result will be the value(s)
calculated by the CommissionScript.

5. Re-activate Slippage, if desired.

Remarks:

o If you find that no commissions are ever deducted when using your commission
script, check the script for errors.

e Commissions are shared equally between split positions in the ChartScript
window. However, due to the way the $imulator operates internally, all
commissions are retained by the initial position in a split.

© 2003-2006 WL Systems, Inc.

PerfScripts 106

11

111

11.2

PerfScripts

Overview

PerfScripts, or Performance Scripts, are Scriptable Performance Reports. You can
customize Wealth-Lab Performance Reports to display whatever performance metrics
that you can imagine using the PerfScript feature. Performance Scripts must be saved

to the special PerfScripts folder, where a sample named "Standard PerfScript" is
included with your Wealth-Lab Developer 4.0 installation that duplicates the standard
Wealth-Lab Performance Report.

When enabled on the Performance View tab of the ChartScript Window or $imulator
tools, Wealth-Lab will execute a PerfScript four times to process All Trades
(Long+Short), Long Only, Short Only, and Buy & Hold positions. Since Wealth-Lab
automatically makes the appropriate group of positions available to the PerfScript
during each of the four runs, it's not necessary to write special code to test position
types (long, short, etc.).

PerfScript Functions/o8

Creating PerfScripts/o?

Using PerfScripts o8

PerfScript Functions

PerfScripts have a repertoire of dedicated functions that the QuickRef and
WealthScript Function Reference describe in detail. The first five functions enable you
to control the format of the metrics that you add to Wealth-Lab's ChartScript and
$imulator Performance Views. Wealth-Lab calculates account exposure and facilitates
its access through the Account Exposur e function.

PerfAddCurrency

PerfAddPct

PerfAddString

PerfAddNumber

PerfAddBreak

AccountExposure

StartingCapital

Cashlnterest

MarginLoan

TotalCommission
In addition to these PerfScript-specific functions, you can also use WealthScript
functions from the Data Access, Date/Time, File Access, Technical Indicators, Math,
Position Management, Price Series, and String categories. It should be clear that not

all functions in these categories lend themselves to PerfScript analysis, such as the
"Set" Position Management functions.

© 2003-2006 WL Systems, Inc.

107

WealthScript Language Guide, Wealth-Lab Developer 4.0

11.3

Concept Note

A performance script processes equity curve data and the individual trading details
from all symbols following a $imulation or ChartScript Window execution.
References to Standard Price Series like #Close, #Volume, etc. cannot be permitted
in PerfScripts because the idea of a Primary Series does not exist. Consequently,
Price Series functions like ATR, MFI, etc. that require Standard Price Series cannot
be used in PerfScripts. Generally, only a custom series created during the execution
of the PerfScript, e.g., the result of the CreateSeries function, can be used as an
argument for Price Series functions that accept an integer Series argument, such as
SMA, Momentum, BBandLower, etc.

PerfScript Constants

#WinLoss Each of the Per f Add functions contains a Color parameter that
controls the metric's text color in the report. #W nLoss paints

positive values green and negative values red. In addition, you can
use any of the standard color constants/es] or a 3-digit number.

#Bold, #Italic Each of the Per f Add functions contains a Style parameter that

controls the appearance of the metric's Label in the report. You can
pass #Bol d, #l tal i c, or O for regular style.

#Equity Standard handle to the Equity curve series (PerfScript only) in
Portfolio Simulation Mode. In Raw Profit Mode, this handle returns
the Profit curve.

Creating PerfScripts

Of the PerfScript functions, four are used to add data to a performance record, which
is simply a single row of text in the Performance Report. Each row must have a
unique Label. Depending on the type of data to be displayed, you'll reference this
Label in one of the PerfAdd functions: Per f AddCurr ency, Per f AddNunber ,

Per f AddPct , or Per f AddSt ri ng. Consequently, the same performance record can
display different types of data as required for All Trades, Long Only, etc.

For example, for any performance metric that involves a division, you should include
logic to detect if the divisor is zero prior to the division operation. If it is, then you
can use Per f AddSt ri ng to show 'INF'. Otherwise, use one the other functions to
display a number with the appropriate format. Likewise, you can catch and

handle the error/[4d).

Start with the Standard

A sample PerfScript called "Standard PerfScript" that duplicates and adds to the
standard Wealth-Lab Performance Report will be included in the PerfScripts
ChartScript folder, where all PerfScripts must be maintained. A second sample,
"Standard PerfScript with Interest" includes the use of the Cashl nt er est,

Mar gi nLoan, and Tot al Comm ssi on functions. The standard scripts are the best
place to start when creating your customized PerfScript. Save one of the "standards"
with a different name and start deleting or adding the calculations for metrics that you
would like to see displayed. With the standard as a model, it's not likely that you'll

© 2003-2006 WL Systems, Inc.

PerfScripts 108

need any help to create custom formulas for new performance metrics.

PerfScript Errors

After writing a new PerfScript or editing an existing one, run the script in the
ChartScript window by clicking any symbol. Doing this will allow you to correct syntax
errors and most run-time errors in the script prior to actually using ithe to generate a
report. Other PerfScript errors may not be caught in the "ChartScript Mode". For
example, since Trading System functions are not compatible with PerfScripts, yours
should not actually create trades. If it does, this mistake will not be detected until
Wealth-Lab executes the script during a ChartScript's post processing to generate the
actual performance report.

During a ChartScript's post processing, any irregularity in a PerfScript will generate an
error dialog like the one below. It will identify in which of the four PerfScript runs the
error occurred (All Trades, Long Only, Short Only, or Buy & Hold), the line number and
error text, and finally the actual line of code. As a consequence of an error, a
performance report will not be generated.

Wealth-Lab Develope x|

Petfacript Ervar in All Trades Processing:
Line: 31 Col: 18: Unknown name “C"
hhh := FileOpen; C:itest_ktmp');

A dialog notifies you of run-time errors during the execution of a PerfScript.

Tip: Add metrics specific to Raw Profit and Portfolio Simulation Mode by testing if
StartingCapital = 0. Like in the PerfScript sample, a boolean variable
bRawProfit is set early on to control the output for the two modes.

Note that PerfScripts (like the sample) may contain several "BarCount" loops that
cycle through all the bars in the chart to calculate various ratios or indices. Since a
PerfScript is executed 4 times, it can take several minutes to complete processing if
the DataSource has tens of thousands of bars. This is not an error!

11.4 Using PerfScripts

The controls for using PerfScripts are located at the top of the Performance View in the
$imulator and ChartScript Windows. The selections are independent between tools,
and the last configuration in both is maintained for the next use.

Use a PerfScript

Check this option if you want to enable the use of the PerfScript selected in the drop
down control immediately to the right. When selected, Wealth-Lab's usual
performance reporting is disabled.

AutoRun PerfScript Applies to: ChartScript Window

With "Use a PerfScript" selected, you can choose whether or not it is executed
automatically (ChartScript Window only). When this option is not checked, the

© 2003-2006 WL Systems, Inc.

109

WealthScript Language Guide, Wealth-Lab Developer 4.0

Performance report will remain blank until you click the PerfScript icon to run it on
demand.

4y Chartscript - SMA Xover, Always in [AMAT Dail 10| x|

Chat Performance | Trades | Proft | MAE/MFE | Editer | Description | Analysis |
¥ Usze a PerfScript; IM-'" PerfS cript j [T AutoRun PerfS cript
| Long + Short | Long Only | Short Orly | Buy & Hold
Ader Kt P $247.00 -§73.00 $326.00 $2.053.00
by Prafit per Bar $0.14 40,02 $0.44 $1.02
Mumber of Trades B2 33 29 1
Ayq Profit/Loss $3.98 4239 $11.24 $2.059.00

b el wuw*—h’wm EE:,;

ChartScript Window PerfScript Control.
Click the icon to execute a PerfScript manually.

Tip: If you do not regularly look at the Performance Report, deselect "AutoRun
PerfScripts" to optimize resources - especially when trading using Real-Time
ChartScript Windows.

Usage Notes

Unless you need to calculate a metric that is not already included in the standard
Wealth-Lab Performance Reports, there is no reason to even use PerfScripts. Due to
the scripting "speed penalty", a sample PerfScript will take one to two orders longer to
generate the same result as with the equivalent compiled code. Largely for this
reason, you can uncheck AutoRun PerfScript so that you are not unnecessarily utilizing
computer resources at times during system development and debugging when you're
not likely to even look at the Performance View.

The "Script Timeout value" in Options | System Settings | General Settings does
not pertain to PerfScripts. Consequently, you should give ample time for a PerfScript
to complete its processing.

Warning! PerfScripts might take a long time (possibly several minutes) to
compute on very large data sets.

© 2003-2006 WL Systems, Inc.

SimuScripts 110

12 SimuScripts

12.1 Overview

When you think "SimuScript", think "Position Sizing". Although Wealth-Lab Developer
4.0 provides four of the most popular position sizing methods for Portfolio $imulations
(Fixed Dollar/Margin, Fixed Share/Contract, Percent of Equity, and Maximum Risk
Percent) you may have other ideas of how you would like to size your positions.

SimuScripts are an advanced feature of Wealth-Lab Developer 4.0 that let you
experiment with your very own position-sizing rules in the $imulator as well as in the
ChartScript, Rankings, and Scans tools when Portfolio Simulation mode is selected. A

SimuScript is a special type of ChartScript that must be stored in the E 1 SimuScripts
ChartScript folder.

SimuScript Function Notesu
Only a subset of WealthScript functions are eligible for use in SimuScripts.
However, SimuScripts have a special constant and dedicated functions that make
it easy to write simple or complex algorithms to determine sizing for new
positions.

How do SimuScripts Work? 113
The final result of a SimuScript will set the position size using one of three special
SimuScript functions, which can size a position by percent of equity, fixed cash
value, or by a specific number of shares.

Creating a SimuScript 113
In reality, a SimuScript is used like a procedure that is called each time your
trading rules take a new position. If writing trading rules for ChartScripts is easy,
then SimuScripts are almost child's play. A SimuScript can be as simple as one
line of code!

Testing a SimuScript/u4
Coding a SimuScript is arguably more simple than writing a ChartScript. Knowing
a few more details about testing SimuScripts can make testing and debugging
them simpler too.

Learn more about SimuScripts

A great way to learn more about SimuScripts is to review the SimuScript entries in the
Function QuickRef. Each entry has a complete SimuScript example that will give you
plenty of ideas. For a list of functions that are available see the SimuScript Functions
topic in the WealthScript Function Referencels .

12.2 SimuScript Function Notes

SimuScripts support a subset of WealthScript functions, and include a collection of
functions specific to position sizing. These include functions that return Portfolio
Equity, Cash, DrawDown and many other values that may be useful in determining a
position size. Availability of WealthScript functions for use in SimuScripts to include

© 2003-2006 WL Systems, Inc.

111

WealthScript Language Guide, Wealth-Lab Developer 4.0

the following categories of functions:

Math Functions

String Functions
SimuScript-Specific Functions
Data Access

Date/Time

File Access

Indicators

Position Management

Price Series

Consequently, the following categories of functions cannot be used for SimuScripts:

Alerts

Cosmetic Charts
System

Time Frame
Trading System
PerfScripts
CommissionScripts

SimuScript Use of BarCount

Generally speaking, SimuScript-specific functions that have WealthScript counterparts
retain the same meaning when used in SimuScripts or in ChartScripts (e.g.,
Posi ti onLong, Posi ti onShort, etc.).

An exception worth noting is the slightly different meaning of the Bar Count function
when used in a SimuScript. While in a ChartScript Bar Count returns the total
number of bars in the chart, in a SimuScript the function returns the total number of
bars processed at the time the SimuScript is executed. To return the current Bar
Number on which the Position is being processed, use Bar Count - 1 just as you do
in ChartScripts.

The #Current Constant

In more complex SimuScripts you may want to retrieve data that are specific to the
Position being processed. For example, you may have stored the value of an RSI
indicator at the bar on which you entered the Position in your ChartScript using the
Set Posi ti onDat a function. In your SimuScript, you can access this data using the
Cet Posi ti onDat a SimuScript function. You may then decide to take additional

shares for more oversold values of RSI, for instance.

To recall the Position data that was stored for the Position currently being processed
by the SimuScript, you pass the constant #Current to the Get Posi ti onDat a
function. In a similar way, you can use this constant for any variety of SimuScript
functions that require a Position number as an argument.

Example

{ Risk half as nmany shares for short positions.
Note: this is a conplete SinuScript! }

i f PositionShort(#Current) then
Set Posi ti onSi zeShares(100)

el se

© 2003-2006 WL Systems, Inc.

SimuScripts 112

Set Posi ti onSi zeShares(200);

12.3 How do SimuScripts Work?

Position sizing, no matter how simple, is an integral part of any trading system. If
you do not wish to use one of the four position-sizing options offered by the Portfolio
$imulator, you have the option to create a SimuScript to size your positions.

Select a specific SimuScript to use in the Portfolio $imulation control, which is a
common control in both the $imulator and ChartScript windows. The selected
SimuScript will be executed once for each trade generated during a $imulation. You
do not have to make a specific reference to a SimuScript in your ChartScript code.
Wealth-Lab Developer 4.0 automatically executes the SimuScript whenever a "BuyAt"
or "ShortAt" WealthScript function results in processing a new Position.

The goal of the SimuScript is to assign a position size to the current Position. The
SimuScript does this by calling one of three functions during its execution:

SetPositionSizeFixed(CashValue);
Instructs the Portfolio $imulator to assign a fixed CashValue to a position. To
eliminate a Position entirely, use this function by passing a zero value for
CashValue.

SetPositionSizePct(PercentOfEquity);
Instructs the Portfolio $imulator to assign a percentage of total portfolio Equity to
a position. To eliminate a Position entirely, use this function by passing a zero
value for PercentOfEquity.

SetPositionSizeShares(NumberOfShares);
Instructs the Portfolio $imulator to assign a fixed number of shares to a position.
To eliminate a Position entirely, use this function by passing a zero value for
NumberOfShares.

Note: If your portfolio does not contain sufficient funds to acquire the full size of
the position, the trade will not be placed. Your SimuScript can test for
existing cash using the Cash function and reduce the position size, if

desired, prior to calling one of the SetPositionSize functions.

The main thing to keep in mind when writing a SimuScript is that the script is
processing only a single Position. The Portfolio $imulator calls the script one time
for each Position that it needs to process.

12.4 Creating a SimuScript

You begin writing a SimuScript just as you would a normal ChartScript - starting with
a New ChartScript Window. It's likely that you'll want to start fresh, so delete the
template code in the ChartScript Editor if necessary. Only your position-sizing
requirements and imagination can tell you how to proceed from this point. Your final
SimuScript may be as simple as a single statement or even more complex than the
ChartScript that will eventually use it!

Here we provide an example of a typical SimuScript with medium complexity. It

© 2003-2006 WL Systems, Inc.

113

WealthScript Language Guide, Wealth-Lab Developer 4.0

provides the same function as the Portfolio $imulator's Maximum Risk Percent
position-sizing model with an extra twist. It dynamically adjusts the percentage of
risk based on the changing equity of a portfolio during a $imulation. As equity grows,
the SimuScript increases the percent of the equity risked on each trade, and vice
versa. You can adjust the settings to your tastes by modifying the constant values
and saving the script. Remember, all SimuScripts must be saved in the SimuScripts
folder.

Example

{ SinmuScript for increasing Percent Risk with growing Equity }
var fPctRi sk, fEquity, CashSize: float;

var fStop, fBasis: float;

var Factor, Final Size: integer;

{ These settings will increase the Risk by 0.2%for every $10, 000 of
equity growth }

const IncreaseRi sk = 10000;

const Risklncrement = 0.002;

const M nRi skCash = 75000;

const M nRi sk = 0.005; /'l Risk at |east 0.5% on each trade

const MaxRi sk = 0. 06; /1 Don't risk nore than 6% on a single trade

{ Store values in variables for easy reference }
fEqQuity := Equity(BarCount - 1);

fStop := GetPositionRi skStop(#Current);

fBasis := PositionBasisPrice(#Current);

if fEQuity < M nRi skCash then
fPctRi sk := M nRi sk

el se
begin
Factor := (fEquity - M nRi skCash) Div IncreaseRi sk;
fPctRisk := MnR sk + (Ri sklncrenent * Factor);
if fPctRi sk > MaxRi sk then
fPct Ri sk : = MaxRi sk;

end;

{ Calculate the size in shares, and then in cash }
Final Size := Trunc((fEquity * fPctRisk) / Abs(fBasis - fStop));
CashSi ze : = Final Size * fBasis;

{ If the position size is greater than the account equity,
allow the trade to take place if fully in cash }

if CashSize > fEquity then
Final Size := Trunc(fEquity / fBasis);

Set Posi ti onSi zeShares(Final Si ze);

Note the use of the function Get Posi ti onRi skSt op to retrieve the value of your
stop level. To properly employ this SimuScript, you must use

Set Posi ti onSt opLevel in your ChartScript code. Pass the price level of the initial
stop immediately before entering a trade to this function. Only then can the
SimuScript determine risk percentage with respect to your portfolio's equity level.
See its QuickRef description for an example.

Note: Set PositionStopLevel supersedes Set Positi onRi skSt op.

Using this SimuScript on a winning system with Starting Capital of say, $500,000, will
yield the same results as the Portfolio $imulator's Maximum Risk Percent with a 6%
setting. With a losing system, this SimuScript could save you money!

© 2003-2006 WL Systems, Inc.

SimuScripts 114

See Also: Only One Trade per Symbol from the Wealth-Lab on-line articles
archives.

12.5 Testing a SimuScript

Since SimuScripts only size positions and do not contain trading rules, it's not possible
to know that they will function correctly by running the script by itself. They must be
used in a Portfolio Simulation environment.

Guidelines to test and troubleshoot SimuScripts

1. Start by executing the SimuScript by itself. Although it's not likely that you can
determine if the SimuScript sizing method functions in the manner in which you
had intended, running the script gives you an opportunity to correct syntax errors.

Note: If using the #Current constant to refer to the current position being
processed, you can expect the error, List Index Out of Bounds (-1). At
this point, the general syntax of the SimuScript is correct and you may
proceed with system testing.

2. When your SimuScript's general syntax is correct, you're ready to test the
SimuScript in the $imulator or from another ChartScript using the common
Position Sizing control in Portfolio Simulation mode as shown below.

Note: All functions are not equally available for SimuScripting in the
ChartScript window as in the $imulator. Refer to the WealthScript
Function Referencels) or QuickRef for information on specific functions if
in doubt.

Sb'frlbdlm.—_l. 2 '::EI'!‘ |P=t1urrwr:c[Trad|:=|Pr

Ih-’u:rstﬂe-:erﬂ 5 mars j m:' E;H' 1
[GimSecript: Sueaks 2 [it
[Flaws Profit Onky Portfolio Simulation |
Starting Capital 100000 = :
(" Fived Dolla/Margin [5000 =] I l
I

(" Pescent of Equity =
" M Risk Pel

z =
C Fisd Share/Conitract [500 = ()

= SEmdcipt
" Walue defined in ChaS crpt r
—
I o 0K | xcmf
Yoy _rslilh INTC
.

Choosing a SimuScript for Portfolio Simulation mode in the ChartScript window.

3. Use the $imulator or a ChartScript to build confidence that your SimuScript is
functioning properly by initially testing one symbol only. After running the
$imulation, you can easily check to see if the first several trades are correctly
sized by inspecting the Trades view.

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11

115 WealthScript Language Guide, Wealth-Lab Developer 4.0

4. 1If errors occur during a $imulation, the Errors view will be shown automatically.
Also, you'll likely see the message, "No Trades were generated by this $imulation
run". Check the Errors view for detailed information.

12.6 SimuScript FAQs

Can I use SimuScripts in the ChartScript Window?

Yes, however you cannot use a SimuScript that accesses Position data using
GetPositionData from the ChartScript Window. See the description for
SetPositionData for more information. If you need to pass Position data to a
SimuScript in any tool other than the $imulator, use SetGlobal/GetGlobal, or
alternatively make use of the SignalName parameter of the BuyAt or ShortAt entry
signals. In the latter case, retrieve the data with PositionSignalName.

Is it possible to use #OptVars in SimuScripts?

Not directly. Instead, you could write the current value of an #OptVar into global
memory via SetGlobal at the start of ChartScript processing and retrieve the value
in your SimuScript with GetGlobal.

I want to size differently according to the symbol. How?

Use PositionSymbol to test the #Current symbol. A Case statement/s0] is ideal here
so that you can easily add different symbols to test.

Example
{* SimuScript *}
var sizeEgPct: float;

{ Assign sizing according to synbol }
case PositionSynmbol (#Current) of

GOOG :
si zeEgPct : = 8.0;
"AAPL', 'MFST', '"INTC :
si zeEgPct : = 6.5;
el se
sizeEgPct :=5.0; // 5% for any other synbol
end;

Set Posi ti onSi zePct (si zeEqPct) ;

How can I limit one Position per symbol?

Generally, ChartScripts are written to manage single Positions. But you may be
dealing with a multi-Position script and want to analyze its return using a one-
position-per-symbol strategy. A SimuScript would first need to determine if any
active Position has the same symbol as the Positions currently being sized, and the
solution is presented in the Knowledge Base:

Allowing only one Trade per Symbol in the $imulator.

I only want to allow 3 new entries per day. How?

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/kbase?id=11

SimuScripts

116

Please see the Max Entries per Day SimuScript in the Wealth-Lab Code Library.

© 2003-2006 WL Systems, Inc.

http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/libraryview?item=239
http://www.wealth-lab.com/cgi-bin/WealthLab.DLL/getpage?page=Library.htm

117 WealthScript Language Guide, Wealth-Lab Developer 4.0

13 Objects

13.1 Overview

WealthScript is a fully object-oriented scripting language, and support creation of
classes, inheritance, and polymorphism. An Object is a type of variable that
contains both data items and the functions and procedures (referred to collectively as
methods) required to operate on the data.

To be sure, object-oriented programming (OOP) is not a trivial topic to grasp for
novice programmers. Although the re-useable quality of objects make some tasks
simple to accomplish, these techniques are not necessary to get a lot of mileage out of
Wealth-Lab Developer 4.0. For those just becoming familiar with WealthScript and
who are unfamiliar with OOP, mastering the use of the programming techniques
described in the previous sections will provide you with plenty of capability in
designing robust trading systems.

If you're already familiar with OOP, the topics in this chapter will introduce you to the
proper WealthScript syntax to design, create, and destroy your objects. Visual Basic
programmers familiar with OOP will discover the explicit object-declaration section
that is hidden from them when creating their class objects, but otherwise the
transition to using WealthScript objects should be quick. Please note that it is not our
intention to teach OOP as many other in-depth resources are available on the subject.

Object Type Declarations|i)
Generally speaking, objects, types, and classes are synonyms in programming
terminology. A good part of the work in creating an object is declaring its parts.

Providing Access via Properties s
Properties are those parts of which an object consists. Just as a car may be
painted red, have a moon roof, and travel at 200 kph, an object has properties
that define it. Depending on the manner in which you declare an object's
properties, you can access or even change their values - just like you can change
the color of a red car to blue.

Creating and Using Instances of a Typel2h
Unlike red cars with moon roofs, it doesn't cost so much to create new objects.
However, objects use memory and computer resources, consequently when they
have served their purpose it's best to destroy them.

Putting it all Togetherh22
The complete script for the TProfitTracker is presented here with test code to put
the object through its paces. Later, you can save the TProfitTracker object in the
"Studies" folder and use it in any ChartScript that you wish by including it with the
Include Manager.

Inheritancel123)
You can create an object that descends from another one. The new object will
inherit all of the variables, functions, procedures, and properties defined in the
ancestor.

Polymorphism |25
You can create functions and procedures in a type that can change their behavior

in descendant types. In object-oriented programming this type of feature is
known as polymorphism.

© 2003-2006 WL Systems, Inc.

Objects 118

13.2

The TList Object 28
Arrays are indispensable in programming, however, they may not always be the
best choice for storing values of related items. The TList object is great when you
don't know how many items you will be needing beforehand, therefore you may
add to it, and remove from it, as you please. It's convenient since it takes care of
all the "dimensioning" for you. Additionally, the TList has other properties and
methods that would be very tedious to manage with plain vanilla arrays, and for
this reason the TList is a good introduction to using objects - appropriate for even
beginners!

Object Type Declarations

The Type Statement

You use the t ype statement to define a new type of Object. You can then create one
or more instances of the object later in your code. The t ype statement contains three
sections in which you can declare variables and functions/procedures.

private
Items declared in this section are available only to the Object's own functions or
procedures.

protected
Items declared here are also available to Objects that are inherited from this Object.

public
Items declared in the public section are available anywhere.

Example

{ This is the skeleton for creating a new type of object
When creating a new class, replace TM/Qbject with your class name }
type TMyObj ect = cl ass
private
protected
public
end;

Variables in a Type

You can declare variables in any of the three sections in your type. Going forward our
example will revolve around a new Object type that will know how to calculate and
deliver information on the average profit generated per trade from your trading
system.

Example

type TProfitTracker = class
private
AvgProfit: integer;
pr ot ect ed
public
end;

Our new Object type, TProfitTracker, now contains one integer variable, AvgProfit.
Notice that when you declare variables in any of the three sections of the t ype you

© 2003-2006 WL Systems, Inc.

119 WealthScript Language Guide, Wealth-Lab Developer 4.0
don't use the var statement.
Methods in a Type
Each of the three sections in a type can also contain functions or procedures, referred
collectively as object methods. You declare the functions or procedures normally,
then provide the implementation after the type declaration itself. Below we add a
single new procedure to our type.
Note that the function is declared in the public section, and it is implemented after the
end of the t ype statement. The syntax TProfitTracker.Execute lets WealthScript know
that you're implementing the Execute procedure of the TProfitTracker type.
Also notice that the Execute procedure creates a new Price Series using
Creat eSeri es (see Creating Your Own Price Series/s41) and assigns it to the private
variable "AvgProfit".
Example
type TProfitTracker = class
private
AvgProfit: integer;
pr ot ect ed
public
procedure Execute;
end;
procedure TProfitTracker. Execute;
var
Bar, count, p: integer;
profit: float;
begi n
AvgProfit := CreateSeries;
for Bar := 0 to BarCount - 1 do
begi n
count := 0;
profit := 0;
for p :=0 to PositionCount - 1 do
begi n
if PositionExitBar(p) <= Bar then
begin
Inc(count);
profit := profit + PositionProfit(p);
end;
end;
if count > O then
Set Seri esVal ue(Bar, AvgProfit, profit / count);
end;
end;
13.3 Providing Access via Properties

What are Properties?

Properties are a special feature of objects. A property can provide read-only or read-
write access to data within its Object. You declare a property in any of the three type

© 2003-2006 WL Systems, Inc.

Objects 120

sections (although it usually makes the most sense to declare them in the public
section).

A property can be given a read accessor that specifies a function or variable to use
to obtain the property's value. It can also be given a write accessor to specify a
procedure to use for storing the property's value.

If a read accessor function is declared for a property, then whenever the property is
referenced in code, the value is obtained by executing the read accessor function (or
grabbing the value from the variable). Similarly, if a write accessor procedure is
declared for a property, whenever the property is assigned a value, the value is
passed through the write accessor procedure.

Our TProfitTracker creates a new Price Series, but stores it in a private variable. We
can provide read-only access to this variable by creating a property that returns the
value from the variable. Then, anyone using this object will be able to access the
AvgProfit Price Series but will not be able to modify it.

Example

type TProfitTracker = class
private
AvgProfit: integer;
protected
public
procedure Execute;
property AvgProfitSeries: integer read AvgProfit;
end;

Declaring Accessor Methods

The following sample creates a new type called TSample. TSample contains a single
integer property, "Sample", with a read and write accessor methods. It also contains
a private integer variable called "FSample" that stores that property value internally.
This variable is often called the "Field variable" and is conventionally named the same
as the property but preceded by an "F". The read accessor method simply returns the
value from the FSample variable. Note that we could have eliminated the read
accessor method in this case and replaced it with the variable itself as follows:

property Sanmple: integer read FSanple wite Set Sanpl e;

The write accessor, however, performs some special processing on the incoming
value. It restricts the value to be within the range of 0 to 100 before assigning it to
the underlying FSample variable.

type TSanple = cl ass
private
FSanpl e: integer;
function Get Sanmpl e: integer;
procedure Set Sanple(n: integer);
pr ot ect ed
public
property Sanple: integer read GetSanple wite SetSanple;
end;

function TSanpl e. Get Sanpl e: i nteger;
begi n

Result := FSanpl e;
end;

© 2003-2006 WL Systems, Inc.

121

WealthScript Language Guide, Wealth-Lab Developer 4.0

13.4

procedure TSanpl e. Set Sanpl e(n: integer);
begi n

FSample : =

i f FSanpl e

FSanpl e :

i f FSanpl e

FSanpl e :

end;

100 then
100;
0 then
0;

I A Ilv 3>

Creating and Using Instances of a Type

Creating an Object Instance

Now that we know how to declare types of Objects, we need to learn how to create
instances of these types. You can create one or more instances of a type in your
WealthScript code. Each instance maintains its own internal copy of any data
elements declared within the type.

To create an instance of an Object you must first declare a variable to store the
instance using a standard var statement. You can then create the instance of the
Object using a new type of statement called the constructor. The constructor is
simply the name of the type followed by a ".Create".

Example
var AProfitTracker: TProfitTracker;
AProfitTracker := TProfitTracker. Create;

Note that we first declared a variable of the type "TProfitTracker". We then assigned a
value to the variable using the new constructor style statement.

If required, you can take advantage of the Create constructor method to initialize your
object. The way to do it is to create your own Create constructor. The code you put
in the constructor's method will be called whenever an instance of the class is created.
The TProfitTracker class does not require a special initialization method, but we
include the following example for completeness.

Example

type Myd ass = cl ass
constructor Create;
end;

constructor MyC ass. Creat e;
begin

ShowMessage('Instance Created');
end;

var |nstance: MO ass;
I nstance := Myd ass. Create;

Freeing Instances

In Wealth-Lab Developer 4.0, WealthScript employs the programming concept of a
garbage collection to clean up objects that are no longer being accessed. Destructors

© 2003-2006 WL Systems, Inc.

Objects 122

need not be used and objects are freed automatically when they are no longer
referenced, or at the end of a script. Consequently, there is no need to explicitly free,
or destroy, object instances that you create.

Note: In previous versions of Wealth-Lab you were responsible for destroying object
instances by calling their Free method. The Free method is no longer
required, and you should remove calls to the Free method in your scripts.

Accessing Properties of Objects

Once you have one or more instances of your Object created, you can access their
properties. Use the "Variable.Property" dot-style notation to access an object's
properties.

Example

{ Access the Average Profit Series }
var n: integer;
n := AProfitTracker. AvgProfit Series;

{ This will trigger an error, since we didn't define a wite accessor
for the property }
AProfitSeries := 0;

Executing Methods of an Object

Use the same dot-style notation to execute any functions or procedures defined within
an Objects's type.

Example

{ Tell the object to do its thing }
AProfitTracker. Execut e;

13.5 Putting it all Together

Below is the complete script for the TProfitTracker, and some test code to put the
Object through its paces. Note that we've made the TProfitTracker more intelligent.
The Object now tracks whether or not the average profit per trade Price Series was
constructed using a private boolean variable "bExecuted". It then uses the read
accessor method to construct the Price Series by calling the Execute method if
required.

Example

type TProfitTracker = class
private
FAvgProfitSeries: integer;
bExecut ed: bool ean;
protected
function GetAvgProfit: integer;
public
procedure Execute;
property AvgProfitSeries: integer read GetAvgProfit;

© 2003-2006 WL Systems, Inc.

123 WealthScript Language Guide, Wealth-Lab Developer 4.0

end;

function TProfitTracker. Get AvgProfit: integer;
begin
i f not bExecuted then
Execut e;
Result := FAvgProfitSeries;
end;

procedure TProfitTracker. Execute;
var

Bar, count, p: integer;

profit: float;

begin
bExecuted : = true;
FAvgProfitSeries := CreateSeries;
for Bar := 0 to BarCount - 1 do
begi n
count := 0;
profit := 0;
for p :=0 to PositionCount - 1 do
begin
if PositionExitBar(p) <= Bar then
begin
Inc(count);
profit := profit + PositionProfit(p);
end;
end;

if count > 0 then
Set Seri esVal ue(Bar, FAvgProfitSeries, profit / count);
end;
end;

{ A sinple channel breakout systemto test the object }
var Bar: integer;

for Bar := 4 to BarCount - 1 do
begi n
i f LastPositionActive then
Sel | At Stop(Bar + 1, Lowest(Bar, #Low, 3), LastPosition, '')
el se
BuyAt St op(Bar + 1, Highest(Bar, #H gh, 3), "');
end;

{ Use the TProfitTracker object now }

var AProfitTracker: TProfitTracker;

var AvgProfitPane: integer;

AProfitTracker := TProfitTracker. Create;

AvgProfitPane := CreatePane(100, true, true);

Set PaneM nMax(AvgProfitPane, 0, 0);

Pl ot Series(AProfitTracker. AvgProfitSeries, AvgProfitPane, #G een,
#Thi ckHi st) ;

13.6 Inheritance

Deriving One Type from Another

You can create an object that descends from another one. The new object will inherit

© 2003-2006 WL Systems, Inc.

Objects 124

all of the variables, functions, procedures, and properties defined in the ancestor. The
new object will be able to access all of the items declared in the protected or public
section of the ancestor, but not from the private section.

To specify that a type is derived from a parent, place the type of the ancestor in
parenthesis after the type name in the type statement:

Example

type Ancestor = class
private

protected

public

end;

type TDescendant = class(TAncestor)
private

protected

public

end;

TObject Type

Actually, all types ultimately descend from a base type called TObject. TObject
provides the default constructor and destructor. The system assumes that new types
are derived from TObject even when no ancestor type is provided.

Example

{ The following 2 type statenents are identical }
type TMyType = cl ass

private

protected

public

end;

type TMyType = class(TObject)
private

protected

public

end;

Descendant Types Can Access Protected Items

You can access variables, functions and procedures that were declared in the
protected section of an ancestor type from within the functions and procedures of the
derived type.

Example

type TMyType = cl ass
private

varl: integer;
protected

var2: integer;
public

var 3: integer;
end;

© 2003-2006 WL Systems, Inc.

125 WealthScript Language Guide, Wealth-Lab Developer 4.0

type TMyType2 = class(TWMyType)

private

pr ot ect ed

public
function GetResult: integer;

end;

function TMyType2. Get Result: integer;

begi n
Result := var3; {Public ... this is legal}
Result := var?2; {Protected ... this is legal}
Result := varl,; {Private ... NOT ACCESSABLE}

end;

13.7 Polymorphism

Polymorphic Methods

You can create functions and procedures in a type that can change their behavior in
descendant types. In object-oriented programming this type of feature is known as
polymorphism. To flag a function or procedure as being polymorphic, add the
keyword vi rt ual after the declaration. Then, in your derived class, re-declare the
function or procedure with the overri de keyword.

In this example we create a type that returns the average price at any given bar by
adding the high and low and dividing by two. We then created an inherited type that
changes the implementation of the function by factoring closing price into the
calculation. The code at the bottom of the script illustrates the polymorphic behavior.
We declare a variable of the type of the ancestor type (often called the base class),
but use the constructor of the descendant type when creating the instance of the
object. So, even though the object is stored in a variable type of the ancestor, it uses
the descendant's function implementation when calculating the average price.

Example

type TAveragerl = cl ass
private
protected
public
function GetAvg(Bar: integer): float; virtual;
end;

type TAverager2 = class(TAveragerl)
private
protected
public
function GetAvg(Bar: integer): float; override;
end;

function TAveragerl. Get Avg(Bar: integer): float;
begin

Result := (PriceH gh(Bar) + PriceLow(Bar)) [/ 2;
end;

function TAverager?2. Get Avg(Bar: integer): float;
begin
Result := (PriceH gh(Bar) + PriceLow(Bar) + PriceC ose(Bar))

© 2003-2006 WL Systems, Inc.

Objects 126

| 3;
end;

var Avg: TAverager 1,
Avg : = TAverager 2. Create;

Print(FloatToStr(Avg.GetAvg(0)));

Accessing the Inherited Behavior

Your polymorphic procedures and functions can access the behavior of the ancestor by
using the i nherit ed keyword. Here we change the implementation of the GetAvg
function of the descendant class to access and then modify the result from the
ancestor's function.

Example
function TAverager?2. Get Avg(Bar: integer): float;
begin
Result := inherited GetAvg(Bar);
Result := (Result + PriceCose(Bar)) / 2;
end;

13.8 The TList Object
13.8.1 Overview

The TList class provides a list object. You can add and remove items to the list, as
well as sort the items. You can access the items in the list by index number. The first
item in the list is index zero, and the last item is index Count - 1.

A TList is great when you don't know how many items you will be needing beforehand,
therefore you may add to it and remove from it as you please. It's convenient since it
takes care of all the "dimensioning" for you. However, with these advantages, you
will paTyHa small performance penalty in speed when compared to accessing an

arrayi4si.

TList stores data items as Variants/i1], which is a special data type that can be used to
store any other basic type, such as string or fl oat. Consequently, items retrieved
using the Item and Data methods from the TList are of type variant. You can also use
the TList to store a collection of object types using the AddObject method. To retrieve
the instance of an object, use the Object method.

The TList object is not available for use in SimuScripts.

The following example, which stores all of the closing values in the chart into a TList
object, demonstrates the use of many of the TList methods. In the example, the TList
object sorts its members, and finally, the sorted closing values are written to the
Debug Window by iterating through the list.

Example

{ Declare Variables }
var Bar: integer;
var |st: TList;

© 2003-2006 WL Systems, Inc.

127 WealthScript Language Guide, Wealth-Lab Developer 4.0

var f: float;

{ Create an instance of a TList }

I st := TList.Create;
{ Fill the TList with C osing Values of the Chart }
for Bar := 0 to BarCount - 1 do
begi n
f := PriceC ose(Bar);
[st.Add(f);
end;

{ Sort the values }
| st. Sort Nuneri c;

{ Print the sorted values to the Debug W ndow
Note: here, I|st.Count is equal to BarCount }

for Bar := 0 to Ist.Count - 1 do
begi n

f :=1Ist.ltem Bar);

Print(FormatFl oat ("#, ###.00', f));
end;

You can also pass a TList to a procedure. When doing this, the TList object is passed
by reference to the procedure. This means that any changes (Add, Delete, Clear, etc.)
made to the the TList in the procedure will also effect the TList object in the calling
procedure as demonstrated in the next example.

Example

function MySunm(aTL: TList): integer;
var n: integer;

begin
Result := 0;
for n := 0 to aTL.Count - 1 do
Result := Result + aTL.ltem(n);

{ Delete the last itemin the TList }
aTL. Del ete(aTL.Count - 1);
end;

var |st: TList;
var isum integer;

{ Program execution begins here }
Ist := TList.Create;

Ist. Add(3);

Ist. Add(5);

I st. Add(8);

I st. Add(13);

isum:= MySunm(Ist);
ShowMessage(' The sum of the TList is ' + IntToStr(isum));
ShowMessage('The list now has ' + IntToStr(Ist.Count) + ' itens');

13.8.2 TList Functions
13.8.2.1 Add

The Add method returns an integer index of the added Value.

© 2003-2006 WL Systems, Inc.

Objects 128

Syntax
object.Add(Value);
Item Description
object An object expression of type TList.
Value Variant. A variable or expression of any of the primitive
data types/i1.
Remarks

e Adds the specified item, Value, to the list.

e Returns the index number of the added Value. The Add method returns the index 0
for the first item added to a TList.

e Use the Item[s) method with the integer index returned by the Add method to
retrieve a Value in a TList.

o If the Deletelss, SortNumericls%, or SortStringhs? methods are used after adding an
item to a TList, it's likely that the index of the item returned by the Add will change.

Note:

You may implement this method as shown in the The TList Object examplel2s), or
alternatively by assigning the function to an integer variable.

FAQ: How can I add a record typeli? to a TList?

You cannot add a record to a list, but you can add an object, which can contain
different data elements just like a record type. For more information, see the
AddObjectf25 method of a TList.

13.8.2.2 AddData

The AddData method returns an integer index of the added Value and associated

Data.
Syntax
object.AddData(Value, Data);

Item Description

object An object expression of type TList

Value Variant. A variable or expression of any of the primitive
data types/if.

Data Variant. A variable or expression of any of the primitive
data types/ii).

Remarks

e Returns the index number of the added Value.
e Adds the specified item, Value, to the list along with additional Data.
e Use the Item[s)l method with the integer index returned by the AddData method to

© 2003-2006 WL Systems, Inc.

129 WealthScript Language Guide, Wealth-Lab Developer 4.0

retrieve a Value in the TList.

e Access the Data at a later time using the Datalsi method with the integer index
returned by the AddData method.

o If the Deletelss, SortNumericls%, or SortStringhs? methods are used after adding an
item to a TList, it's likely that the index of the item returned by the AddData will
change.

Tip:

You can easily store more than one value in either the Value or Data fields by using
a delimited string variable or expression as shown in the example below. Later, you
must parse the string to retrieve the individual values.

This example demonstrates how to stores a TList of 8% peaks containing the peak
value as well as its date and bar number, which are stored as Data in the form of a
comma delimited string.

Example:

var |st: TList;
var Bar, PkSe, i, dte: integer;
var f, fP: float;

Ist := TList.Create;

{ pbtain a series of 8% Peaks and plot themon the chart }
PkSe : = PeakSeries(#H gh, 8);
Pl ot Series(PkSe, 0, #Red, #Dots);

f :=0.0;
for Bar := 1 to BarCount - 1 do
begin
{ if a new peak is detected, add it to the list with its date value }
dte := GetDate(Bar);
fP := @kSe[Bar];
if f <> fP then begin
| st. AddData(fP, IntToStr(dte) + '," + IntToStr(Bar));
f:=1fPR
end;
end;

{ Print the peak nunber, peak value, date, and bar
to the debug w ndow }
for i :=0to Ist.Count - 1 do
Print('Peak # + IntToStr(i + 1) + ': +
Chr(9) + FormatFloat('#.00", Ist.ltenm(i)) +
Chr(9) + Ist.Data(i));

See Also:
Item Method 131, Data Method/s1, Peak Indictor, Plot Series

13.8.2.3 AddObject

The AddObject method returns an integer index of the added Value and associated
instance of Object.

Syntax
obj.AddObject(Value, Object);

© 2003-2006 WL Systems, Inc.

Objects 130

Item Description

obj An object expression of type TList

Value Variant. A variable or expression of any data type or an
instance of an object.

Object TObject. An instance of an Object typelus to store in the TList.

Remarks

e Returns the index number of the added Value.

e Adds the specified item, Value, to the list along with the specified instance of
Object.

e Use the Itﬂﬁ method to retrieve the Values of the TList.

o Access the Object at a later time using the Objecthsi method with the integer index
returned by the AddObject method.

Typical usage
See Object methodhs# example

13.8.2.4 Count

The Count method returns an integer of the number of items held in the list.

Syntax
object.Count();
Item Description
object An object expression of type TList
Remarks

e Returns the the total number items that a currently held in the TList specified by
object.

Typical usage
See The TList Object exampleli28

13.8.2.5 Create

The Create method returns an instance of a TList object

Syntax
TList.Create;

Remarks

e Creates an instance of a TList object.
e See this TList Object Example 28 for typical usage.

© 2003-2006 WL Systems, Inc.

131 WealthScript Language Guide, Wealth-Lab Developer 4.0
13.8.2.6 Data

The Data method returns a variant data value that was stored in the list via

AddData 128,

Syntax
object.Data(Index);

Item Description

object An object expression of type TList.

Index Integer variable or expression identifying the index of the data

item in the TList.

Remarks

 Returns the data value that was stored in the list via AddDatal8,

e The item is returned as a variant data type, but you can assign this to a variable of
the appropriate data type. For example, if the data were stored as 'AMGN', you
cannot assign this to an integer or float type. Rather, it should be assigned to a
string or another variant. On the other hand, if the data were stored as '34.22',
you may assign this to a variable of type float, string, or variant. In the last case,
you could also assign the variant type to an integer type (the variant number
would be rounded when assigned), but you must be careful when making such
assignments due to the possibility of an overflow.

Typical usage
See AddDatalz8 example

13.8.2.7 Item

The Item method returns a variant value that was stored in the list as Value via
Add 27 or AddDatals.

Syntax
object.Item(Index);
Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the TList
value.
Remarks

e Returns the value that was stored in the list via Add 27 or AddDatals.

e The item is returned as a variant data type, but you can assign this to a variable of
the appropriate data type. For example, if the data were stored as 'AMGN', you
cannot assign this to an integer or float type. Rather, it should be assigned to a
string or another variant. On the other hand, if the data were stored as '34.22',
you may assign this to a variable of type float, string, or variant. In the last case,
you could also assign the variant type to an integer type (the variant number

© 2003-2006 WL Systems, Inc.

Objects 132

would be rounded when assigned), but you must be careful when making such
assignments due to the possibility of an overflow.

Typical usage
See The TList Objecthz or AddData 128 examples

13.8.2.8 IndexOf

The IndexOf method returns an integer value that is the index in the list for the item
specified in the Value parameter.

Syntax
object.IndexOf(Value);
Item Description
object An object expression of type TList.
Value Variant variable or expression identifying the value to be found
in the TList.
Remarks

e Returns the index value for the specified Value. Values are added to the TList via
the Add27, AddData 28, or AddObjecth?8 functions.

e The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

o If the specified Value could not be found in the list, the function returns -1.

Example

var |st: TList;
var n: integer;

{ Create TList }
Ist := TList.Create;

{ Fill list with text strings }
| st. Add(' Zero');

| st. Add(' One');

| st. Add(' Two');

| st. Add(' Three');

I st. Add(' Four');

I st. Add('Five');

{ Sort the list }
I st.SortString;

{ Find the index of the specified string, will be last in the |ist
after al pha sort }
n:=Ilst.Indextf(' Zero');

ShowMessage(IntToStr(n));

13.8.2.9 IndexOfData

The IndexOfData method returns an integer value that is the index in the list for the

© 2003-2006 WL Systems, Inc.

133 WealthScript Language Guide, Wealth-Lab Developer 4.0

secondary data item specified in the Value parameter.

Syntax
object.IndexOfData(Value);
Item Description
object An object expression of type TList.
Value Variant variable or expression identifying the secondary data
value to be found in the TList.
Remarks

e Returns the index value for the specified secondary data Value. Secondary data
Values are added to the TList via the AddDatalz8 function.

e The first item in the list has an index value of zero, and the last item has an index
value of object.Count - 1.

o If the specified secondary data Value could not be found in the list, the function
returns -1.

Example

var |st: TList;
var n: integer;

{ Create TList }
Ist := TList.Create;

{ Fill with synbols and PE ratios }
| st. AddDat a(12.5, 'MSFT');

| st. AddData(17.6, 'GE);

| st. AddData(6.7, 'MCD);

| st. AddData(2.1, 'CSCO);

| st. AddDat a(8.4, 'SUNW);

| st. AddData(-12.7, 'AQL");

{ Find the PE for MSFT }

n :=Ist.IndexCData(' MSFT');
ShowMessage(FloatToStr(Ist.ltem n)));

13.8.2.10 IndexOfObject

The IndexOfObject method returns an integer value that is the index in the list for
the object instance specified in the Value parameter.

Syntax
obj.IndexOfObject(Value);
Item Description
obj An object expression of type TList.
Value An instance of an object typehi to be found in the TList.
Remarks

© 2003-2006 WL Systems, Inc.

Objects 134

e Returns the index value for the specified object instance. Objects are added to the
TList via the AddObiectl29 function.

e The first item in the list has an index value of zero, and the last item has an index
value of obj.Count - 1.

o If the specified object instance could not be found in the list, the function returns -1.

Typical usage
See IndexOfData 2 example
13.8.2.11 Object

The Object method returns the object instance that was previously added to a TList
by the AddObjectf28 method.

Syntax
obj.Object(Index);
Item Description
obj An object expression of type TList
Index Integer variable or expression identifying the index of the
TObject in the list.
Remarks

e When retrieving the TObject of Index from the TList, use the as operator to convert
the return value to its original class.

Example

type TMyObj ect = class(TOoject)
private
protected
public
procedure Shout;
end;

procedure TMyQbj ect. Shout;
begin

ShowMessage(' Arrrggghhh!');
end;

var |st: TList;

var nmo: TMyQbj ect;

Ist := TList.Create;

nmo = TMyQbj ect. Creat e;

| st. AddObj ect (123.45, no);

m :=Ist.Object(0) as TMOhj ect;
no. Shout ;

13.8.3 TList Procedures
13.8.3.1 Changeltem

Syntax

© 2003-2006 WL Systems, Inc.

135 WealthScript Language Guide, Wealth-Lab Developer 4.0

object.Changeltem(Index, Value);

Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the item

to change in the TList.

Value Variant variable or expression of the new Value to be stored in
the TList at Index.

Remarks

e Changes the initial value that was stored in the list via Addl?7 or AddDatalz8 to a
new Value.

Note

The example demonstrates that Changeltem operates on equally well on items
added through Addhz or AddDatal28. You normally create TLists that are
collections of closely-related items, and therefore you should use either A_ddE% or
AddDatal128 throughout the TList. Otherwise, attempting to access non-existent
data could lead to unpredictable results.

Example

var |st: TList;
var i1, i2: integer;

Ist := TList.Create;

il :=1lst.Add(' SUNW);

i2 :=1|st.AddData(' AMGN , 9. 15);

Print(Ist.ltem(il));

Print(Ist.ltemi2) + ', ' + FloatToStr(lst.Data(i2)));

{ Whoops, | neant CSCO }

| st. Changelten{ i1, 'CSCO);

| st. Changelten{ i2, 'CSCO);

Print(Ist.ltem(il));

Print(Ist.ltemi2) + "', ' + FloatToStr(lst.Data(i2)));

| st. Free;

13.8.3.2 Clear

Syntax
object.Clear();

Item Description

object An object expression of type TList

Remarks

e Clears the contents of the list

© 2003-2006 WL Systems, Inc.

Objects 136

Note

If you attempt to access a non-existent TList item or data, immediately following the
Clear method for example, an out of bounds error will occur.

13.8.3.3 Delete

Syntax
object.Delete(Index);
Item Description
object An object expression of type TList.
Index Integer variable or expression identifying the index of the item

to delete in the TList.

Remarks

e Deletes the item in the list specified by Index.
¢ Following the Delete method, the indices of all TList items that appear after the
deleted item are decremented by one.

Example
var |st: TList;
var i: integer;

var synbol : string;
I st := TList.Create;

| st. Add(" SUNW) ;
Ist.Add(' T");

| st. Add(' BA');

| st. Add(' MSFT") ;
| st. Add(' GM);

{ Find "BA" in the list and Delete it }
for i :=0to Ist.Count - 1 do
begin
if Ist.ltem(i) = "'BA then begin
Ist.Delete(i);
br eak; /'l break out of | oop
end;
end;

{ Print the list in the debug w ndow }

for i :=0to Ist.Count - 1 do
print(Ist.ltem(i));
| st. Free;
13.8.3.4 Free
Syntax

object.Free;

© 2003-2006 WL Systems, Inc.

137 WealthScript Language Guide, Wealth-Lab Developer 4.0

Item Description
object An object expression of type TList.
Remarks

e Destroys the TList object to free resources previously allocated to the TList object.

« Due to the introduction of the garbage collectionf2i in Wealth-Lab Developer 4.0, it
is no longer necessary to explicitly destroy objects, such as TLists, through the use
of the Free method.

13.8.3.5 SortNumeric

Syntax
object.SortNumeric();
Item Description
object An object expression of type TList
Remarks

e Sorts the values in the list as numbers from least to greatest.
e You should ensure that integers or floats were added to the list, otherwise the
results could be unpredictable.

Example

{ create a list of ascending closing prices of the last 10 chart bars }
var |st: TList;
var Bar, n: integer;

Ist := TList.Create;
for Bar := 0 to BarCount - 1 do
| st. Add(PriceC ose(Bar));

| st. Sort Nuneri c;
Print('Ascending);

for n :=0to Ist.Count - 1 do
Print(FormatFloat('#.00', Ist.ltem(n)));

Print(');
Print('Descending');
for n :=1st.Count - 1 downto O do

Print(FormatFloat('#.00', Ist.ltem(n)));

13.8.3.6 SortString

Syntax
object.SortString();

Item Description

© 2003-2006 WL Systems, Inc.

Objects 138

object An object expression of type TList

Remarks

e Sorts the values in the list as strings.
e The sort order is determined by a case-sensitive string comparison (binary compare)
of all items in the list, from least to greatest.

In the example, the string 'ba' will be sorted to the end of the list since lowercase
characters have greater ASCII codes than uppercase characters.

Example
var |st: TList;
var i: integer;

var synbol : string;
I st := TList.Create;
I st. Add(" SUNW) ;

| st. Add(' ba');

| st. Add(' BA');

| st. Add(' MSFT") ;

| st. Add(' GM);

I st. SortString;

{ Print the list in the debug w ndow }

for i :=0to Ist.Count - 1 do
print(Ist.ltem(i));
| st. Free;

© 2003-2006 WL Systems, Inc.

139 WealthScript Language Guide, Wealth-Lab Developer 4.0

Index
- H -

#All constant 79

#AsDollar 76
#AsPercent 76
#AsPoint 76

#Average 50
#AverageC 50

#Bold 106
#Close 50
#Color 69

#ColorBkg 69

#Current constant 110

#Dots (dotted line style) 67

#Dotted (dotted line style) 67
#Equity 106

#High 50

#Histogram (histogram plot style) 67
#ltalic 106

#lLow 50

#0pen 50

#Thick (thick line style) 67
#ThickHist (thick histogram plot style) 67
#Thin (thin line style) 67

#Volume 50

#WinLoss 106

@ syntax 57

GetSeriesValue 57
SetSeriesValue 57

_A -

AnnotateBar 70
AnnotateChart 70
ApplyAutoStops 76

arrays 45
accessing 45
array 45
declaring 45

multi-dimensional 45
synchronized 45
AutoRun PerfScript 108

_B -

BarCount 54
Use in SimuScript 110

boolean 11

break 34

BuyAtClose 74
BuyAtLimit 75
BuyAtMarket 74
BuyAtStop 75

by reference 40

by value 40

_C -

casting 13
chart 64
painting 64
panes 65
plotting 64
ChartScript Editor 5
closing positions 79
CMDataSource 103
CMEntry 103
CMOrderType 103
CMPrice 103
CMResult 103
CMShares 103
CMSymbol 103
colors 69
specifying 69
COM Support 5
combining positions 79
comments 8
CommissionScript 103
CMDataSource 103
CMEntry 103
CMOrderType 103
CMPrice 103
CMResult 103
CMShares 103
CMSymbol 103
compatibility 103
variables 103
creating 104
testing 104
CommissionScripts Overview 103
constants 16
16
declaring 16

© 2003-2006 WL Systems, Inc.

Index

constants 16
pre-defined 16

constructor 121

CreatePane 65

D -

datetime 11
declaring 14
delimiters 8
drawing 70

objects (programatically)
DrawLabel 70
DrawText 70

_E -

enumerated types 13
error 44

handling 44
exceptions 44
exit 43
-F -

FAQs 115

SimuScripts 115
float 11

for (looping statement) 32

Free 121

functions 35
arguments 40
calling 39
declaring 37
executing 39
parameters 40
syntax 37

-G -

garbage collection 121
GetSeriesValue 55

_H -

handle 51
HidePaneLines 65

70

indicator 96

custom 96
inheritance 123
InstallBreakEvenStop 76
InstallProfitTarget 76
InstallReverseBreakEvenStop 76
InstallStopLoss 76
InstallTimeBasedExit 76
InstallTrailingStop 76
instances of objects 121
integer 11

_K -

Knowledge Base 79

_L -

LastLongPositionActive 79
LastPosition 79
LastShortPositionActive 79
looping statements (summary) 32

M -

Max Entries per Day 115
merging positions 79

- N -

New Indicator Wizard 96

_0 -

object oriented programming 117
objects 117
accessing properties 121
constructor 121
creating 121
declaring 118
freeing 121
functions and procedures 118
inheritance 123
instances 121
methods 118
overview 117

140

© 2003-2006 WL Systems, Inc.

141 WealthScript Language Guide, Wealth-Lab Developer 4.0

objects 117
polymorphism 125
properties 119
read accessor 119
variables 118
write accessor 119

OOoP 117

operations 18
boolean 19
logical 21
mathematical 18
string 25

operator 18
and 21
div 18
modulo 18
not 25
or 22
standard 18
xor 24
assignment 14

orders 75
limit 75
market 74
market-on-close 74
selling short 77
stop 75

Overview 103
CommissionScripts 103

_P-

painting the chart 64
panes 65

creating 65

hide lines 65

hide volume 65
peeking 78
PerfScript 106

constants 106

creating 107

errors 107

functions 106

Overview 106

using 108
PlotSeries 67
PlotSymbol 68
PlotSyntheticSymbol 68
plotting 64

external symbols 68

indicators 67

objects (programatically) 70
style 67
synthetic symbols 68
polymorphism 125
position sizing 110
PositionActive 79
PositionCount 79
PositionEntryBar 79
PositionEntryPrice 79
PositionLong 79
positions 75
closing 75,79
combining 79
merging 79
multiple 79
open 75
split 79
splitting 79
Price Series 48
accessing values 61
accessing values from 55
alignment 91
characteristics 48
constant handles 50
creating 54
expanding 91
external 61
functions that accept 52
handle 51
overview 48, 49
standard 50
synchronization 91
procedures 35
arguments 40
caling 39
declaring 36
executing 39
parameters 40
syntax 36

‘R -

record types 12

recursion 37

recursive functions 37
reentrant functions 37
repeat (looping statement) 34
return values (functions) 37

© 2003-2006 WL Systems, Inc.

Index

_S -

Scale 65
scripting 72
main loop 73
overview 72
trading rules 72
SellAtClose 75
SellAtLimit 75
SellAtMarket 75
SellAtStop 75
semicolon 8
Series Math 59
answers 59
practice 58
SetAutoStopMode 76
SetDescription 96
SetSeriesBarColor 67
SetSeriesValue 55
SimuScript 110
#Current 110
BarCount 110
coding 112
creating 112
errors 114
Functions 110
how they work 112

testing 114
SimuScripts 110
FAQs 115

Overview 110

Portfolio $imulator 110

position sizing 110
slash 8

double 8
splitting positions 79
Stability of Indicators 73
state machines 13
statements 8, 26

break 34

case 30

conditional 26

forloop 32

iffthen 26

ifthen/else 26

repeat loop 34

while loop 33
stops 76

automated 76
string 11,25

shorthand 25
Chr 25
comparison 25
style 67
syntax 7
@ symbol 57

- T -

TList 126

TList methods 126
Add 127
AddData 128
AddObject 129
Changeltem 134

Clear 135
Count 130
Create 130
Data 131
Delete 136
Free 136
IndexOf 132

IndexOfData 132
IndexOfObject 133
ltem 131
Object 134
SortNumeric 137
SortString 137
TProfitTracker 122
trading rules 72
implementation 78
looking ahead 78

_U -

Use a PerfScript 108

_V -

variables 9
assigning 14
datatypes 11
declaring 10
enumerated types 13
initializing 14
naming rules 10
record types 12
scope 42

variant 11

Volume 65
hide pane 65

142

© 2003-2006 WL Systems, Inc.

143 WealthScript Language Guide, Wealth-Lab Developer 4.0

W -

WealthScript 5
definition 5
AnnotateBar 70
AnnotateChart 70
ApplyAutoStops 76
BarCount 54
BuyAtClose 74
BuyAtLimit 75
BuyAtMarket 74
BuyAtStop 75
CreatePane 65
CreateSeries 54
DrawCircle 70
DrawCircle2 70
DrawEllipse 70
DrawLabel 70
DrawLine 70
DrawText 70
GetSeriesValue 55
HidePanelLines 65
InstallBreakEvenStop 76
InstallProfitTarget 76
InstallReverseBreakEvenStop 76
InstallStopLoss 76
InstallTimeBasedExit 76
InstallTrailingStop 76
LastLongPositionActive 79
LastPosition 79
LastShortPositionActive 79
PeakBar 70
PlotSeries 67
PlotSymbol 68
PlotSyntheticSymbol 68
PositionActive 79
PositionCount 79
PositionEntryBar 79
PositionEntryPrice 79
PositionLong 79
SellAtClose 75
SellAtLimit 75
SellAtMarket 75
SellAtStop 75
SetAutoStopMode 76
SetSeriesBarColor 67
SetSeriesValue 55
TroughBar 70

while (looping statement) 33

© 2003-2006 WL Systems, Inc.

	Introduction
	WealthScript Language Syntax
	Overview
	Comments
	Statements and Delimiters
	Variables and Data Types
	Overview
	Declaring Variables
	Variable Naming Rules
	Data Types
	Record Types
	Enumerated Types

	Assignment Statements
	Constants
	Operations
	Overview
	Mathematical Operations
	Boolean Operations
	Logical Operations
	Summary
	And Operator
	Or Operator
	Xor Operator
	Not Operator

	String Operations

	Conditional Statements
	Case Statement
	Looping Statements
	Summary
	For Loop
	While Loop
	Repeat Loop
	Breaking Out of a Loop

	Functions and Procedures
	Overview
	Declaring Procedures
	Declaring Functions
	Calling Functions and Procedures
	Passing Parameters
	Scope of Variables
	Exiting a Procedure
	Native and Re-usable Functions

	Error Handling
	Arrays

	Working with Price Series
	Introduction to Price Series
	What is a Price Series?
	Handles to Price Series
	Overview
	Standard Price Series and Their Constants
	Functions that Return a Price Series Handle
	Functions that Accept a Price Series Handle

	Creating Your Own Price Series
	Accessing a Single Value of a Price Series
	Using @ Syntax to Access Values from a Price Series
	Series Math
	Practice
	Answers

	Price Series FAQs

	Painting the Chart
	Overview
	Chart Panes
	Creating New Panes
	Plotting an Indicator in a Pane
	Plotting Multiple Symbols
	Specifying Colors
	Drawing Text in a Pane
	Drawing Objects in a Pane

	Writing Your Trading System Rules
	Overview
	Scripting Trading Rules
	Overview
	The Main Loop
	Triggering a Market Buy Order
	Triggering a Limit or Stop Buy Order
	Checking for Open Positions
	Using Automated Stops
	Selling Short

	Implementing Trading System Rules
	Managing Multiple Positions

	Working with Technical Indicator Functions
	Overview
	Accessing Indicator Values
	Accessing Indicator Price Series Handles

	Accessing Data from Files
	Overview
	Creating and Opening Files
	Reading and Writing
	Closing Files

	Understanding Time Frames
	Overview
	Accessing a Higher Time Frame
	Expanding the Series
	Accessing Higher Time Frame Data by Bar
	Scaling and Trading

	Creating a Custom Indicator
	Overview
	Using the New Indicator Wizard
	Deleting a Custom Indicator
	The Guts of a Custom Indicator
	Other Possibilities and FAQs

	CommissionScripts
	Overview
	CommissionScript Variables
	Creating and Testing CommissionScripts

	PerfScripts
	Overview
	PerfScript Functions
	Creating PerfScripts
	Using PerfScripts

	SimuScripts
	Overview
	SimuScript Function Notes
	How do SimuScripts Work?
	Creating a SimuScript
	Testing a SimuScript
	SimuScript FAQs

	Objects
	Overview
	Object Type Declarations
	Providing Access via Properties
	Creating and Using Instances of a Type
	Putting it all Together
	Inheritance
	Polymorphism
	The TList Object
	Overview
	TList Functions
	Add
	AddData
	AddObject
	Count
	Create
	Data
	Item
	IndexOf
	IndexOfData
	IndexOfObject
	Object

	TList Procedures
	ChangeItem
	Clear
	Delete
	Free
	SortNumeric
	SortString

